Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-25T12:36:47.990Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  25 August 2009

Samuel Temkin
Affiliation:
Rutgers University, New Jersey
Get access
Type
Chapter
Information
Suspension Acoustics
An Introduction to the Physics of Suspensions
, pp. 367 - 383
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics, CambridgeGoogle Scholar
Lamb, H. 1932 Hydrodynamics, DoverGoogle Scholar
Landau, L. D. and Lifshitz, E. M. 1959 Fluid Mechanics, PergamonGoogle Scholar
Liepmann, H. W. and Roshko, A. 1957 Elements of Gasdynamics, WileyGoogle Scholar
Vincenti, W. G. and Kruger, C. H. Jr., 1963 Introduction to Physical Gas Dynamics, WileyGoogle Scholar
Epstein, P. S. 1937 Textbook of Thermodynamics, WileyGoogle Scholar
Callen, H. 1960 Thermodynamics, WileyGoogle Scholar
Carslaw, H. S. and Jaeger, J. C. 1959 Conduction of Heat in Solids, OxfordGoogle Scholar
Landau, L. D. and E. M. Lifshitz, E. M. 1958 Statistical Physics, PergamonGoogle Scholar
Pippard, A. B. 1961 The Elements of Classical Thermodynamics, CambridgeGoogle Scholar
Prigogine, I. 1967 Thermodynamics of Irreversible Processes, 3rd Ed., InterscienceGoogle Scholar
Woods, L. C. 1975 The Thermodynamics of Fluid Systems, OxfordGoogle Scholar
Abramowitz, M. and Stegun, I. 1964 Handbook of Mathematical Functions, DoverGoogle Scholar
Aris, R. 1989 Vectors, Tensors, and the Basic Equations of Fluid Mechanics, DoverGoogle Scholar
Gradshteyn, I. S. and Ryzhik, I. M. 1965 Tables of Integrals, Series and Products, AcademicGoogle Scholar
Jeffreys, H. and Jeffreys, B. S. 1956 Methods of Mathematical Physics, CambridgeGoogle Scholar
Morse, P. M. and Feshbach, H. 1953 Methods of Theoretical Physics, Vols. I and II, McGraw-HillGoogle Scholar
Smith, M. G. 1966 Laplace Transform Theory, van NostrandGoogle Scholar
Tricomi, F. G. 1985 Integral Equations, DoverGoogle Scholar
Goldstein, H. 1959 Classical Mechanics, Addison-WesleyGoogle Scholar
Landau, L. D. and , E. M.Lifshitz, E. M. 1960 Mechanics, PergamonGoogle Scholar
Pippard, A. B. 1978 The Physics of Vibration, CambridgeGoogle Scholar
Synge, J. L. and Griffith, B. A. 1959 Principles of Mechanics, McGraw-HillGoogle Scholar
Bhatia, A. B. 1967 Ultrasonic Absorption, DoverGoogle Scholar
Herzfeld, K. F. and Litovitz, T. A. 1959 Absorption and Dispersion of Ultrasonic Waves, AcademicGoogle Scholar
Morse, P. M. and Ingard, K. U. 1972 Theoretical Acoustics, McGraw-HillGoogle Scholar
Price, A. D. 1989 Acoustics – An Antroduction to Its Physical Principles and Applications, Acoustical Society of AmericaGoogle Scholar
Skudrzyk, E. 1971 The Foundations of Acoustics, SpringerCrossRefGoogle Scholar
Strutt, J. W. 1896 The Theory of Sound, Vol. II, 2nd Ed., DoverGoogle Scholar
Temkin, S. 2001a Elements of Acoustics, Acoustical Society of AmericaGoogle Scholar
Clift, R., Grace, J. R., and Weber, M. E. 1978 Bubbles, Drops and Particles, AcademicGoogle Scholar
Crow, C., Summerfeld, M., and Tsuji, Y. 1998 Multiphase Flows with Droplets and Particles, CRCGoogle Scholar
Davies, C. N. 1968 Aerosol Science, AcademicGoogle Scholar
Dennis, S., Ed. 1976 Handbook on AerosolsNational Technical Information Service, Document No. TID 26608Google Scholar
Drake, R. L. 1974 A General Mathematical Survey of the Coagulation Equation (Vol. 3 of International Reviews in Aerosol Physics and Chemistry, Hidy, G. M. and Brock, J. R., Eds.), PergamonGoogle Scholar
Dufour, L. and Dufay, R. 1963 Thermodynamics of Clouds, AcademicGoogle Scholar
Einstein, A. 1926 Investigations on the Theory of the Brownian Movement, Fürth, R., Ed., DoverGoogle Scholar
Friedlander, S. K. 1977 Smoke, Dust and Haze: Fundamentals of Aerosol Behavior, WileyGoogle Scholar
Frohn, A. and Roth, N. 2000 Dynamics of Droplets, SpringerCrossRefGoogle Scholar
Fuchs, N. A. 1959 Evaporation and Droplet Growth in Gaseous Media, PergamonGoogle Scholar
Fuchs, N. A. 1964 The Mechanics of Aerosols, DoverGoogle Scholar
Happel, J. and Brenner, H. 1965 Low Reynolds Number Hydrodynamics, Prentice HallGoogle Scholar
Hunter, R. J. 1987 Foundations of Colloid Science, Vols. I and II, OxfordGoogle Scholar
Ishii, M. 1975 Thermo-fluid Dynamic Theory of Two-phase Flow, EyrollesGoogle Scholar
Joseph, D. D. and Schaeffer, D. G. Eds., 1990 Two Phase Flows and Waves, SpringerCrossRefGoogle Scholar
Kim, S. and Karrila, S. J. 1990 Microhydrodynamics, Butterworth-HeinemannGoogle Scholar
Kirkwood, J. G. 1967 Macromolecules, Auer, P. L., Ed., Gordon and BreachGoogle Scholar
Leighton, T. G. 1994 The Acoustic Bubble, AcademicGoogle Scholar
Mason, B. J. 1971 The Physics of Clouds, OxfordGoogle Scholar
Mednikov, E. 1965 Acoustic Coagulation and Precipitation of Aerosols, PlenumGoogle Scholar
Millikan, R. A. 1917 The Electron, ChicagoGoogle ScholarPubMed
Nakoryakov, V. E., Pokusaev, B. G., and Shreiber, I. R. 2000 Wave Propagation in Gas-Liquid Media, CRCGoogle Scholar
Oseen, C. W. 1927 Neuere Methoden in der Hydrodynamik, LeipzigGoogle Scholar
Pruppacher, H. R. and Klett, J. D. 1978 Microphysics of Clouds and Precipitation, D. ReidelCrossRefGoogle Scholar
Russel, W. B. 1987 The Dynamics of Colloidal Systems, WisconsinGoogle Scholar
Russel, W. B., Saville, D. A., and Schowalter, W. R. 1990 Colloidal Dispersions, CambridgeGoogle Scholar
Soo, S. L. 1967 Fluid dynamics of Multiphase Systems, BlaisdellGoogle Scholar
Soo, S. L. 1989 Particulate and Continuum – Multiphase Fluid Mechanics, HemisphereGoogle Scholar
Ungarish, M. 1993 Hydrodynamics of Suspensions, SpringerCrossRefGoogle Scholar
Hulst, H. C. 1957 Light Scattering by Small Particles, WileyGoogle Scholar
Young, F. R. 1989 Cavitation, McGraw-HillGoogle Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics, CambridgeGoogle Scholar
Lamb, H. 1932 Hydrodynamics, DoverGoogle Scholar
Landau, L. D. and Lifshitz, E. M. 1959 Fluid Mechanics, PergamonGoogle Scholar
Liepmann, H. W. and Roshko, A. 1957 Elements of Gasdynamics, WileyGoogle Scholar
Vincenti, W. G. and Kruger, C. H. Jr., 1963 Introduction to Physical Gas Dynamics, WileyGoogle Scholar
Epstein, P. S. 1937 Textbook of Thermodynamics, WileyGoogle Scholar
Callen, H. 1960 Thermodynamics, WileyGoogle Scholar
Carslaw, H. S. and Jaeger, J. C. 1959 Conduction of Heat in Solids, OxfordGoogle Scholar
Landau, L. D. and E. M. Lifshitz, E. M. 1958 Statistical Physics, PergamonGoogle Scholar
Pippard, A. B. 1961 The Elements of Classical Thermodynamics, CambridgeGoogle Scholar
Prigogine, I. 1967 Thermodynamics of Irreversible Processes, 3rd Ed., InterscienceGoogle Scholar
Woods, L. C. 1975 The Thermodynamics of Fluid Systems, OxfordGoogle Scholar
Abramowitz, M. and Stegun, I. 1964 Handbook of Mathematical Functions, DoverGoogle Scholar
Aris, R. 1989 Vectors, Tensors, and the Basic Equations of Fluid Mechanics, DoverGoogle Scholar
Gradshteyn, I. S. and Ryzhik, I. M. 1965 Tables of Integrals, Series and Products, AcademicGoogle Scholar
Jeffreys, H. and Jeffreys, B. S. 1956 Methods of Mathematical Physics, CambridgeGoogle Scholar
Morse, P. M. and Feshbach, H. 1953 Methods of Theoretical Physics, Vols. I and II, McGraw-HillGoogle Scholar
Smith, M. G. 1966 Laplace Transform Theory, van NostrandGoogle Scholar
Tricomi, F. G. 1985 Integral Equations, DoverGoogle Scholar
Goldstein, H. 1959 Classical Mechanics, Addison-WesleyGoogle Scholar
Landau, L. D. and , E. M.Lifshitz, E. M. 1960 Mechanics, PergamonGoogle Scholar
Pippard, A. B. 1978 The Physics of Vibration, CambridgeGoogle Scholar
Synge, J. L. and Griffith, B. A. 1959 Principles of Mechanics, McGraw-HillGoogle Scholar
Bhatia, A. B. 1967 Ultrasonic Absorption, DoverGoogle Scholar
Herzfeld, K. F. and Litovitz, T. A. 1959 Absorption and Dispersion of Ultrasonic Waves, AcademicGoogle Scholar
Morse, P. M. and Ingard, K. U. 1972 Theoretical Acoustics, McGraw-HillGoogle Scholar
Price, A. D. 1989 Acoustics – An Antroduction to Its Physical Principles and Applications, Acoustical Society of AmericaGoogle Scholar
Skudrzyk, E. 1971 The Foundations of Acoustics, SpringerCrossRefGoogle Scholar
Strutt, J. W. 1896 The Theory of Sound, Vol. II, 2nd Ed., DoverGoogle Scholar
Temkin, S. 2001a Elements of Acoustics, Acoustical Society of AmericaGoogle Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics, CambridgeGoogle Scholar
Lamb, H. 1932 Hydrodynamics, DoverGoogle Scholar
Landau, L. D. and Lifshitz, E. M. 1959 Fluid Mechanics, PergamonGoogle Scholar
Liepmann, H. W. and Roshko, A. 1957 Elements of Gasdynamics, WileyGoogle Scholar
Vincenti, W. G. and Kruger, C. H. Jr., 1963 Introduction to Physical Gas Dynamics, WileyGoogle Scholar
Epstein, P. S. 1937 Textbook of Thermodynamics, WileyGoogle Scholar
Callen, H. 1960 Thermodynamics, WileyGoogle Scholar
Carslaw, H. S. and Jaeger, J. C. 1959 Conduction of Heat in Solids, OxfordGoogle Scholar
Landau, L. D. and E. M. Lifshitz, E. M. 1958 Statistical Physics, PergamonGoogle Scholar
Pippard, A. B. 1961 The Elements of Classical Thermodynamics, CambridgeGoogle Scholar
Prigogine, I. 1967 Thermodynamics of Irreversible Processes, 3rd Ed., InterscienceGoogle Scholar
Woods, L. C. 1975 The Thermodynamics of Fluid Systems, OxfordGoogle Scholar
Abramowitz, M. and Stegun, I. 1964 Handbook of Mathematical Functions, DoverGoogle Scholar
Aris, R. 1989 Vectors, Tensors, and the Basic Equations of Fluid Mechanics, DoverGoogle Scholar
Gradshteyn, I. S. and Ryzhik, I. M. 1965 Tables of Integrals, Series and Products, AcademicGoogle Scholar
Jeffreys, H. and Jeffreys, B. S. 1956 Methods of Mathematical Physics, CambridgeGoogle Scholar
Morse, P. M. and Feshbach, H. 1953 Methods of Theoretical Physics, Vols. I and II, McGraw-HillGoogle Scholar
Smith, M. G. 1966 Laplace Transform Theory, van NostrandGoogle Scholar
Tricomi, F. G. 1985 Integral Equations, DoverGoogle Scholar
Goldstein, H. 1959 Classical Mechanics, Addison-WesleyGoogle Scholar
Landau, L. D. and , E. M.Lifshitz, E. M. 1960 Mechanics, PergamonGoogle Scholar
Pippard, A. B. 1978 The Physics of Vibration, CambridgeGoogle Scholar
Synge, J. L. and Griffith, B. A. 1959 Principles of Mechanics, McGraw-HillGoogle Scholar
Bhatia, A. B. 1967 Ultrasonic Absorption, DoverGoogle Scholar
Herzfeld, K. F. and Litovitz, T. A. 1959 Absorption and Dispersion of Ultrasonic Waves, AcademicGoogle Scholar
Morse, P. M. and Ingard, K. U. 1972 Theoretical Acoustics, McGraw-HillGoogle Scholar
Price, A. D. 1989 Acoustics – An Antroduction to Its Physical Principles and Applications, Acoustical Society of AmericaGoogle Scholar
Skudrzyk, E. 1971 The Foundations of Acoustics, SpringerCrossRefGoogle Scholar
Strutt, J. W. 1896 The Theory of Sound, Vol. II, 2nd Ed., DoverGoogle Scholar
Temkin, S. 2001a Elements of Acoustics, Acoustical Society of AmericaGoogle Scholar
Clift, R., Grace, J. R., and Weber, M. E. 1978 Bubbles, Drops and Particles, AcademicGoogle Scholar
Crow, C., Summerfeld, M., and Tsuji, Y. 1998 Multiphase Flows with Droplets and Particles, CRCGoogle Scholar
Davies, C. N. 1968 Aerosol Science, AcademicGoogle Scholar
Dennis, S., Ed. 1976 Handbook on AerosolsNational Technical Information Service, Document No. TID 26608Google Scholar
Drake, R. L. 1974 A General Mathematical Survey of the Coagulation Equation (Vol. 3 of International Reviews in Aerosol Physics and Chemistry, Hidy, G. M. and Brock, J. R., Eds.), PergamonGoogle Scholar
Dufour, L. and Dufay, R. 1963 Thermodynamics of Clouds, AcademicGoogle Scholar
Einstein, A. 1926 Investigations on the Theory of the Brownian Movement, Fürth, R., Ed., DoverGoogle Scholar
Friedlander, S. K. 1977 Smoke, Dust and Haze: Fundamentals of Aerosol Behavior, WileyGoogle Scholar
Frohn, A. and Roth, N. 2000 Dynamics of Droplets, SpringerCrossRefGoogle Scholar
Fuchs, N. A. 1959 Evaporation and Droplet Growth in Gaseous Media, PergamonGoogle Scholar
Fuchs, N. A. 1964 The Mechanics of Aerosols, DoverGoogle Scholar
Happel, J. and Brenner, H. 1965 Low Reynolds Number Hydrodynamics, Prentice HallGoogle Scholar
Hunter, R. J. 1987 Foundations of Colloid Science, Vols. I and II, OxfordGoogle Scholar
Ishii, M. 1975 Thermo-fluid Dynamic Theory of Two-phase Flow, EyrollesGoogle Scholar
Joseph, D. D. and Schaeffer, D. G. Eds., 1990 Two Phase Flows and Waves, SpringerCrossRefGoogle Scholar
Kim, S. and Karrila, S. J. 1990 Microhydrodynamics, Butterworth-HeinemannGoogle Scholar
Kirkwood, J. G. 1967 Macromolecules, Auer, P. L., Ed., Gordon and BreachGoogle Scholar
Leighton, T. G. 1994 The Acoustic Bubble, AcademicGoogle Scholar
Mason, B. J. 1971 The Physics of Clouds, OxfordGoogle Scholar
Mednikov, E. 1965 Acoustic Coagulation and Precipitation of Aerosols, PlenumGoogle Scholar
Millikan, R. A. 1917 The Electron, ChicagoGoogle ScholarPubMed
Nakoryakov, V. E., Pokusaev, B. G., and Shreiber, I. R. 2000 Wave Propagation in Gas-Liquid Media, CRCGoogle Scholar
Oseen, C. W. 1927 Neuere Methoden in der Hydrodynamik, LeipzigGoogle Scholar
Pruppacher, H. R. and Klett, J. D. 1978 Microphysics of Clouds and Precipitation, D. ReidelCrossRefGoogle Scholar
Russel, W. B. 1987 The Dynamics of Colloidal Systems, WisconsinGoogle Scholar
Russel, W. B., Saville, D. A., and Schowalter, W. R. 1990 Colloidal Dispersions, CambridgeGoogle Scholar
Soo, S. L. 1967 Fluid dynamics of Multiphase Systems, BlaisdellGoogle Scholar
Soo, S. L. 1989 Particulate and Continuum – Multiphase Fluid Mechanics, HemisphereGoogle Scholar
Ungarish, M. 1993 Hydrodynamics of Suspensions, SpringerCrossRefGoogle Scholar
Hulst, H. C. 1957 Light Scattering by Small Particles, WileyGoogle Scholar
Young, F. R. 1989 Cavitation, McGraw-HillGoogle Scholar
Batchelor, G. K. 1974 Transport properties of two phase materials with random structure, Ann. Rev. Fluid Mech. 6, 227–255CrossRefGoogle Scholar
Batchelor, G. K. 1976 Developments in microhydrodynamics, in Theoretical and Applied Mechanics, Proceedings of the 14th IUTAM Congress, Delft, The Netherlands, Koiter, W. T., Ed., North-Holland
Brady, J. F. 1988 Stokesian dynamics, Ann. Rev. Fluid Mech. 20, 111–157CrossRefGoogle Scholar
Brenner, H. 1970 Rheology of two-phase systems, Ann. Rev. Fluid Mech. 2, 137–176CrossRefGoogle Scholar
Clift, R. and Gauvin, W. H. 1971 Motion of entrained particles in gas streams, Can. J. Chem. Eng. 19, 439–448CrossRefGoogle Scholar
Davis, R. H. and Acrivos, A. 1985 Sedimentation of non-colloidal particles at low Reynolds numbers, Ann. Rev. Fluid. Mech. 17, 91–118CrossRefGoogle Scholar
Drew, D. A. 1983 Mathematical modeling of two-phase flow, Ann. Rev. Fluid Mech. 15, 261–291CrossRefGoogle Scholar
Herczynski, R. and Pienkowska, I. 1980 Toward a statistical theory of suspension, Ann. Rev. Fluid Mech. 12, 237–269CrossRefGoogle Scholar
Hughes, R. R. and Gilliland, E. R. 1952 The mechanics of drops, Chem. Eng. Prog., 48, 497–504Google Scholar
Igra, O. and Ben-Dor, O. 1988 Dusty shock waves, Appl. Mech. Revs. 41, 379–437CrossRefGoogle Scholar
Lane, W. R. and Green, H. L. 1956 The mechanics of drops and bubbles, in Surveys in Mechanics, The G. I. Taylor 70th Anniversary Volume, Batchelor, G. K. and Davies, R. M., Eds., CambridgeGoogle Scholar
Lavenda, B. H. 1985 Brownian motion, Sci. Amer. 252, 70–85CrossRefGoogle Scholar
Leal, L. G. 1980 Particle motions in a viscous fluid, Ann. Rev. Fluid Mech. 12, 435–476CrossRefGoogle Scholar
Lohse, D. 2003 Bubble puzzles, Phys. Today 56, 36–41CrossRefGoogle Scholar
Marble, F. E. 1970 Dusty gases, Ann. Rev. Fluid Mech. 2, 397–448CrossRefGoogle Scholar
Plesset, M. S. and Prosperetti, A. 1977 Bubble dynamics and cavitation, Ann. Rev. Fluid Mech. 9, 145–185CrossRefGoogle Scholar
Rudinger, G. 1973 Wave propagation in suspensions of solid particles in gas flow, Appl. Mech. Revs. 26, 273–279Google Scholar
Russel, W. B. 1981 Brownian motion of small particles suspended in liquids, Ann. Rev. Fluid Mech. 13, 425–455CrossRefGoogle Scholar
Spielman, L. A. 1977 Particle capture from low-speed laminar flows, Ann. Rev. Fluid Mech. 9, 297–319CrossRefGoogle Scholar
Torobin, L. B. and Gauvin, W. H. 1959 Fundamentals of solid-gas flow. III. Accelerated motion of a particle in a fluid, Can. J. Chem. Eng. 38, 224–236CrossRefGoogle Scholar
Weinbaum, S., Ganatos, P., and Yan, Z. Y. 1990 Numerical multipole and boundary integral equation techniques in Stokes flow, Ann. Rev. Fluid Mech. 22, 275–316CrossRefGoogle Scholar
Wijngaarden, L.. 1972 One dimensional flow of liquids containing small gas bubbles, Ann. Rev. Fluid Mech. 4, 369–396CrossRefGoogle Scholar
Allegra, J. R. and Hawley, S. A. 1972 Attenuation of sound in suspensions and emulsions: Theory and experiments, J. Acoust. Soc. Amer. 51, 1545–1564CrossRefGoogle Scholar
Chambre, P. L. 1954 Speed of a plane wave in a gross mixture, J. Acoust. Soc. Amer. 26, 329–331CrossRefGoogle Scholar
Chow, J. C. F. 1964 Attenuation of acoustic waves in dilute emulsions and suspensions, J. Acoust. Soc. Am. 36, 2395–2401CrossRefGoogle Scholar
Epstein, P. S. 1941 On the absorption of sound by suspensions and emulsions, in Contributions to Applied Mechanics, Theodore von Karman Anniversary Volume, California Institute of Technology, pp. 162–188
Epstein, P. S. and Carhart, R. R. 1953 The absorption of sound in suspensions and emulsions, I. Water fog in air, J. Acoust. Soc. Amer. 25, 553–565CrossRefGoogle Scholar
Hay, A. E. and Schaafsama, A. S. 1989 Resonance scattering in suspensions, J. Acoust. Soc. Amer. 85, 1124–1138CrossRefGoogle Scholar
Morfey, C. L. 1968 Sound attenuation by small particles in a fluid, J. Sound Vib. 8, 156–170CrossRefGoogle Scholar
Temkin, S. 1992 Sound speeds in suspensions in thermodynamic equilibrium, Phys. Fluids A 4, 2399–2409CrossRefGoogle Scholar
Temkin, S. 1996 Viscous attenuation of sound in dilute suspensions of rigid particles, J. Acoust. Soc. Amer. 100, 825–831CrossRefGoogle Scholar
Temkin, S. 1998 Sound propagation in dilute suspensions of rigid particles, J. Acoust. Soc. Amer. 103, 838–849CrossRefGoogle Scholar
Temkin, S. 2000 Attenuation and dispersion of sound in dilute suspensions of spherical particles, J. Acoust. Soc. Amer. 108, 126–146CrossRefGoogle ScholarPubMed
Temkin, S. 2002 Erratum: Attenuation and dispersion of sound in dilute suspensions of spherical particles, J. Acoust. Soc. Amer. 111, 1126–1128CrossRefGoogle Scholar
Chu, B. T. 1960 Thermodynamics of a dusty gas and its applications to some aspects of wave propagation in the gas, Brown University, Division of Engineering Report No. DA-4761/1
Cole, J. III and Dobbins, R. A. 1970 Propagation of sound through atmospheric fog, J. Atmos. Sci. 27, 426–4342.0.CO;2>CrossRefGoogle Scholar
Cole, J. E. III and Dobbins, R. A. 1971 Measurements of the attenuation of sound in a warm air fog, J. Atmos. Sci. 28, 202–2092.0.CO;2>CrossRefGoogle Scholar
Davidson, G. A. and Scott, D. S. 1973 Finite-amplitude acoustics of aerosols, J. Acoust. Soc. Amer. 53, 1717–1729CrossRefGoogle Scholar
Davidson, G. A. and Scott, D. S. 1973 Finite-amplitude acoustic phenomena in aerosols from a single governing equation, J. Acoust. Soc. Amer. 54, 1331–1342CrossRefGoogle Scholar
Foner, S. N. and Nall, B. H. 1975 Attenuation of sound by rigid spheres: Measurements of the viscous and thermal components of attenuation and comparison with theory, J. Acoust. Soc. Amer. 57, 59–66CrossRefGoogle Scholar
Gumerov, N. A., Ivanadev, A. I., and Nigmatulin, R. I. 1988 Sound waves in monodisperse gas-particle or vapour droplet mixtures, J. Fluid Mech. 193, 53–74CrossRefGoogle Scholar
Henley, D. C. and Hoidale, G. B. 1973 Attenuation and dispersion of acoustic energy by atmospheric dust, J. Acoust. Soc. Amer. 54, 437–445CrossRefGoogle Scholar
Ishii, R. and Matsuhisa, H. 1983 Steady reflection, absorption and transmission of small disturbances by a screen of dusty gas, J. Fluid Mech. 130, 259–277CrossRefGoogle Scholar
Knudsen, V. O., Wilson, J. V., and Anderson, N. S. 1948 The attenuation of audible sound in fogs and smokes, J. Acoust. Soc. Amer. 20, 849–857CrossRefGoogle Scholar
Marble, F. E. and Wooten, D. C. 1970 Sound attenuation in a condensing vapor, Phys. Fluids. 13, 2657–2664CrossRefGoogle Scholar
Margulies, T. S. and Schwarz, W. H. 1994 A multiphase continuum theory for sound wave propagation through dilute suspensions of particles, J. Acoust. Soc. Amer. 96, 319–331CrossRefGoogle Scholar
Sewell, C. J. T. 1910 On the extinction of sound in a viscous atmosphere by small obstacles of cylindrical and spherical form, Phil. Trans. R. Soc. Lond. A210, 239–270CrossRefGoogle Scholar
Temkin, S. 1993 Particle force and heat transfer in a dusty gas sustaining an acoustic wave, Phys. Fluids 5, 1296–1304CrossRefGoogle Scholar
Temkin, S. and Dobbins, R. A. 1966a Attenuation and dispersion of sound by particulate relaxation processes, J. Acoust. Soc. Amer. 40, 317–324CrossRefGoogle Scholar
Temkin, S. and Dobbins, R. A. 1966b Measurement of the attenuation and dispersion of sound by an aerosol, J. Acoust. Soc. Amer. 40, 1016–1024CrossRefGoogle Scholar
Zink, J. W. and Delsasso, L. P. 1958 Attenuation and dispersion of sound by solid particles suspended in a gas, J. Acoust. Soc. Amer. 30, 765–771CrossRefGoogle Scholar
Batchelor, G. K. 1967 Compression waves in a suspension of gas bubbles in liquid, Fluid Dynamics Transactions4, 425–445. Institute of Fundamental Technical Research, Polish Academy of Science, Warsaw
Caflisch, R. E., Miksis, M. J., Papanicolaou, G. C., and Ting, L. 1985 Wave propagation in liquids at finite volume fraction, J. Fluid Mech. 160, 1–14CrossRefGoogle Scholar
Carstensen, E. L. and Foldy, L. L. 1947 Propagation of sound through a liquid containing bubbles, J. Acoust. Soc. Amer. 19, 481–501CrossRefGoogle Scholar
Cheyne, S. A., Stebbings, C. T., and Roy, R. A. 1995 Phase velocity measurements in bubbly liquids using a fiber optic laser interferometer, J. Acoust. Soc. Amer. 97, 1621–1624CrossRefGoogle Scholar
Commander, K. W. and Prosperetti, A.1989 Linear pressure waves in bubbly liquids: Comparison between theory and experiments, J. Acoust. Soc. Amer. 85, 732–746CrossRefGoogle Scholar
Crespo, A. 1969 Sound and shock waves in liquids containing bubbles, Phys. Fluids 12, 2274–2282CrossRefGoogle Scholar
Drumheller, D. S., Kipp, M. E., and Bedford, A. 1982 Transient wave propagation in bubbly liquids, J. Fluid Mech. 119, 347–365CrossRefGoogle Scholar
Eller, A. I. 1970 Damping constants of pulsating bubbles, J. Acoust. Soc. Amer. 47, 1469–1470CrossRefGoogle Scholar
Floyd, E. R. 1981 Thermodynamic corrections to the velocity of propagation in a bubbly medium, J. Acoust. Soc. Amer. 70, 1748–1751CrossRefGoogle Scholar
Fox, F. E., Curley, S. R., and Larson, G. S. 1955 Phase velocity and absorption measurements in water containing air bubbles, J. Acoust. Soc. Amer. 27, 534–539CrossRefGoogle Scholar
Gaunaurd, G. C. and H.Überall, H. 1981 Resonance theory of bubbly liquids, J. Acoust. Soc. Amer. 69, 362–370CrossRefGoogle Scholar
Hsieh, D. Y. and Plesset, M. S. 1961 On the propagation of sound in liquids containing gas bubbles, Phys. Fluids 4, 970–975CrossRefGoogle Scholar
Karplus, H. B. 1961 The velocity of sound in liquids containing gas bubbles, Research and Development/Report ARF-4132-12, Atomic Energy Commission
Karpov, S., Propseretti, A., and Ostrovsky, L. 2003 Nonlinear wave interaction in bubbly layers, J. Acoust. Soc. Amer. 113, 1304–1316CrossRefGoogle Scholar
Kieffer, S. 1977 Sound speed in liquid-gas mixtures: Water-air and water-steam, J. Geophys. Res. 82, 2895–2904CrossRefGoogle Scholar
Miksis, M. J. and Ting, L. 1989 Effects of bubbly layers on wave propagation, J. Acoust. Soc. Amer. 86, 2349–2358CrossRefGoogle Scholar
Nicholas, M., Roy, R. A., Crum, L. A., Oguz, H., and Prosperetti, A. 1994 Sound emission by a laboratory bubble cloud, J. Acoust. Soc. Amer. 95, 3171–3181CrossRefGoogle Scholar
Nigmatulin, R. I., Khabeev, N. S., and Hai, Z. N. 1988 Waves in liquids with vapour bubbles, J. Fluid Mech. 186, 85–117CrossRefGoogle Scholar
Noordzij, L. and Wijngaarden, L.. 1974 Relaxation effects, caused by relative motion, on shock waves in gas-bubble/liquid mixtures, J. Fluid Mech. 66, 115–143CrossRefGoogle Scholar
Sangani, A. S. 1991 A pairwise interaction theory for determining the linear acoustic properties of dilute bubbly liquids, J. Fluid Mech. 232, 221–284CrossRefGoogle Scholar
Silberman, E. 1957 Sound velocity and attenuation in bubbly mixtures measured in standing wave tubes, J. Acoust. Soc. Amer. 29, 925–933CrossRefGoogle Scholar
Temkin, S. 1990 Attenuation and dispersion of sound in bubbly liquids via the Kramers-Kronig relations, J. Fluid Mech. 211, 61–72CrossRefGoogle Scholar
Evans, J. M. and Attenborough, K. 1997 Coupled phase theory for sound propagation in emulsions, J. Acoust. Soc. Amer. 102, 278–282CrossRefGoogle Scholar
Fukumoto, Y. and T. Izuyama, T. 1992 Thermal attenuation and dispersion of sound in a periodic emulsion, Phys. Rev. A 46, 4905–4921CrossRefGoogle Scholar
Hemar, Y., Hocquart, R., and Palierne, J. F. 1998 Frequency-dependent compressibility in emulsions: Probing interfaces using Isakovitch sound absorption, Europhys. Lett. 42, 253–258CrossRefGoogle Scholar
Isakovitch, M. A. 1948 On the propagation of sound in emulsions, Zh. Exper. ⅰ Teor. Fiz. 18, 907–912Google Scholar
McClements, D. J. and Povey, M. J. W. 1989 Scattering of ultrasound by emulsions, J. Phys. D: Appl. Phys. 22, 38–47CrossRefGoogle Scholar
Onuki, A. 1991 Sound propagation in phase-separating fluids, Phys. Rev. A 43, 6740–6755CrossRefGoogle ScholarPubMed
Atkinson, C. M. and Kytömaa, H. K. 1992 Acoustic wave speed and attenuation in suspensions, Int. J. Multiphase Flow 18, 577–592CrossRefGoogle Scholar
Gibson, R. L. and Toksöz, M. N. 1989 Viscous attenuation of acoustic waves in suspensions, J. Acoust. Soc. Amer. 85, 1925–1934CrossRefGoogle Scholar
Harker, A. H. and Temple, J. A. G. 1988 Velocity and attenuation of ultrasound in suspensions of particles in fluids, J. Phys. D 21, 1576–1588CrossRefGoogle Scholar
Hay, A. E. and Mercer, D. G. 1985 On the theory of sound scattering and viscous absorption in aqueous suspensions at medium and short wavelengths, J. Acoust. Soc. Amer. 78, 1761–1771CrossRefGoogle Scholar
Herzfeld, K. F. 1930 Propagation of sound in suspensions, Phil. Mag. 9 (7th Series), 752–768CrossRefGoogle Scholar
Holmes, A. K. and Challis, R. E. 1993 A wide bandwidth study of ultrasound velocity and attenuation in suspensions: Comparison of theory and experimental measurements, J. Colloid. Interface Sci. 156, 261–268CrossRefGoogle Scholar
Holmes, A. K., Challis, R. E., and Wedlock, D. J. 1994 A wide bandwidth ultrasonic study of suspensions: The variation of velocity and attenuation with particle size, J. Colloid. Interface Sci. 168, 339–348CrossRefGoogle Scholar
Urick, R. J. 1947 A sound velocity method for determining the compressibility of finely divided substances, J. Appl. Phys. 18, 983–987CrossRefGoogle Scholar
Urick, R. J. 1948 The absorption of sound of irregular particles, J. Acoust. Soc. Amer. 20, 283–289CrossRefGoogle Scholar
Urick, R. J. and Ament, W. S. 1948 The propagation of sound in composite media, J. Acoust. Soc. Amer. 21, 115–119CrossRefGoogle Scholar
Anilkumar, A. V., Lee, C. P., and Wang, T. G. 1993 Stability of an acoustically levitated and flattened drop: An experimental study, Phys. Fluids 5, 2763–2774CrossRefGoogle Scholar
Ashgriz, N. and Poo, J. Y. 1990 Coalescence and separation in binary collisions of liquid drops, J. Fluid Mech. 221, 183–204CrossRefGoogle Scholar
Beal, S. K. 1972 Turbulent agglomeration of suspensions, J. Aerosol Sci., 3, 113–125CrossRefGoogle Scholar
Blanchard, D. C. 1954 Bursting of bubbles at an air-water interface, Nature 173, 1048CrossRefGoogle Scholar
Bradley, S. G. and Stow, C. D. 1978 Collision between liquid drops, Phil. Trans. R. Soc. Lond. A 287, 635–678CrossRefGoogle Scholar
Brenn, G. and Frohn, A. 1989 Collision and merging of two equal spheres of propanol, Exp. Fluids 7, 441–446CrossRefGoogle Scholar
Crowe, C. T. and Willoughby, P. G. 1966 A mechanism for particle growth in a rocket nozzle, AIAA J. 4, 1677–1678CrossRefGoogle Scholar
Danilov, S. D. and Mirnov, M. A. 1992 Breakup of a droplet in a high-intensity sound field, J. Acoust. Soc. Amer. 92, 2747–2755CrossRefGoogle Scholar
Falkovich, G., Fouxon, A., and Stepanov, M. G. 2002 Acceleration of rain initiation by cloud turbulence, Nature 419, 151–154CrossRefGoogle ScholarPubMed
Gast, L. 1991 Capillary instability of a liquid ring. Ph.D. thesis, Rutgers University
Gelbard, F., Mondy, L. A., and Ohrt, S. E. 1991 A new method for determining hydrodynamic effects on the collision of two spheres, J. Statist. Phys. 62, 945–960, 1991CrossRefGoogle Scholar
Gelbard, F. and Seinfeld, J. 1980 Simulation of multicomponent aerosol dynamics, J. Colloid Interface Sci. 78, 485–501CrossRefGoogle Scholar
Hoffmann, T. L. and Koopmann, G. H. 1997 Visualization of acoustic particle interaction and agglomeration: Theory and experiments, J. Acoust. Soc. Amer. 101, 3421–3429CrossRefGoogle Scholar
Klett, J. D. and Davis, M. H. 1973 Theoretical collision efficiencies of cloud droplets at small Reynolds numbers, J. Atmos. Sci. 30, 107–1172.0.CO;2>CrossRefGoogle Scholar
Marble, F. E. 1964 Mechanism of particle collision in the one-dimensional dynamics of gas-particle mixtures, Phys. Fluids 7, 1270–1282CrossRefGoogle Scholar
Marble, F. E. 1967 Droplet agglomeration in rocket nozzles caused by particle slip and collision, Astronautica Acta, 13, 159–166Google Scholar
Megaridis, C. M. and Dobbins, R. A. 1990 A bimodal integral solution of the dynamic equation for an aerosol undergoing simultaneous particle inception and coagulation, Aerosol Sci. Technol. 12, 240–255CrossRefGoogle Scholar
Mehta, H. 1980 Droplet drag and breakup in shock-wave induced unsteady flows. Ph.D. thesis, Rutgers University
Pinsky, M., Khain, A., and Shapiro, M. 2001 Collision efficiency of drops in a wide range of Reynolds numbers, J. Atmos. Sci. 58, 742–7662.0.CO;2>CrossRefGoogle Scholar
Reichman, J. 1973 A study of the motion, deformation and breakup of accelerating water droplets. Ph.D. thesis, Rutgers University
Reichman, J. M. and Temkin, S. 1974 A study of the deformation and breakup of accelerating water droplets, Proceedings of the International Colloquim on Drops and Bubbles, California Institute of Technololgy, Jet Propul. Lab. 2, 446–464Google Scholar
Saffman, P. G. and Turner, J. S. 1956 On the collision of drops in turbulent clouds, J. Fluid Mech. 1, 16–30, 1956. (Corrigendum, J. Fluid Mech. 196, 599, 1988.)CrossRefGoogle Scholar
Scott, D. S. 1975 A new approach to the acoustic conditioning of industrial aerosol emissions, J. Sound Vib. 43, 607–619CrossRefGoogle Scholar
Shaw, D. T. and Tu, K. W. 1979 Acoustic particle agglomeration due to hydrodynamic interaction between monodisperse aerosols, J. Aerosol Sci. 10, 317–328CrossRefGoogle Scholar
Shuster, K., Fichman, M., Goldshtein, A., and Gutfinger, C. 2002 Agglomeration of submicrometer particle in weak periodic shock waves, Phys. Fluids 14, 1802–1805CrossRefGoogle Scholar
Szumowski, A. P. and Falkowski, K. 1995 Photographic study of the shock-induced dispersion of microscopic gas bubbles, Phys. Fluids 7, 2529–2531CrossRefGoogle Scholar
Telford, J. W., Thorndike, N. S., and Bowen, E. G. 1955 The coalescence of small water drops, Q. J. R. Met. Soc. 81, 241–250CrossRefGoogle Scholar
Temkin, S. 1969 Cloud droplet collision induced by thunder, J. Atmos. Sci. 26, 776Google Scholar
Temkin, S. 1970 Droplet agglomeration induced by weak shock waves, Phys. Fluids 13, 1639–1641CrossRefGoogle Scholar
Temkin, S. 1994 Gasdynamic agglomeration of aerosols. I. Acoustic waves, Phys. Fluids 6, 2294–2303CrossRefGoogle Scholar
Wagner, P. E. and Kerker, M. 1977 Brownian coagulation of aerosols in rarefied gases, J. Chem. Phys. 66, 638–646CrossRefGoogle Scholar
Warren, D. and Seinfeld, J. H. 1985 Simulations of aerosol size distribution evolution in systems with simultaneous nucleation, condensation and coagulation, Aerosol Sci. Technol. 4, 31–43CrossRefGoogle Scholar
Whelpdale, D. M. and List, R. 1971 The coalescence process in raindrop growth, J. Geophys. Res. 76, 2386–2856CrossRefGoogle Scholar
Zhang, X. and Davis, R. H. 1991 The rate of collisions due to Brownian or gravitational motion of small drops, J. Fluid Mech. 230, 479–504CrossRefGoogle Scholar
Adam, J. R., Cataneo, R., and Semonin, R. G. 1971 The production of equal and unequal size droplet pairs, Rev. Sci. Instr. 42, 1847–1849CrossRefGoogle Scholar
Atchley, A. and Prosperetti, A. 1989 The crevice model of bubble nucleation, J. Acoust. Soc. Amer. 86, 1065–1084CrossRefGoogle Scholar
Bassett, J. D. and Bright, A. W. 1976 Observations concerning the mechanism of atomization in an ultrasonic fountain, J. Aerosol Sci. 7, 47–51CrossRefGoogle Scholar
Brenn, G. and Lackermeier, U. 1997 Drop formation from a vibrating orifice generator driven by modulated electrical signals, Phys. Fluids 9, 3658–3669CrossRefGoogle Scholar
Chaudhary, K. C. and Maxworthy, T. 1980 The nonlinear instability of a liquid jet. Part 3. Experiments on satellite drop formation and control, J. Fluid Mech. 96, 287–297CrossRefGoogle Scholar
Clark, C. J. and Dombrowski, N. 1971 On the formation of drops from the rims of fan spray sheets, J. Aerosol Sci. 3, 173–183CrossRefGoogle Scholar
Deane, G. B. and Stokes, M. D. 2002 Scale dependence of bubble creation mechanisms in breaking waves, Nature 418, 839–844CrossRefGoogle ScholarPubMed
Dijksman, J. F. 1984 Hydrodynamics of small tubular pumps, J. Fluid Mech. 139, 173–191CrossRefGoogle Scholar
Dombrowski, N. and Neale, N. D. 1974 Formation of streams of uniform drops from fan spray pressure nozzles, J. Aerosol Sci. 5, 551–555CrossRefGoogle Scholar
Donnelly, R. J. and Glaberson, W. 1966 Experiments on the capillary instability of a liquid jet, Proc. R. Soc. A 290, 547–556CrossRefGoogle Scholar
Hibling, J. H. and Heister, S. D. 1996 Droplet size control in liquid jet breakup, Phys. Fluids 8, 1574–1581Google Scholar
Longuet-Higgins, M. S., Kerman, B. R., and Lunde, K. 1991 The release of air bubbles from an underwater nozzle, J. Fluid Mech. 230, 365–390CrossRefGoogle Scholar
Orme, M. 1991 On the genesis of droplet microspeed dispersions, Phys. Fluids A 3, 2936–2947CrossRefGoogle Scholar
Pandit, A. B. and Davidson, A. B. 1990 Hydrodynamics of the rupture of thin liquid films, J. Fluid Mech. 212, 11–24CrossRefGoogle Scholar
Philipson, K. 1973 On the production of monodisperse particles with a spinning disc, Aerosol Sci. 4, 51–57CrossRefGoogle Scholar
Thorpe, S. A. 1987 Internal waves and whitecaps, Nature 330 740–742CrossRefGoogle Scholar
Thorpe, S. A. and Humphries, P. N. 1980 Bubbles and breaking waves, Nature 283, 463–465CrossRefGoogle Scholar
Topp, M. N. 1973 Ultrasonic atomization – A photographic study of the mechanism of disintegration, Aerosol Sci. 4, 17–25CrossRefGoogle Scholar
Barber, B. P. and Putterman, S. J. 1991 Observation of synchronous picosecond sonoluminescence, Nature 352, 318–320CrossRefGoogle Scholar
Crum, L. A. 1994 Sonoluminescence, sonochemistry, and sonophysics, J. Acoust. Soc. Amer. 95, 559–562CrossRefGoogle Scholar
Didenko, Y. T., McNamara, W. B. III, and Suslik, K. S. 2000 Molecular emission from single-bubble sonoluminescence, Nature 407, 877–879Google ScholarPubMed
Didenko, Y. T. and Suslik, K. S. 2002 The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation, Nature 418, 394–397CrossRefGoogle ScholarPubMed
Flynn, H. G. 1975 Cavitation dynamics. I. A mathematical formulation, J. Acoust. Soc. Amer. 57, 1379–1396CrossRefGoogle Scholar
Flynn, H. G. 1975 Cavitation dynamics. II. Free pulsations and models for cavitation bubbles, J. Acoust. Soc. Amer. 58, 1160–1170CrossRefGoogle Scholar
Flynn, H. G. and Church, C. C. 1988 Transient pulsations of small gas bubbles in water, J. Acoust. Soc. Amer. 84, 985–998. [Erratum, J. Acoust. Soc. Amer. 84, 1863–1876.]CrossRefGoogle ScholarPubMed
Löfstedt, R., Barber, B. P., and Putterman, S. J. 1991 Toward a hydrodynamic theory of sonoluminescence, Phys. Fluids A 5, 2911–2927CrossRefGoogle Scholar
Neppiras, E. A. 1980 Acoustic cavitation, Phys. Rep. (Review Section of Physics Letters) 61, 159–251CrossRefGoogle Scholar
Prosperetti, A. 1986 Physics of acoustic cavitation in Frontiers of Physical Acoustics, Sette, D., Ed., North-Holland, pp. 145–188Google Scholar
Putterman, S. J. 1995 Sonoluminescence: Sound into light. Sci. Amer., 272, 46–51CrossRefGoogle Scholar
Suslick, K. S. 1989 The chemical effects of ultrasound, Sci. Amer., 260, 80–86CrossRefGoogle Scholar
Dukowicz, J. K. 1984 Drag of evaporating or condensing droplets in low Reynolds number flow, Phys. Fluids 27, 1351–1358CrossRefGoogle Scholar
Goosens, H. W. J., Cleijne, J. W., Smolders, H. J., and Dongen, M. E. 1988 Shock wave induced evaporation of water droplets in a gas-droplet mixture, Exp. Fluids 6, 561–568CrossRefGoogle Scholar
Hill, P. E. 1966 Condensation of water vapour during supersonic expansion in nozzles, J. Fluid Mech. 25, 593–620CrossRefGoogle Scholar
Marble, F. E. 1969 Some gasdynamics problems in the flow of condensing vapors, Astronaut. Acta 14, 585–614Google Scholar
Marston, P. L. 1979 Evaporation-condensation resonance frequency of oscillating vapor bubbles, J. Acoust. Soc. Amer. 66, 1516–1521CrossRefGoogle Scholar
Mouzurkewich, M. 1986 Aerosol growth and the condensation coefficient for water: A review, Aerosol Sci. Technol. 5, 223–236CrossRefGoogle Scholar
Okuyama, M. and Zung, J. T. 1967 Evaporation-condensation coefficient for small droplets, J. Chem. Phys. 46, 1580–1585CrossRefGoogle Scholar
Frankiel, N. A. and Acrivos, A. 1968 Heat and mass transfer from small spheres and cylinders freely suspended in shear flow, Phys. Fluids 11, 1913–1918CrossRefGoogle Scholar
Michaelides, E. E. and Feng, Z. 1994 Heat transfer from a rigid sphere in a nonuniform flow and temperature field, Int. J. Heat Mass Transfer 37, 2069–2076CrossRefGoogle Scholar
Parks, J. M., Ablow, C. M., and Wise, H. 1966 Temperature distribution within a particle during evaporation, AIAA J. 4, 1032–1035Google Scholar
Borman, S. and Curtius, J. 2002 Lasing on a cloudy afternoon, Nature 418, 826–827CrossRefGoogle Scholar
Ching, B., Golay, M. W., and Johnson, T. J. 1984 Droplet impacts upon liquid surfaces, Science 226, 535–537CrossRefGoogle Scholar
Diebold, G. J. and Westervelt, P. J. 1988 The photoacoustic effect generated by a spherical droplet in a fluid, J. Acoust. Soc. Amer. 84, 2245–2251CrossRefGoogle Scholar
Dreyfuss, D. and Temkin, S. 1983 Charge separation during rupture of small water drops in transient flows: Shock tube measurements and application to lightning, J. Geophys. Res. 88, 10,993–10,998CrossRefGoogle Scholar
Franz, G. J. 1959 Splashes as sources of sound, J. Acoust. Soc. Amer. 31, 1080–1096CrossRefGoogle Scholar
Greenspan, M. 1956 Propagation of sound in five monatomic gases, J. Acoust. Soc. Amer. 28, 644–648CrossRefGoogle Scholar
Likhterov, L. 1998 High-frequency acoustic noise emitted by initial impact of solid sphere falling onto a liquid surface, Phys. Fluids 10, 321–323CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1990 An analytical model of sound production by raindrops, J. Fluid Mech. 214, 395–410CrossRefGoogle Scholar
O'Brien, R. W. 1988 Electro-acoustic effects in a dilute suspension of spherical particles, J. Fluid Mech. 190, 71–86CrossRefGoogle Scholar
Penner, S. S. and Li, T. 1967 Thermodynamic considerations of droplets and bubbles, AIAA J. 5, 1528–1529Google Scholar
Pumphrey, H. C., Crum, L., and Bjø⊘rnø, L. 1989 Underwater sound produced by individual drop impacts and rainfall, J. Acoust. Soc. Amer. 85, 1518–1526CrossRefGoogle Scholar
Richard, D., Clanet, C., and Quére, D. 2002 Contact time of a bouncing drop, Nature 417, 811CrossRefGoogle ScholarPubMed
Roy, R., Davidson, J. F., and Tuponogov, V. G. 1990 The velocity of sound in fluidized beds, Chem. Eng. Sci. 45, 3233–3245CrossRefGoogle Scholar
Shafer, N. E. and Zare, R. N. 1991 Through a beer glass darkly, Phys. Today 44, 48–52CrossRefGoogle Scholar
Shirley, B. M., Sheldon, J. W., and Kranc, S. C. 1972 Particle charging behind shock waves in suspensions, AIAA J. 10, 1110–1111Google Scholar
Biesheuvel, A. and Wijngaarden, L. 1984 Two-phase equations for a dilute dispersion of gas bubbles in a liquid, J. Fluid Mech. 148, 301–318CrossRefGoogle Scholar
Bilicki, Z. and Kestin, J. 1990 Physical aspects of the relaxation model in two-phase flows, Proc. R. Soc. Lond. A 428, 379–397CrossRefGoogle Scholar
Caflisch, R. E., Miksis, M. J., Papanicolaou, G. C., and Ting, L. 1985 Effective equations for wave propagation in bubbly liquids, J. Fluid Mech. 153, 259–273CrossRefGoogle Scholar
Drumheller, D. S. and Bedford, A. 1979 A theory of bubbly liquids, J. Acoust. Soc. Amer. 66, 197–208CrossRefGoogle Scholar
Drumheller, D. S. and Bedford, A. 1980 A theory of liquids with vapor bubbles, J. Acoust. Soc. Amer. 67, 186–200CrossRefGoogle Scholar
Kraiko, A. N. and Sternin, L. E. 1965 Theory of flows of a two velocity continuous medium containing solid or liquid particles, Prikladnaia Matematika ⅰ Mekhanica 29, 418–429Google Scholar
Marble, F. E. 1963 Dynamics of a gas containing small solid particles, in Proceedings of the 5th AGARD Colloquim on Combustion and Propulsion, Braunschweig, Pergamon, pp. 175–215
Miksis, M. J. and Ting, L. 1992 Effective equations of multiphase flows – Waves in a bubbly liquid, Adv. Appl. Mech. 28, 141–261CrossRefGoogle Scholar
Nigmatulin, R. I. 1982 Mathematical modeling of bubbly liquid motion and hydrodynamical effects in wave propagation phenomenon, Appl. Sci. Res. 38, 267–289CrossRefGoogle Scholar
O'Brien, R. W. 1990 The electroacoustic equations for a colloidal suspension, J. Fluid Mech. 212, 81–93CrossRefGoogle Scholar
Panton, R. 1968 Flow properties for the continuum viewpoint of a non-equilibrium gas-particle mixture, J. Fluid Mech. 31, 273–303CrossRefGoogle Scholar
Wijngaarden, L.. 1968 On the equations of motion for mixtures of liquid and gas bubbles, J. Fluid Mech. 33, 465–474CrossRefGoogle Scholar
Wijngaarden, L. van. 1976 Some problems in the formulation of the equations for gas/liquid flows, in Theoretical and Applied Mechanics, Proceedings of the 14th IUTAM Congress, Delft, The Netherlands, Koiter, W. T., Ed., North-Holland., pp. 249–260
Yurkovetsky, Y. and Brady, J. F. 1996 Statistical mechanics of bubbly liquids, Phys. Fluids 8, 881–895CrossRefGoogle Scholar
Zhang, D. Z. and Prosperetti, A. 1994 Ensemble phase-averaged equations for bubbly flows, Phys. Fluids 6, 2956–2970CrossRefGoogle Scholar
Chang, E. R. and Martin, M. R. 1994 Unsteady flow about a sphere at low to moderate Reynolds number. Part 1. Oscillatory motion, J. Fluid Mech. 277, 347–379CrossRefGoogle Scholar
Crowe, C. T. 1982 Numerical models for dilute gas-particle flows, J. Fluids Eng. 104, 297–303CrossRefGoogle Scholar
Ishii, R., Umeda, Y., and Yuhi, M. 1989 Numerical analysis of gas-particle two-phase flows, J. Fluid Mech. 203, 475–515CrossRefGoogle Scholar
Kamath, V. and Prosperetti, A. 1989 Numerical integration methods in gas-bubble dynamics, J. Acoust. Soc. Amer. 85, 1538–1548CrossRefGoogle Scholar
Batchelor, G. K. and Green, J. T. 1972 The hydrodynamic interaction of two small freely-moving spheres in a linear flow field, J. Fluid Mech. 56, 375–400CrossRefGoogle Scholar
Brady, J. F., Phillips, R. J., Lester, J.C, and Bossis, G. 1988 Dynamic simulation of hydrodynamically interacting suspensions, J. Fluid Mech. 195, 257–280CrossRefGoogle Scholar
Ecker, G. 1985 Interactions of droplet pairs in weak shock-wave induced unsteady flows. Ph.D. thesis, Rutgers University
Goren, S. 1983 Resistance and stability of a line of particles moving near a wall, J. Fluid Mech. 132, 185–196CrossRefGoogle Scholar
Haber, S. G., Hetsroni, G., and Solan, A. 1973 On the low Reynolds number motion of two droplets, Int. J. Multiphase Flow 1, 57–71CrossRefGoogle Scholar
Kaneda, Y. and Ishii, K. 1982 The hydrodynamic interaction of two spheres moving in an unbounded fluid at small but finite Reynolds number, J. Fluid Mech. 124, 209–217CrossRefGoogle Scholar
Mazur, P. and Saarloos, W.. 1982 Many-sphere interactions and mobilities in a suspension, Phys. A 115, 21–57CrossRefGoogle Scholar
Mazur, P. and Saarloos, W.. 1983 Many-sphere hydrodynamic interactions. II. Mobilities at finite frequency, Phys. A 120 77–102Google Scholar
Steinberger, E. H., Pruppacher, H. R., and Neiburger, M. 1968 On the hydrodynamics of pairs of spheres falling along their line of centers in a viscous medium, J. Fluid Mech. 34, 809–819CrossRefGoogle Scholar
Stimson, M. and Jeffrey, G. B. 1926 The motion of two spheres in a viscous fluid, Proc. R. Soc. Lond. A 111, 110–116CrossRefGoogle Scholar
Tam, C. K. W. 1969 The drag on a cloud of spherical particles in low Reynolds number flow, J. Fluid Mech. 38, 537–546CrossRefGoogle Scholar
Temkin, S. and G.Ecker, G. Z. 1989 Droplet interactions in a shock-wave flow field, J. Fluid Mech. 202, 467–497CrossRefGoogle Scholar
Wijngaarden, L.. 1976 Hydrodynamic interaction between gas bubbles in liquid (with an appendix by D. J. Jeffrey), J. Fluid Mech. 77, 27–44, 1976CrossRefGoogle Scholar
Auzerais, F. M., Jackson, R., Russel, W. B., and Murphy, W. F. 1990 The transient settling of stable and flocculated dispersions, J. Fluid Mech. 221, 613–639CrossRefGoogle Scholar
Batchelor, G. K. 1972 Sedimentation in a dilute dispersion of spheres, J. Fluid Mech. 52, 245–268CrossRefGoogle Scholar
Brady, J. F. and Durlofsky, L. J. 1988 The sedimentation rate of disordered suspensions, Phys. Fluids 31, 717–727CrossRefGoogle Scholar
Haber, S. and Hetsroni, G. 1981 Sedimentation in a dilute dispersion of small drops of various sizes, J. Colloid Interface Sci. 79, 56–75CrossRefGoogle Scholar
Hanratty, T. J. and Bandukwala, A. 1957 Fluidization and sedimentation of spherical particles, AICh E J. 3, 293–296CrossRefGoogle Scholar
Alexeev, A. and Gutfinger, C. 2003 Particle drift in a resonance tube – A numerical study, J. Acoust. Soc. Amer. 114, 1357–1365CrossRefGoogle Scholar
Boyadzhiev, L. 1973 On the movement of a spherical particle in a vertically oscillating liquid, J. Fluid Mech. 57, 545–548CrossRefGoogle Scholar
Burrows, F. M. 1983 Calculation of the primary trajectories of seeds and other particles in strong winds, Proc. R. Soc. Lond. A 389, 15–66CrossRefGoogle Scholar
Chester, W. and Breach, D. R. (with an appendix by I. Proudman) 1969 On the flow past a sphere at low Reynolds number. J. Fluid Mech. 37, 751–760CrossRefGoogle Scholar
Corrsin, S. and Lumley, J. 1956 On the equation of motion for a particle in turbulent fluid, Appl. Sci. Res. Sec. A, 6, 114–116CrossRefGoogle Scholar
Danilov, S. D. and Mirnov, M. A. 2000 Mean force on a small sphere in a sound field in a viscous fluid, J. Acoust. Soc. Amer. 107, 143–153CrossRefGoogle Scholar
Galindo, V. and Gerbeth, G. 1993 A note on the force on an accelerating spherical drop at low Reynolds number, Phys. Fluids A 5, 3290–3292CrossRefGoogle Scholar
Goldstein, S. 1929 The steady flow of viscous fluid past a fixed spherical obstacle at small Reynolds numbers, Proc. R. Soc. A 123, 216–235CrossRefGoogle Scholar
Gucker, F. T. and Doyle, G. J. 1956 The amplitude of aerosol droplets in a sonic field, J. Phys. Chem. 60, 989–996, 1956CrossRefGoogle Scholar
Hoenig, S. A. 1957 Acceleration of dust particles by shock waves, J. Appl. Phys. 28, 1218–1219CrossRefGoogle Scholar
Ingebo, R. D. 1956 Drag coefficients for droplets and solid spheres in clouds accelerating in air streams, NACA Technical Note TN 3762
Ishii, R. 1984 Motion of small particles in a gas flow, Phys. Fluids 27, 33–41CrossRefGoogle Scholar
Kang, I. S. and Leal, L. G. 1988 The drag coefficient for a spherical bubble in a uniform streaming flow, Phys. Fluids 31, 233–241CrossRefGoogle Scholar
Kanwal, R. P. 1964 Drag on an axially symmetric body vibrating slowly along its axis in a viscous fluid, J. Fluid Mech. 19, 631–636CrossRefGoogle Scholar
Karanfilian, S. K. and Kotas, T. J. 1978 Drag on a sphere in unsteady motion in a liquid at rest, J. Fluid Mech. 87, 85–96CrossRefGoogle Scholar
Kim, S. S. 1977 An experimental study of droplet reponse to weak shock waves. Ph.D. thesis, Rutgers University
Legendre, D. and Magnaudet, J. 1997 A note on the lift force on a spherical bubble or drop in a low Reynolds number shear flow, Phys. Fluids 9, 3572–3574CrossRefGoogle Scholar
Liu, D. Y., Anders, K., and Frohn, A. 1988 Drag coefficients of single droplets moving in an infinite droplet chain on the axis of a tube, Int. J. Multiphase Flow 14, 217–232CrossRefGoogle Scholar
Lovalenti, P. M. and Brady, J. 1993 The force on a bubble, drop, or particle in arbitrary time-dependent motion at small Reynolds number, Phys. Fluids A 5, 2104–2116CrossRefGoogle Scholar
Magnaudet, J., Rivero, M., and Fabre, J. 1995 Accelerated flows past a rigid sphere of a spherical bubble. Part 1. Steady straining flow, J. Fluid Mech. 284, 97–135CrossRefGoogle Scholar
Maxey, M. R. and Riley, J. J. 1983 Equations of motion for a small rigid sphere in nonuniform flow, Phys. Fluids 26, 883–889CrossRefGoogle Scholar
Maxworthy, T. 1965 Accurate measurements of sphere drag at low Reynolds numbers, J. Fluid Mech. 23, 369–372CrossRefGoogle Scholar
Mei, R., Klausner, J. F., and Lawrence, C. J. 1994 A note on the history force on spherical bubble at finite Reynolds number, Phys. Fluids 6, 418–420CrossRefGoogle Scholar
Mei, R., Lawrence, C. J., and Adrian, R. J. 1991 Unsteady drag on a sphere at finite Reynolds number with small fluctuations in the free-stream velocity, J. Fluid Mech. 233, 613–631CrossRefGoogle Scholar
Morsi, S. A. and Alexander, A. J. 1972 An investigation of particle trajectories in two-phase flow systems, J. Fluid Mech. 55, 193–208CrossRefGoogle Scholar
Ockendon, J. R. 1968 The unsteady motion of a small sphere in a viscous fluid, J. Fluid Mech. 34, 229–239CrossRefGoogle Scholar
Odar, F. 1966 Verification of the proposed equation for calculation of the forces on a sphere accelerating in a viscous fluid, J. Fluid Mech. 25, 591–592CrossRefGoogle Scholar
Odar, F. and Hamilton, W. S. 1964 Forces on a sphere accelerating in a viscous fluid, J. Fluid Mech. 18, 302–314CrossRefGoogle Scholar
Ogden, T. L. and Jayaweera, K. O. L. F. 1971 Drag coefficients of water droplets decelerating in air, Q. R. Met. Soc. 97, 571–574CrossRefGoogle Scholar
Pearcey, T. and Hill, G. W. 1956 The accelerated motion of droplets and bubbles, Austr. J. Phys. 9, 19–30Google Scholar
Proudman, I. and Pearson, R. R. A. 1957 Expansions at small Reynolds numbers for the flow past a sphere and circular cylinder, J. Fluid Mech. 2, 237–262CrossRefGoogle Scholar
Rallison, J. M.Note on the Faxen relations for a particle in Stokes flow, J. Fluid Mech. 88, 529–533, 1978CrossRefGoogle Scholar
Rudinger, G. 1974 Penetration of particles into a constant cross flow, AIAA J. 12, 1138–1140CrossRefGoogle Scholar
Sano, T. 1981 Unsteady flow past a sphere at low Reynolds number, J. Fluid Mech. 112, 433–441CrossRefGoogle Scholar
Selberg, B. P. and Nicholls, J. A. 1968 Drag coefficient of small spehrical particles, AIAA J. 6, 401–408Google Scholar
Taylor, K. J. 1976 Absolute measurement of acoustic particle velocity, J. Acoust. Soc. Amer. 59, 691–694CrossRefGoogle Scholar
Temkin, S. 1972 On the response of a sphere to an acoustic pulse, J. Fluid Mech. 54, 339–349CrossRefGoogle Scholar
Temkin, S. 1993 Particle force and heat transfer in a dusty gas sustaining an acoustic wave, Phys. Fluids 5, 1296–1304CrossRefGoogle Scholar
Temkin, S. and Kim, S. S. 1980 Droplet motion induced by weak shock waves, J. Fluid Mech. 96, 133–157CrossRefGoogle Scholar
Temkin, S. and Leung, C.-M. 1976 On the velocity of a rigid sphere in a sound wave, J. Sound Vib., 49, 75–92CrossRefGoogle Scholar
Temkin, S. and Mehta, H. K. 1982 Droplet drag in an accelerating and decelerating flow, J. Fluid Mech. 116, 297–313CrossRefGoogle Scholar
Thomas, P. J. 1992 On the influence of the Basset history force on the motion of a particle through a fluid, Phys. Fluids A 4, 2090–2093CrossRefGoogle Scholar
Vainshtein, P., Fichman, M., and Pnueli, D. 1992 On the drift of aerosol particles in sonic fields, J. Aerosol Sci. 23, 631–637CrossRefGoogle Scholar
Crum, L. A. 1983 The polytropic exponent of gas contained within air bubbles pulsating in a liquid, J. Acoust. Soc. Amer. 73, 116–120CrossRefGoogle Scholar
Crum, L. A. and Prosperetti, A. 1983 Nonlinear oscillations of gas bubbles in liquids: An interpretation of some experimental results, J. Acoust. Soc. Amer. 73, 121–127CrossRefGoogle Scholar
Devin, C. Jr., 1959 Survey of thermal, radiation, and viscous damping of pulsating air-bubbles in water, J. Acoust. Soc. Amer. 31, 1654–1667CrossRefGoogle Scholar
Exner, M. L. and Hampe, W. 1953 Experimental determination of the damping of pulsating air bubbles in water, Acustica 3, 67–72Google Scholar
Kennard, E. H. 1943 Radial motion of water surrounding a sphere of gas in relation to pressure waves, in Underwater Explosion Research, Vol. II. The Gas Globe, Office of Naval Research
Lauterborn, W. 1976 Numerical investigation of nonlinear oscillations of gas bubbles in liquids, J. Acoust. Soc. Amer. 59, 283–293CrossRefGoogle Scholar
Meyer, E. and Skudrzyk, E. 1953 Über die akustischen eigenschaften von gasblasenschleiern in wasser, Acustica 3, 435–440Google Scholar
Minnaert, M. 1933 On musical air bubbles and the sounds of running water, Phil. Mag. XVI (7th Series), 235–248CrossRefGoogle Scholar
Prosperetti, A. 1977 Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids, J. Acoust. Soc. Amer. 61, 17–27CrossRefGoogle Scholar
Prosperetti, A. 1987 The equation of bubble dynamics in a compressible liquid, Phys. Fluids 30, 3626–3628CrossRefGoogle Scholar
Prosperetti, A. 1988 Nonlinear bubble dynamics, J. Acoust. Soc. Amer. 83, 502–514CrossRefGoogle Scholar
Prosperetti, A. 1991 The thermal behaviour of oscillating gas bubbles, J. Fluid Mech. 222, 587–616CrossRefGoogle Scholar
Prosperetti, A. and Lezzi, A. 1986 Bubble dynamics in a compressible liquid. Part 1. First-order theory, J. Fluid Mech. 168, 457–478CrossRefGoogle Scholar
Prosperetti, A. and Lezzi, A. 1987 Bubble dynamics in a compressible liquid. Part 2. Second-order theory, J. Fluid Mech. 185, 289–321Google Scholar
Schiffers, W. P., Emmony, D. C., and Shaw, S. J. 1997 Visualization of the fluid flow around a laser generated oscillating bubble, Phys. Fluids 9, 3201–3208CrossRefGoogle Scholar
Strasberg, M. 1956 Gas bubbles as sources of sound in liquids, J. Acoust. Soc. Amer. 28, 20–26CrossRefGoogle Scholar
Temkin, S. 1999 Radial pulsations of a fluid particle in a sound wave, J. Fluid. Mech. 380, 1–38CrossRefGoogle Scholar
Temkin, S. 2001b Corrigendum: Radial pulsations of a fluid sphere in a sound wave, J. Fluid. Mech. 430, 407–410CrossRefGoogle Scholar
Lee, C. P., Lyell, M. J., and Wang, T.G 1985 Viscous damping of the oscillations of a rotating simple drop, Phys. Fluids 28, 3187–3188CrossRefGoogle Scholar
Rubinow, S. I. and Keller, J. B. 1961 The transverse force on a spinning sphere in a viscous fluid, J. Fluid Mech. 11, 447–459CrossRefGoogle Scholar
Chiu, H. H. 1970 Dynamics of deformation of liquid drops, Astronautica Acta 15, 199–213Google Scholar
Cox, R. G. 1969 The deformation of a drop in a general time-dependent fluid flow, J. Fluid Mech. 37, 601–623CrossRefGoogle Scholar
Lundgren, T. S. and Mansour, N. N. 1988 Oscillations of drops in zero gravity with weak viscous effects, J. Fluid Mech. 194, 479–510CrossRefGoogle Scholar
Marston, P. L. 1980 Shape oscillations and static deformation of drops and bubbles driven by modulated radiation stresses – Theory, J. Acoust. Soc. Amer. 67, 15–26CrossRefGoogle Scholar
Faxen, H. 1921 Einwirkung der Gefäßwände auf den Widerstend gegen die Bewegung einer kleinen Kugel in einer Zähen Flussigkeit. Diss. Upsala. (See Oseen, 1927, Section 9.)
Williams, Ffowcs J. E. and Guo, Y. P. 1991 On resonant non-linear bubble oscillations, J. Fluid Mech. 224, 507–529CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1989 Monopole emission of sound by asymmetric bubble oscillations. Part 1. Normal modes, J. Fluid Mech. 201, 525–541CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1989 Monopole emission of sound by asymmetric bubble oscillations. Part 2. An initial-value problem, J. Fluid Mech. 201, 543–565CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1991 Resonance in nonlinear bubble oscillations, J. Fluid Mech. 224, 531–549CrossRefGoogle Scholar
Magnaudet, J. and Legendre, D. 1998 The viscous drag force on a spherical bubble with a time-dependent radius, Phys. Fluids 10, 550–554CrossRefGoogle Scholar
Watanabe, T. and Kukita, Y. 1993 Translational and radial motions of a bubble in an acoustic standing wave field, Phys. Fluids A 5, 2682–2688CrossRefGoogle Scholar
Brazier, R., Sparks, R. S. J., Carey, S. N., Sigurdsson, H., and Westgate, J. A. 1983 Bimodal grain size distribution and secondary thickening in air-fall ash layers, Nature 301, 115–119CrossRefGoogle Scholar
Gelbard, F., Tambour, Y., and Seinfeld, J. H.Sectional representation for simulating aerosol dynamics, J. Colloid Interface Sci. 76, 541–556, 1980CrossRefGoogle Scholar
Jaenicke, R. and Davies, C. N. 1976 The mathematical expression of the size distribution of atmospheric aerosols, J. Aerosol Sci. 7, 255–259CrossRefGoogle Scholar
Lee, R. E. Jr., 1972 The size of suspended particulate matter in air, Science 178, 567–575CrossRefGoogle ScholarPubMed
Mugele, R. A. and Evans, H. D. 1951 Droplet size distribution in sprays, Indust. Eng. Chem., 43, 1317–1324CrossRefGoogle Scholar
Smith, J. E. and Jordan, M. L. 1964 Mathematical and graphical interpretation of the log-normal law for particle size distribution analysis, J. Colloid Sci., 19, 549–559, 1964CrossRefGoogle Scholar
Weickmann, H. K. and Kampe, Aufm H. J. 1953 Physical properties of cumulus clouds, J. Met. 10, 204. [See Mason, B. K., The Physics of Clouds, pp. 98–103.]2.0.CO;2>CrossRefGoogle Scholar
Davis, M. C. 1978 Coal slurry diagnostics by ultrasound transmission, J. Acoust. Soc. Amer. 64, 406–410CrossRefGoogle Scholar
Dobbins, R. A. 1963 Measurement of mean particle size in a gas-particle flow, AIAA J. 1, 1940–1942CrossRefGoogle Scholar
Dobbins, R. A., Crocco, L., and Glassman, I. 1963 Measurement of mean particle sizes in sprays from diffractively scattered light, AIAA J. 1, 1882–1886CrossRefGoogle Scholar
Dobbins, R. A. and Temkin, S. 1967 Acoustical measurements of aerosol particle size and concentration, J. Colloid Interface Sci. 25, 329–333CrossRefGoogle Scholar
Dukhin, A. S. and Goetz, P. 2001 Acoustic and electroacoustic spectroscopy for characterizing concentrated dispersions and emulsions, Adv. Colloid Interface Sci. 92, 73–132CrossRefGoogle ScholarPubMed
Duraiswami, R., Prabhukumar, S., and Chahine, G. L. 1998 Bubble counting using an inverse acoustic scattering method, J. Acoust. Soc. Amer. 104, 2699–2717CrossRefGoogle Scholar
König, G.Anders, K. and Frohn, A. 1986 A new light-scattering technique to measure the diameter of periodically generated moving droplets, J. Aerosol Sci. 17, 157–167CrossRefGoogle Scholar
Medwin, H. 1970 In-situ acoustic measurements of bubble populations in coastal waters, J. Geophys. Res. 75, 599–611CrossRefGoogle Scholar
Medwin, H. 1977 Acoustical determinations of bubble-size spectra, J. Acoust. Soc. Amer. 62, 1041–1044CrossRefGoogle Scholar
Newhouse, V. L. and Shankar, P. M. 1984 Bubble size measurements using the nonlinear mixing of two frequencies, J. Acoust. Soc. Amer. 75, 1473–1477CrossRefGoogle Scholar
Temkin, S. and Reichman, J.M 1972 A new technique to photograph small particles in motion, Rev. Sci. Instr. 43, 1456–1459CrossRefGoogle Scholar
Jeffrey, D. J. 1992 The calculation of the low Reynolds number resistance functions for two unequal spheres, Phys. Fluids A 4, 16–29CrossRefGoogle Scholar
Kim, S. and Mifflin, R. T. 1985 The resistance and mobility functions of two equal spheres in low-Reynolds-number flow, Phys. Fluids 28, 2033–2045CrossRefGoogle Scholar
Maul, C. and Kim, S. 1994 Image systems for a Stokeslet inside a rigid spherical container, Phys. Fluids 6, 2221–2223CrossRefGoogle Scholar
Pozrikidis, C. 1989 A singularity method for unsteady linearized flow, Phys. Fluids A 1, 1508–1520CrossRefGoogle Scholar
Buresti, G. and Casarosa, C. 1989 One dimensional adiabatic flow of equilibrium gas-particle mixtures in long vertical ducts with friction, J. Fluid Mech. 203, 251–272CrossRefGoogle Scholar
Carrier, G. F. 1958 Shock waves in a dusty gas, J. Fluid Mech. 4, 376–382CrossRefGoogle Scholar
Hamad, H. and Frohn, A. 1980 Structure of fully dispersed waves in dusty gases, J. Appl. Math. Phys. (ZAMP) 31, 66–82CrossRefGoogle Scholar
Healy, J. V. and Yang, H. T. 1972 The Stokes problems for a suspension of particles, Astronautica Acta 17, 851–856Google Scholar
Ishii, R., Hatta, N., Umeda, Y., and Yuhi, M. 1990 Supersonic gas-particle two-phase flow around a sphere, J. Fluid Mech. 221, 453–483, 1990CrossRefGoogle Scholar
Ishii, R. and Umeda, Y. 1987 Nozzle flows of gas-particle mixtures, Phys. Fluids 30, 752–760, 1987CrossRefGoogle Scholar
Liu, J. T. C. 1965 On the hydrodynamic stability of parallel dusty gas flow, Phys. Fluids 8, 1939–1945CrossRefGoogle Scholar
Liu, J. T. C. 1967 Flow induced by the impulsive motion of an infinite flat plate in a dusty gas, Astronautica Acta, 13, 369–377Google Scholar
Miura, H. and Glass, I. I. 1982 On a dusty-gas shock tube, Proc. R. Soc. Lond. A 382, 373–388CrossRefGoogle Scholar
Miura, H. and Glass, I. I. 1983 On the passage of a shock wave through a dusty-gas layer, Proc. R. Soc. Lond. A 385, 85–105CrossRefGoogle Scholar
Murray, J. D. 1967 Some basic aspects of one-dimensional incompressible particle-fluid two-phase flows, Astronautica Acta 13, 417–430Google Scholar
Neilson, J. H. and Gilchrist, A. 1968 An analytical and experimental investigation of the velocities of particles entrained by the gas flow in nozzles, J. Fluid Mech. 33, 131–149CrossRefGoogle Scholar
Rudinger, G. 1964 Some properties of shock relaxation in gas flows carrying small particles, Phys. Fluids 7, 658–663CrossRefGoogle Scholar
Rudinger, G. 1965 Some effects of finite particle volume on the dynamics of gas-particle mixtures, AIAA J. 3, 1217–1222CrossRefGoogle Scholar
Rudinger, G. 1969 Relaxation in gas-particle flows, in Nonequilibrium Flows, Wegner, P., Ed., Marcel Dekker pp. 119–161Google Scholar
Rudinger, G. 1970 Gas-particle flow in convergent nozzles at high loading ratio, AIAA J. 8, 1288–1294CrossRefGoogle Scholar
Rudinger, G. and Chang, A. 1964 Analysis of nonsteady two-phase flow, Phys. Fluids 7, 1747–1754CrossRefGoogle Scholar
Saffman, P. G. 1962 On the stability of laminar flow of a dusty gas, J. Fluid Mech. 13, 120–128CrossRefGoogle Scholar
Sauerwein, H. and Fendell, F. E. 1965 Method of characteristics in two-phase flow, Phys. Fluids 8, 1564–1565CrossRefGoogle Scholar
Schubert, Schmitt-von B. 1969 Existence and uniqueness of normal shock waves in gas-particle mixtures, J. Fluid Mech. 38, 633–655CrossRefGoogle Scholar
Tomita, Y., Tashio, H., Deguchi, K., and Jotaki, T. 1980 Sudden expansion of gas-solid two-phase flow in a pipe, Phys. Fluids 23, 663–666CrossRefGoogle Scholar
Hsieh, D.-Y.Some aspects of dynamics of bubbly liquids, Appl. Sci. Res. 38, 305–312, 1982CrossRefGoogle Scholar
Ishii, R., Umeda, Y., Murata, S., and Shishido, N. 1993 Bubbly flows through a converging-diverging nozzle, Phys. Fluids A 5, 1630–1643CrossRefGoogle Scholar
Kameda, M. and Matsumoto, Y. 1996 Shock waves in a liquid containing small gas bubbles, Phys. Fluids 8, 322–335CrossRefGoogle Scholar
Kennard, E. H. 1941 Report on Underwater Explosions, David W. Taylor Model Basin, pp. 1–51
Omta, R. 1987 Oscillations of a cloud of bubbles of small and not so small amplitude, J. Acoust. Soc. Amer. 82, 1018–1033CrossRefGoogle Scholar
Wijngaarden, L.. On the structure of shock waves in liquid-bubble mixtures, Appl. Sci. Res. 22, 366–381CrossRef
Wijngaarden, L. and Kapteyn, C. 1990 Concentration waves in dilute bubble/liquid mixtures, J. Fluid Mech. 212, 111–137CrossRefGoogle Scholar
Batchelor, G. K. and Green, J. T. 1972 The determination of the bulk stress in a suspension of spherical particles to order c2, J. Fluid Mech. 56, 401–427CrossRefGoogle Scholar
Beenakker, C. W. J. 1984 The effective viscosity of a concentrated suspension of spheres (and its relation to diffusion), Phys. A 128, 48–81CrossRefGoogle Scholar
Biesheuvel, A. and Spoelstra, S. 1989 The added mass coefficient of a dispersion of spherical gas bubbles in a liquid, Int. J. Multiphase Flow 15, 911–924CrossRefGoogle Scholar
O'Brien, R. W. 1979 A method for the calculation of the effective transport properties of suspensions of interacting particles, J. Fluid Mech. 91, 17–39CrossRefGoogle Scholar
Taylor, G. I. 1954 The two coefficients of viscosity for a liquid containing air bubbles, Proc. R. Soc. Lond. A 226, 34–39CrossRefGoogle Scholar
Allegra, J. R. and Hawley, S. A. 1972 Attenuation of sound in suspensions and emulsions: Theory and experiments, J. Acoust. Soc. Amer. 51, 1545–1564CrossRefGoogle Scholar
Chambre, P. L. 1954 Speed of a plane wave in a gross mixture, J. Acoust. Soc. Amer. 26, 329–331CrossRefGoogle Scholar
Chow, J. C. F. 1964 Attenuation of acoustic waves in dilute emulsions and suspensions, J. Acoust. Soc. Am. 36, 2395–2401CrossRefGoogle Scholar
Epstein, P. S. 1941 On the absorption of sound by suspensions and emulsions, in Contributions to Applied Mechanics, Theodore von Karman Anniversary Volume, California Institute of Technology, pp. 162–188
Epstein, P. S. and Carhart, R. R. 1953 The absorption of sound in suspensions and emulsions, I. Water fog in air, J. Acoust. Soc. Amer. 25, 553–565CrossRefGoogle Scholar
Hay, A. E. and Schaafsama, A. S. 1989 Resonance scattering in suspensions, J. Acoust. Soc. Amer. 85, 1124–1138CrossRefGoogle Scholar
Morfey, C. L. 1968 Sound attenuation by small particles in a fluid, J. Sound Vib. 8, 156–170CrossRefGoogle Scholar
Temkin, S. 1992 Sound speeds in suspensions in thermodynamic equilibrium, Phys. Fluids A 4, 2399–2409CrossRefGoogle Scholar
Temkin, S. 1996 Viscous attenuation of sound in dilute suspensions of rigid particles, J. Acoust. Soc. Amer. 100, 825–831CrossRefGoogle Scholar
Temkin, S. 1998 Sound propagation in dilute suspensions of rigid particles, J. Acoust. Soc. Amer. 103, 838–849CrossRefGoogle Scholar
Temkin, S. 2000 Attenuation and dispersion of sound in dilute suspensions of spherical particles, J. Acoust. Soc. Amer. 108, 126–146CrossRefGoogle ScholarPubMed
Temkin, S. 2002 Erratum: Attenuation and dispersion of sound in dilute suspensions of spherical particles, J. Acoust. Soc. Amer. 111, 1126–1128CrossRefGoogle Scholar
Chu, B. T. 1960 Thermodynamics of a dusty gas and its applications to some aspects of wave propagation in the gas, Brown University, Division of Engineering Report No. DA-4761/1
Cole, J. III and Dobbins, R. A. 1970 Propagation of sound through atmospheric fog, J. Atmos. Sci. 27, 426–4342.0.CO;2>CrossRefGoogle Scholar
Cole, J. E. III and Dobbins, R. A. 1971 Measurements of the attenuation of sound in a warm air fog, J. Atmos. Sci. 28, 202–2092.0.CO;2>CrossRefGoogle Scholar
Davidson, G. A. and Scott, D. S. 1973 Finite-amplitude acoustics of aerosols, J. Acoust. Soc. Amer. 53, 1717–1729CrossRefGoogle Scholar
Davidson, G. A. and Scott, D. S. 1973 Finite-amplitude acoustic phenomena in aerosols from a single governing equation, J. Acoust. Soc. Amer. 54, 1331–1342CrossRefGoogle Scholar
Foner, S. N. and Nall, B. H. 1975 Attenuation of sound by rigid spheres: Measurements of the viscous and thermal components of attenuation and comparison with theory, J. Acoust. Soc. Amer. 57, 59–66CrossRefGoogle Scholar
Gumerov, N. A., Ivanadev, A. I., and Nigmatulin, R. I. 1988 Sound waves in monodisperse gas-particle or vapour droplet mixtures, J. Fluid Mech. 193, 53–74CrossRefGoogle Scholar
Henley, D. C. and Hoidale, G. B. 1973 Attenuation and dispersion of acoustic energy by atmospheric dust, J. Acoust. Soc. Amer. 54, 437–445CrossRefGoogle Scholar
Ishii, R. and Matsuhisa, H. 1983 Steady reflection, absorption and transmission of small disturbances by a screen of dusty gas, J. Fluid Mech. 130, 259–277CrossRefGoogle Scholar
Knudsen, V. O., Wilson, J. V., and Anderson, N. S. 1948 The attenuation of audible sound in fogs and smokes, J. Acoust. Soc. Amer. 20, 849–857CrossRefGoogle Scholar
Marble, F. E. and Wooten, D. C. 1970 Sound attenuation in a condensing vapor, Phys. Fluids. 13, 2657–2664CrossRefGoogle Scholar
Margulies, T. S. and Schwarz, W. H. 1994 A multiphase continuum theory for sound wave propagation through dilute suspensions of particles, J. Acoust. Soc. Amer. 96, 319–331CrossRefGoogle Scholar
Sewell, C. J. T. 1910 On the extinction of sound in a viscous atmosphere by small obstacles of cylindrical and spherical form, Phil. Trans. R. Soc. Lond. A210, 239–270CrossRefGoogle Scholar
Temkin, S. 1993 Particle force and heat transfer in a dusty gas sustaining an acoustic wave, Phys. Fluids 5, 1296–1304CrossRefGoogle Scholar
Temkin, S. and Dobbins, R. A. 1966a Attenuation and dispersion of sound by particulate relaxation processes, J. Acoust. Soc. Amer. 40, 317–324CrossRefGoogle Scholar
Temkin, S. and Dobbins, R. A. 1966b Measurement of the attenuation and dispersion of sound by an aerosol, J. Acoust. Soc. Amer. 40, 1016–1024CrossRefGoogle Scholar
Zink, J. W. and Delsasso, L. P. 1958 Attenuation and dispersion of sound by solid particles suspended in a gas, J. Acoust. Soc. Amer. 30, 765–771CrossRefGoogle Scholar
Batchelor, G. K. 1967 Compression waves in a suspension of gas bubbles in liquid, Fluid Dynamics Transactions4, 425–445. Institute of Fundamental Technical Research, Polish Academy of Science, Warsaw
Caflisch, R. E., Miksis, M. J., Papanicolaou, G. C., and Ting, L. 1985 Wave propagation in liquids at finite volume fraction, J. Fluid Mech. 160, 1–14CrossRefGoogle Scholar
Carstensen, E. L. and Foldy, L. L. 1947 Propagation of sound through a liquid containing bubbles, J. Acoust. Soc. Amer. 19, 481–501CrossRefGoogle Scholar
Cheyne, S. A., Stebbings, C. T., and Roy, R. A. 1995 Phase velocity measurements in bubbly liquids using a fiber optic laser interferometer, J. Acoust. Soc. Amer. 97, 1621–1624CrossRefGoogle Scholar
Commander, K. W. and Prosperetti, A.1989 Linear pressure waves in bubbly liquids: Comparison between theory and experiments, J. Acoust. Soc. Amer. 85, 732–746CrossRefGoogle Scholar
Crespo, A. 1969 Sound and shock waves in liquids containing bubbles, Phys. Fluids 12, 2274–2282CrossRefGoogle Scholar
Drumheller, D. S., Kipp, M. E., and Bedford, A. 1982 Transient wave propagation in bubbly liquids, J. Fluid Mech. 119, 347–365CrossRefGoogle Scholar
Eller, A. I. 1970 Damping constants of pulsating bubbles, J. Acoust. Soc. Amer. 47, 1469–1470CrossRefGoogle Scholar
Floyd, E. R. 1981 Thermodynamic corrections to the velocity of propagation in a bubbly medium, J. Acoust. Soc. Amer. 70, 1748–1751CrossRefGoogle Scholar
Fox, F. E., Curley, S. R., and Larson, G. S. 1955 Phase velocity and absorption measurements in water containing air bubbles, J. Acoust. Soc. Amer. 27, 534–539CrossRefGoogle Scholar
Gaunaurd, G. C. and H.Überall, H. 1981 Resonance theory of bubbly liquids, J. Acoust. Soc. Amer. 69, 362–370CrossRefGoogle Scholar
Hsieh, D. Y. and Plesset, M. S. 1961 On the propagation of sound in liquids containing gas bubbles, Phys. Fluids 4, 970–975CrossRefGoogle Scholar
Karplus, H. B. 1961 The velocity of sound in liquids containing gas bubbles, Research and Development/Report ARF-4132-12, Atomic Energy Commission
Karpov, S., Propseretti, A., and Ostrovsky, L. 2003 Nonlinear wave interaction in bubbly layers, J. Acoust. Soc. Amer. 113, 1304–1316CrossRefGoogle Scholar
Kieffer, S. 1977 Sound speed in liquid-gas mixtures: Water-air and water-steam, J. Geophys. Res. 82, 2895–2904CrossRefGoogle Scholar
Miksis, M. J. and Ting, L. 1989 Effects of bubbly layers on wave propagation, J. Acoust. Soc. Amer. 86, 2349–2358CrossRefGoogle Scholar
Nicholas, M., Roy, R. A., Crum, L. A., Oguz, H., and Prosperetti, A. 1994 Sound emission by a laboratory bubble cloud, J. Acoust. Soc. Amer. 95, 3171–3181CrossRefGoogle Scholar
Nigmatulin, R. I., Khabeev, N. S., and Hai, Z. N. 1988 Waves in liquids with vapour bubbles, J. Fluid Mech. 186, 85–117CrossRefGoogle Scholar
Noordzij, L. and Wijngaarden, L.. 1974 Relaxation effects, caused by relative motion, on shock waves in gas-bubble/liquid mixtures, J. Fluid Mech. 66, 115–143CrossRefGoogle Scholar
Sangani, A. S. 1991 A pairwise interaction theory for determining the linear acoustic properties of dilute bubbly liquids, J. Fluid Mech. 232, 221–284CrossRefGoogle Scholar
Silberman, E. 1957 Sound velocity and attenuation in bubbly mixtures measured in standing wave tubes, J. Acoust. Soc. Amer. 29, 925–933CrossRefGoogle Scholar
Temkin, S. 1990 Attenuation and dispersion of sound in bubbly liquids via the Kramers-Kronig relations, J. Fluid Mech. 211, 61–72CrossRefGoogle Scholar
Evans, J. M. and Attenborough, K. 1997 Coupled phase theory for sound propagation in emulsions, J. Acoust. Soc. Amer. 102, 278–282CrossRefGoogle Scholar
Fukumoto, Y. and T. Izuyama, T. 1992 Thermal attenuation and dispersion of sound in a periodic emulsion, Phys. Rev. A 46, 4905–4921CrossRefGoogle Scholar
Hemar, Y., Hocquart, R., and Palierne, J. F. 1998 Frequency-dependent compressibility in emulsions: Probing interfaces using Isakovitch sound absorption, Europhys. Lett. 42, 253–258CrossRefGoogle Scholar
Isakovitch, M. A. 1948 On the propagation of sound in emulsions, Zh. Exper. ⅰ Teor. Fiz. 18, 907–912Google Scholar
McClements, D. J. and Povey, M. J. W. 1989 Scattering of ultrasound by emulsions, J. Phys. D: Appl. Phys. 22, 38–47CrossRefGoogle Scholar
Onuki, A. 1991 Sound propagation in phase-separating fluids, Phys. Rev. A 43, 6740–6755CrossRefGoogle ScholarPubMed
Atkinson, C. M. and Kytömaa, H. K. 1992 Acoustic wave speed and attenuation in suspensions, Int. J. Multiphase Flow 18, 577–592CrossRefGoogle Scholar
Gibson, R. L. and Toksöz, M. N. 1989 Viscous attenuation of acoustic waves in suspensions, J. Acoust. Soc. Amer. 85, 1925–1934CrossRefGoogle Scholar
Harker, A. H. and Temple, J. A. G. 1988 Velocity and attenuation of ultrasound in suspensions of particles in fluids, J. Phys. D 21, 1576–1588CrossRefGoogle Scholar
Hay, A. E. and Mercer, D. G. 1985 On the theory of sound scattering and viscous absorption in aqueous suspensions at medium and short wavelengths, J. Acoust. Soc. Amer. 78, 1761–1771CrossRefGoogle Scholar
Herzfeld, K. F. 1930 Propagation of sound in suspensions, Phil. Mag. 9 (7th Series), 752–768CrossRefGoogle Scholar
Holmes, A. K. and Challis, R. E. 1993 A wide bandwidth study of ultrasound velocity and attenuation in suspensions: Comparison of theory and experimental measurements, J. Colloid. Interface Sci. 156, 261–268CrossRefGoogle Scholar
Holmes, A. K., Challis, R. E., and Wedlock, D. J. 1994 A wide bandwidth ultrasonic study of suspensions: The variation of velocity and attenuation with particle size, J. Colloid. Interface Sci. 168, 339–348CrossRefGoogle Scholar
Urick, R. J. 1947 A sound velocity method for determining the compressibility of finely divided substances, J. Appl. Phys. 18, 983–987CrossRefGoogle Scholar
Urick, R. J. 1948 The absorption of sound of irregular particles, J. Acoust. Soc. Amer. 20, 283–289CrossRefGoogle Scholar
Urick, R. J. and Ament, W. S. 1948 The propagation of sound in composite media, J. Acoust. Soc. Amer. 21, 115–119CrossRefGoogle Scholar
Anilkumar, A. V., Lee, C. P., and Wang, T. G. 1993 Stability of an acoustically levitated and flattened drop: An experimental study, Phys. Fluids 5, 2763–2774CrossRefGoogle Scholar
Ashgriz, N. and Poo, J. Y. 1990 Coalescence and separation in binary collisions of liquid drops, J. Fluid Mech. 221, 183–204CrossRefGoogle Scholar
Beal, S. K. 1972 Turbulent agglomeration of suspensions, J. Aerosol Sci., 3, 113–125CrossRefGoogle Scholar
Blanchard, D. C. 1954 Bursting of bubbles at an air-water interface, Nature 173, 1048CrossRefGoogle Scholar
Bradley, S. G. and Stow, C. D. 1978 Collision between liquid drops, Phil. Trans. R. Soc. Lond. A 287, 635–678CrossRefGoogle Scholar
Brenn, G. and Frohn, A. 1989 Collision and merging of two equal spheres of propanol, Exp. Fluids 7, 441–446CrossRefGoogle Scholar
Crowe, C. T. and Willoughby, P. G. 1966 A mechanism for particle growth in a rocket nozzle, AIAA J. 4, 1677–1678CrossRefGoogle Scholar
Danilov, S. D. and Mirnov, M. A. 1992 Breakup of a droplet in a high-intensity sound field, J. Acoust. Soc. Amer. 92, 2747–2755CrossRefGoogle Scholar
Falkovich, G., Fouxon, A., and Stepanov, M. G. 2002 Acceleration of rain initiation by cloud turbulence, Nature 419, 151–154CrossRefGoogle ScholarPubMed
Gast, L. 1991 Capillary instability of a liquid ring. Ph.D. thesis, Rutgers University
Gelbard, F., Mondy, L. A., and Ohrt, S. E. 1991 A new method for determining hydrodynamic effects on the collision of two spheres, J. Statist. Phys. 62, 945–960, 1991CrossRefGoogle Scholar
Gelbard, F. and Seinfeld, J. 1980 Simulation of multicomponent aerosol dynamics, J. Colloid Interface Sci. 78, 485–501CrossRefGoogle Scholar
Hoffmann, T. L. and Koopmann, G. H. 1997 Visualization of acoustic particle interaction and agglomeration: Theory and experiments, J. Acoust. Soc. Amer. 101, 3421–3429CrossRefGoogle Scholar
Klett, J. D. and Davis, M. H. 1973 Theoretical collision efficiencies of cloud droplets at small Reynolds numbers, J. Atmos. Sci. 30, 107–1172.0.CO;2>CrossRefGoogle Scholar
Marble, F. E. 1964 Mechanism of particle collision in the one-dimensional dynamics of gas-particle mixtures, Phys. Fluids 7, 1270–1282CrossRefGoogle Scholar
Marble, F. E. 1967 Droplet agglomeration in rocket nozzles caused by particle slip and collision, Astronautica Acta, 13, 159–166Google Scholar
Megaridis, C. M. and Dobbins, R. A. 1990 A bimodal integral solution of the dynamic equation for an aerosol undergoing simultaneous particle inception and coagulation, Aerosol Sci. Technol. 12, 240–255CrossRefGoogle Scholar
Mehta, H. 1980 Droplet drag and breakup in shock-wave induced unsteady flows. Ph.D. thesis, Rutgers University
Pinsky, M., Khain, A., and Shapiro, M. 2001 Collision efficiency of drops in a wide range of Reynolds numbers, J. Atmos. Sci. 58, 742–7662.0.CO;2>CrossRefGoogle Scholar
Reichman, J. 1973 A study of the motion, deformation and breakup of accelerating water droplets. Ph.D. thesis, Rutgers University
Reichman, J. M. and Temkin, S. 1974 A study of the deformation and breakup of accelerating water droplets, Proceedings of the International Colloquim on Drops and Bubbles, California Institute of Technololgy, Jet Propul. Lab. 2, 446–464Google Scholar
Saffman, P. G. and Turner, J. S. 1956 On the collision of drops in turbulent clouds, J. Fluid Mech. 1, 16–30, 1956. (Corrigendum, J. Fluid Mech. 196, 599, 1988.)CrossRefGoogle Scholar
Scott, D. S. 1975 A new approach to the acoustic conditioning of industrial aerosol emissions, J. Sound Vib. 43, 607–619CrossRefGoogle Scholar
Shaw, D. T. and Tu, K. W. 1979 Acoustic particle agglomeration due to hydrodynamic interaction between monodisperse aerosols, J. Aerosol Sci. 10, 317–328CrossRefGoogle Scholar
Shuster, K., Fichman, M., Goldshtein, A., and Gutfinger, C. 2002 Agglomeration of submicrometer particle in weak periodic shock waves, Phys. Fluids 14, 1802–1805CrossRefGoogle Scholar
Szumowski, A. P. and Falkowski, K. 1995 Photographic study of the shock-induced dispersion of microscopic gas bubbles, Phys. Fluids 7, 2529–2531CrossRefGoogle Scholar
Telford, J. W., Thorndike, N. S., and Bowen, E. G. 1955 The coalescence of small water drops, Q. J. R. Met. Soc. 81, 241–250CrossRefGoogle Scholar
Temkin, S. 1969 Cloud droplet collision induced by thunder, J. Atmos. Sci. 26, 776Google Scholar
Temkin, S. 1970 Droplet agglomeration induced by weak shock waves, Phys. Fluids 13, 1639–1641CrossRefGoogle Scholar
Temkin, S. 1994 Gasdynamic agglomeration of aerosols. I. Acoustic waves, Phys. Fluids 6, 2294–2303CrossRefGoogle Scholar
Wagner, P. E. and Kerker, M. 1977 Brownian coagulation of aerosols in rarefied gases, J. Chem. Phys. 66, 638–646CrossRefGoogle Scholar
Warren, D. and Seinfeld, J. H. 1985 Simulations of aerosol size distribution evolution in systems with simultaneous nucleation, condensation and coagulation, Aerosol Sci. Technol. 4, 31–43CrossRefGoogle Scholar
Whelpdale, D. M. and List, R. 1971 The coalescence process in raindrop growth, J. Geophys. Res. 76, 2386–2856CrossRefGoogle Scholar
Zhang, X. and Davis, R. H. 1991 The rate of collisions due to Brownian or gravitational motion of small drops, J. Fluid Mech. 230, 479–504CrossRefGoogle Scholar
Adam, J. R., Cataneo, R., and Semonin, R. G. 1971 The production of equal and unequal size droplet pairs, Rev. Sci. Instr. 42, 1847–1849CrossRefGoogle Scholar
Atchley, A. and Prosperetti, A. 1989 The crevice model of bubble nucleation, J. Acoust. Soc. Amer. 86, 1065–1084CrossRefGoogle Scholar
Bassett, J. D. and Bright, A. W. 1976 Observations concerning the mechanism of atomization in an ultrasonic fountain, J. Aerosol Sci. 7, 47–51CrossRefGoogle Scholar
Brenn, G. and Lackermeier, U. 1997 Drop formation from a vibrating orifice generator driven by modulated electrical signals, Phys. Fluids 9, 3658–3669CrossRefGoogle Scholar
Chaudhary, K. C. and Maxworthy, T. 1980 The nonlinear instability of a liquid jet. Part 3. Experiments on satellite drop formation and control, J. Fluid Mech. 96, 287–297CrossRefGoogle Scholar
Clark, C. J. and Dombrowski, N. 1971 On the formation of drops from the rims of fan spray sheets, J. Aerosol Sci. 3, 173–183CrossRefGoogle Scholar
Deane, G. B. and Stokes, M. D. 2002 Scale dependence of bubble creation mechanisms in breaking waves, Nature 418, 839–844CrossRefGoogle ScholarPubMed
Dijksman, J. F. 1984 Hydrodynamics of small tubular pumps, J. Fluid Mech. 139, 173–191CrossRefGoogle Scholar
Dombrowski, N. and Neale, N. D. 1974 Formation of streams of uniform drops from fan spray pressure nozzles, J. Aerosol Sci. 5, 551–555CrossRefGoogle Scholar
Donnelly, R. J. and Glaberson, W. 1966 Experiments on the capillary instability of a liquid jet, Proc. R. Soc. A 290, 547–556CrossRefGoogle Scholar
Hibling, J. H. and Heister, S. D. 1996 Droplet size control in liquid jet breakup, Phys. Fluids 8, 1574–1581Google Scholar
Longuet-Higgins, M. S., Kerman, B. R., and Lunde, K. 1991 The release of air bubbles from an underwater nozzle, J. Fluid Mech. 230, 365–390CrossRefGoogle Scholar
Orme, M. 1991 On the genesis of droplet microspeed dispersions, Phys. Fluids A 3, 2936–2947CrossRefGoogle Scholar
Pandit, A. B. and Davidson, A. B. 1990 Hydrodynamics of the rupture of thin liquid films, J. Fluid Mech. 212, 11–24CrossRefGoogle Scholar
Philipson, K. 1973 On the production of monodisperse particles with a spinning disc, Aerosol Sci. 4, 51–57CrossRefGoogle Scholar
Thorpe, S. A. 1987 Internal waves and whitecaps, Nature 330 740–742CrossRefGoogle Scholar
Thorpe, S. A. and Humphries, P. N. 1980 Bubbles and breaking waves, Nature 283, 463–465CrossRefGoogle Scholar
Topp, M. N. 1973 Ultrasonic atomization – A photographic study of the mechanism of disintegration, Aerosol Sci. 4, 17–25CrossRefGoogle Scholar
Barber, B. P. and Putterman, S. J. 1991 Observation of synchronous picosecond sonoluminescence, Nature 352, 318–320CrossRefGoogle Scholar
Crum, L. A. 1994 Sonoluminescence, sonochemistry, and sonophysics, J. Acoust. Soc. Amer. 95, 559–562CrossRefGoogle Scholar
Didenko, Y. T., McNamara, W. B. III, and Suslik, K. S. 2000 Molecular emission from single-bubble sonoluminescence, Nature 407, 877–879Google ScholarPubMed
Didenko, Y. T. and Suslik, K. S. 2002 The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation, Nature 418, 394–397CrossRefGoogle ScholarPubMed
Flynn, H. G. 1975 Cavitation dynamics. I. A mathematical formulation, J. Acoust. Soc. Amer. 57, 1379–1396CrossRefGoogle Scholar
Flynn, H. G. 1975 Cavitation dynamics. II. Free pulsations and models for cavitation bubbles, J. Acoust. Soc. Amer. 58, 1160–1170CrossRefGoogle Scholar
Flynn, H. G. and Church, C. C. 1988 Transient pulsations of small gas bubbles in water, J. Acoust. Soc. Amer. 84, 985–998. [Erratum, J. Acoust. Soc. Amer. 84, 1863–1876.]CrossRefGoogle ScholarPubMed
Löfstedt, R., Barber, B. P., and Putterman, S. J. 1991 Toward a hydrodynamic theory of sonoluminescence, Phys. Fluids A 5, 2911–2927CrossRefGoogle Scholar
Neppiras, E. A. 1980 Acoustic cavitation, Phys. Rep. (Review Section of Physics Letters) 61, 159–251CrossRefGoogle Scholar
Prosperetti, A. 1986 Physics of acoustic cavitation in Frontiers of Physical Acoustics, Sette, D., Ed., North-Holland, pp. 145–188Google Scholar
Putterman, S. J. 1995 Sonoluminescence: Sound into light. Sci. Amer., 272, 46–51CrossRefGoogle Scholar
Suslick, K. S. 1989 The chemical effects of ultrasound, Sci. Amer., 260, 80–86CrossRefGoogle Scholar
Dukowicz, J. K. 1984 Drag of evaporating or condensing droplets in low Reynolds number flow, Phys. Fluids 27, 1351–1358CrossRefGoogle Scholar
Goosens, H. W. J., Cleijne, J. W., Smolders, H. J., and Dongen, M. E. 1988 Shock wave induced evaporation of water droplets in a gas-droplet mixture, Exp. Fluids 6, 561–568CrossRefGoogle Scholar
Hill, P. E. 1966 Condensation of water vapour during supersonic expansion in nozzles, J. Fluid Mech. 25, 593–620CrossRefGoogle Scholar
Marble, F. E. 1969 Some gasdynamics problems in the flow of condensing vapors, Astronaut. Acta 14, 585–614Google Scholar
Marston, P. L. 1979 Evaporation-condensation resonance frequency of oscillating vapor bubbles, J. Acoust. Soc. Amer. 66, 1516–1521CrossRefGoogle Scholar
Mouzurkewich, M. 1986 Aerosol growth and the condensation coefficient for water: A review, Aerosol Sci. Technol. 5, 223–236CrossRefGoogle Scholar
Okuyama, M. and Zung, J. T. 1967 Evaporation-condensation coefficient for small droplets, J. Chem. Phys. 46, 1580–1585CrossRefGoogle Scholar
Frankiel, N. A. and Acrivos, A. 1968 Heat and mass transfer from small spheres and cylinders freely suspended in shear flow, Phys. Fluids 11, 1913–1918CrossRefGoogle Scholar
Michaelides, E. E. and Feng, Z. 1994 Heat transfer from a rigid sphere in a nonuniform flow and temperature field, Int. J. Heat Mass Transfer 37, 2069–2076CrossRefGoogle Scholar
Parks, J. M., Ablow, C. M., and Wise, H. 1966 Temperature distribution within a particle during evaporation, AIAA J. 4, 1032–1035Google Scholar
Borman, S. and Curtius, J. 2002 Lasing on a cloudy afternoon, Nature 418, 826–827CrossRefGoogle Scholar
Ching, B., Golay, M. W., and Johnson, T. J. 1984 Droplet impacts upon liquid surfaces, Science 226, 535–537CrossRefGoogle Scholar
Diebold, G. J. and Westervelt, P. J. 1988 The photoacoustic effect generated by a spherical droplet in a fluid, J. Acoust. Soc. Amer. 84, 2245–2251CrossRefGoogle Scholar
Dreyfuss, D. and Temkin, S. 1983 Charge separation during rupture of small water drops in transient flows: Shock tube measurements and application to lightning, J. Geophys. Res. 88, 10,993–10,998CrossRefGoogle Scholar
Franz, G. J. 1959 Splashes as sources of sound, J. Acoust. Soc. Amer. 31, 1080–1096CrossRefGoogle Scholar
Greenspan, M. 1956 Propagation of sound in five monatomic gases, J. Acoust. Soc. Amer. 28, 644–648CrossRefGoogle Scholar
Likhterov, L. 1998 High-frequency acoustic noise emitted by initial impact of solid sphere falling onto a liquid surface, Phys. Fluids 10, 321–323CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1990 An analytical model of sound production by raindrops, J. Fluid Mech. 214, 395–410CrossRefGoogle Scholar
O'Brien, R. W. 1988 Electro-acoustic effects in a dilute suspension of spherical particles, J. Fluid Mech. 190, 71–86CrossRefGoogle Scholar
Penner, S. S. and Li, T. 1967 Thermodynamic considerations of droplets and bubbles, AIAA J. 5, 1528–1529Google Scholar
Pumphrey, H. C., Crum, L., and Bjø⊘rnø, L. 1989 Underwater sound produced by individual drop impacts and rainfall, J. Acoust. Soc. Amer. 85, 1518–1526CrossRefGoogle Scholar
Richard, D., Clanet, C., and Quére, D. 2002 Contact time of a bouncing drop, Nature 417, 811CrossRefGoogle ScholarPubMed
Roy, R., Davidson, J. F., and Tuponogov, V. G. 1990 The velocity of sound in fluidized beds, Chem. Eng. Sci. 45, 3233–3245CrossRefGoogle Scholar
Shafer, N. E. and Zare, R. N. 1991 Through a beer glass darkly, Phys. Today 44, 48–52CrossRefGoogle Scholar
Shirley, B. M., Sheldon, J. W., and Kranc, S. C. 1972 Particle charging behind shock waves in suspensions, AIAA J. 10, 1110–1111Google Scholar
Biesheuvel, A. and Wijngaarden, L. 1984 Two-phase equations for a dilute dispersion of gas bubbles in a liquid, J. Fluid Mech. 148, 301–318CrossRefGoogle Scholar
Bilicki, Z. and Kestin, J. 1990 Physical aspects of the relaxation model in two-phase flows, Proc. R. Soc. Lond. A 428, 379–397CrossRefGoogle Scholar
Caflisch, R. E., Miksis, M. J., Papanicolaou, G. C., and Ting, L. 1985 Effective equations for wave propagation in bubbly liquids, J. Fluid Mech. 153, 259–273CrossRefGoogle Scholar
Drumheller, D. S. and Bedford, A. 1979 A theory of bubbly liquids, J. Acoust. Soc. Amer. 66, 197–208CrossRefGoogle Scholar
Drumheller, D. S. and Bedford, A. 1980 A theory of liquids with vapor bubbles, J. Acoust. Soc. Amer. 67, 186–200CrossRefGoogle Scholar
Kraiko, A. N. and Sternin, L. E. 1965 Theory of flows of a two velocity continuous medium containing solid or liquid particles, Prikladnaia Matematika ⅰ Mekhanica 29, 418–429Google Scholar
Marble, F. E. 1963 Dynamics of a gas containing small solid particles, in Proceedings of the 5th AGARD Colloquim on Combustion and Propulsion, Braunschweig, Pergamon, pp. 175–215
Miksis, M. J. and Ting, L. 1992 Effective equations of multiphase flows – Waves in a bubbly liquid, Adv. Appl. Mech. 28, 141–261CrossRefGoogle Scholar
Nigmatulin, R. I. 1982 Mathematical modeling of bubbly liquid motion and hydrodynamical effects in wave propagation phenomenon, Appl. Sci. Res. 38, 267–289CrossRefGoogle Scholar
O'Brien, R. W. 1990 The electroacoustic equations for a colloidal suspension, J. Fluid Mech. 212, 81–93CrossRefGoogle Scholar
Panton, R. 1968 Flow properties for the continuum viewpoint of a non-equilibrium gas-particle mixture, J. Fluid Mech. 31, 273–303CrossRefGoogle Scholar
Wijngaarden, L.. 1968 On the equations of motion for mixtures of liquid and gas bubbles, J. Fluid Mech. 33, 465–474CrossRefGoogle Scholar
Wijngaarden, L. van. 1976 Some problems in the formulation of the equations for gas/liquid flows, in Theoretical and Applied Mechanics, Proceedings of the 14th IUTAM Congress, Delft, The Netherlands, Koiter, W. T., Ed., North-Holland., pp. 249–260
Yurkovetsky, Y. and Brady, J. F. 1996 Statistical mechanics of bubbly liquids, Phys. Fluids 8, 881–895CrossRefGoogle Scholar
Zhang, D. Z. and Prosperetti, A. 1994 Ensemble phase-averaged equations for bubbly flows, Phys. Fluids 6, 2956–2970CrossRefGoogle Scholar
Chang, E. R. and Martin, M. R. 1994 Unsteady flow about a sphere at low to moderate Reynolds number. Part 1. Oscillatory motion, J. Fluid Mech. 277, 347–379CrossRefGoogle Scholar
Crowe, C. T. 1982 Numerical models for dilute gas-particle flows, J. Fluids Eng. 104, 297–303CrossRefGoogle Scholar
Ishii, R., Umeda, Y., and Yuhi, M. 1989 Numerical analysis of gas-particle two-phase flows, J. Fluid Mech. 203, 475–515CrossRefGoogle Scholar
Kamath, V. and Prosperetti, A. 1989 Numerical integration methods in gas-bubble dynamics, J. Acoust. Soc. Amer. 85, 1538–1548CrossRefGoogle Scholar
Batchelor, G. K. and Green, J. T. 1972 The hydrodynamic interaction of two small freely-moving spheres in a linear flow field, J. Fluid Mech. 56, 375–400CrossRefGoogle Scholar
Brady, J. F., Phillips, R. J., Lester, J.C, and Bossis, G. 1988 Dynamic simulation of hydrodynamically interacting suspensions, J. Fluid Mech. 195, 257–280CrossRefGoogle Scholar
Ecker, G. 1985 Interactions of droplet pairs in weak shock-wave induced unsteady flows. Ph.D. thesis, Rutgers University
Goren, S. 1983 Resistance and stability of a line of particles moving near a wall, J. Fluid Mech. 132, 185–196CrossRefGoogle Scholar
Haber, S. G., Hetsroni, G., and Solan, A. 1973 On the low Reynolds number motion of two droplets, Int. J. Multiphase Flow 1, 57–71CrossRefGoogle Scholar
Kaneda, Y. and Ishii, K. 1982 The hydrodynamic interaction of two spheres moving in an unbounded fluid at small but finite Reynolds number, J. Fluid Mech. 124, 209–217CrossRefGoogle Scholar
Mazur, P. and Saarloos, W.. 1982 Many-sphere interactions and mobilities in a suspension, Phys. A 115, 21–57CrossRefGoogle Scholar
Mazur, P. and Saarloos, W.. 1983 Many-sphere hydrodynamic interactions. II. Mobilities at finite frequency, Phys. A 120 77–102Google Scholar
Steinberger, E. H., Pruppacher, H. R., and Neiburger, M. 1968 On the hydrodynamics of pairs of spheres falling along their line of centers in a viscous medium, J. Fluid Mech. 34, 809–819CrossRefGoogle Scholar
Stimson, M. and Jeffrey, G. B. 1926 The motion of two spheres in a viscous fluid, Proc. R. Soc. Lond. A 111, 110–116CrossRefGoogle Scholar
Tam, C. K. W. 1969 The drag on a cloud of spherical particles in low Reynolds number flow, J. Fluid Mech. 38, 537–546CrossRefGoogle Scholar
Temkin, S. and G.Ecker, G. Z. 1989 Droplet interactions in a shock-wave flow field, J. Fluid Mech. 202, 467–497CrossRefGoogle Scholar
Wijngaarden, L.. 1976 Hydrodynamic interaction between gas bubbles in liquid (with an appendix by D. J. Jeffrey), J. Fluid Mech. 77, 27–44, 1976CrossRefGoogle Scholar
Auzerais, F. M., Jackson, R., Russel, W. B., and Murphy, W. F. 1990 The transient settling of stable and flocculated dispersions, J. Fluid Mech. 221, 613–639CrossRefGoogle Scholar
Batchelor, G. K. 1972 Sedimentation in a dilute dispersion of spheres, J. Fluid Mech. 52, 245–268CrossRefGoogle Scholar
Brady, J. F. and Durlofsky, L. J. 1988 The sedimentation rate of disordered suspensions, Phys. Fluids 31, 717–727CrossRefGoogle Scholar
Haber, S. and Hetsroni, G. 1981 Sedimentation in a dilute dispersion of small drops of various sizes, J. Colloid Interface Sci. 79, 56–75CrossRefGoogle Scholar
Hanratty, T. J. and Bandukwala, A. 1957 Fluidization and sedimentation of spherical particles, AICh E J. 3, 293–296CrossRefGoogle Scholar
Alexeev, A. and Gutfinger, C. 2003 Particle drift in a resonance tube – A numerical study, J. Acoust. Soc. Amer. 114, 1357–1365CrossRefGoogle Scholar
Boyadzhiev, L. 1973 On the movement of a spherical particle in a vertically oscillating liquid, J. Fluid Mech. 57, 545–548CrossRefGoogle Scholar
Burrows, F. M. 1983 Calculation of the primary trajectories of seeds and other particles in strong winds, Proc. R. Soc. Lond. A 389, 15–66CrossRefGoogle Scholar
Chester, W. and Breach, D. R. (with an appendix by I. Proudman) 1969 On the flow past a sphere at low Reynolds number. J. Fluid Mech. 37, 751–760CrossRefGoogle Scholar
Corrsin, S. and Lumley, J. 1956 On the equation of motion for a particle in turbulent fluid, Appl. Sci. Res. Sec. A, 6, 114–116CrossRefGoogle Scholar
Danilov, S. D. and Mirnov, M. A. 2000 Mean force on a small sphere in a sound field in a viscous fluid, J. Acoust. Soc. Amer. 107, 143–153CrossRefGoogle Scholar
Galindo, V. and Gerbeth, G. 1993 A note on the force on an accelerating spherical drop at low Reynolds number, Phys. Fluids A 5, 3290–3292CrossRefGoogle Scholar
Goldstein, S. 1929 The steady flow of viscous fluid past a fixed spherical obstacle at small Reynolds numbers, Proc. R. Soc. A 123, 216–235CrossRefGoogle Scholar
Gucker, F. T. and Doyle, G. J. 1956 The amplitude of aerosol droplets in a sonic field, J. Phys. Chem. 60, 989–996, 1956CrossRefGoogle Scholar
Hoenig, S. A. 1957 Acceleration of dust particles by shock waves, J. Appl. Phys. 28, 1218–1219CrossRefGoogle Scholar
Ingebo, R. D. 1956 Drag coefficients for droplets and solid spheres in clouds accelerating in air streams, NACA Technical Note TN 3762
Ishii, R. 1984 Motion of small particles in a gas flow, Phys. Fluids 27, 33–41CrossRefGoogle Scholar
Kang, I. S. and Leal, L. G. 1988 The drag coefficient for a spherical bubble in a uniform streaming flow, Phys. Fluids 31, 233–241CrossRefGoogle Scholar
Kanwal, R. P. 1964 Drag on an axially symmetric body vibrating slowly along its axis in a viscous fluid, J. Fluid Mech. 19, 631–636CrossRefGoogle Scholar
Karanfilian, S. K. and Kotas, T. J. 1978 Drag on a sphere in unsteady motion in a liquid at rest, J. Fluid Mech. 87, 85–96CrossRefGoogle Scholar
Kim, S. S. 1977 An experimental study of droplet reponse to weak shock waves. Ph.D. thesis, Rutgers University
Legendre, D. and Magnaudet, J. 1997 A note on the lift force on a spherical bubble or drop in a low Reynolds number shear flow, Phys. Fluids 9, 3572–3574CrossRefGoogle Scholar
Liu, D. Y., Anders, K., and Frohn, A. 1988 Drag coefficients of single droplets moving in an infinite droplet chain on the axis of a tube, Int. J. Multiphase Flow 14, 217–232CrossRefGoogle Scholar
Lovalenti, P. M. and Brady, J. 1993 The force on a bubble, drop, or particle in arbitrary time-dependent motion at small Reynolds number, Phys. Fluids A 5, 2104–2116CrossRefGoogle Scholar
Magnaudet, J., Rivero, M., and Fabre, J. 1995 Accelerated flows past a rigid sphere of a spherical bubble. Part 1. Steady straining flow, J. Fluid Mech. 284, 97–135CrossRefGoogle Scholar
Maxey, M. R. and Riley, J. J. 1983 Equations of motion for a small rigid sphere in nonuniform flow, Phys. Fluids 26, 883–889CrossRefGoogle Scholar
Maxworthy, T. 1965 Accurate measurements of sphere drag at low Reynolds numbers, J. Fluid Mech. 23, 369–372CrossRefGoogle Scholar
Mei, R., Klausner, J. F., and Lawrence, C. J. 1994 A note on the history force on spherical bubble at finite Reynolds number, Phys. Fluids 6, 418–420CrossRefGoogle Scholar
Mei, R., Lawrence, C. J., and Adrian, R. J. 1991 Unsteady drag on a sphere at finite Reynolds number with small fluctuations in the free-stream velocity, J. Fluid Mech. 233, 613–631CrossRefGoogle Scholar
Morsi, S. A. and Alexander, A. J. 1972 An investigation of particle trajectories in two-phase flow systems, J. Fluid Mech. 55, 193–208CrossRefGoogle Scholar
Ockendon, J. R. 1968 The unsteady motion of a small sphere in a viscous fluid, J. Fluid Mech. 34, 229–239CrossRefGoogle Scholar
Odar, F. 1966 Verification of the proposed equation for calculation of the forces on a sphere accelerating in a viscous fluid, J. Fluid Mech. 25, 591–592CrossRefGoogle Scholar
Odar, F. and Hamilton, W. S. 1964 Forces on a sphere accelerating in a viscous fluid, J. Fluid Mech. 18, 302–314CrossRefGoogle Scholar
Ogden, T. L. and Jayaweera, K. O. L. F. 1971 Drag coefficients of water droplets decelerating in air, Q. R. Met. Soc. 97, 571–574CrossRefGoogle Scholar
Pearcey, T. and Hill, G. W. 1956 The accelerated motion of droplets and bubbles, Austr. J. Phys. 9, 19–30Google Scholar
Proudman, I. and Pearson, R. R. A. 1957 Expansions at small Reynolds numbers for the flow past a sphere and circular cylinder, J. Fluid Mech. 2, 237–262CrossRefGoogle Scholar
Rallison, J. M.Note on the Faxen relations for a particle in Stokes flow, J. Fluid Mech. 88, 529–533, 1978CrossRefGoogle Scholar
Rudinger, G. 1974 Penetration of particles into a constant cross flow, AIAA J. 12, 1138–1140CrossRefGoogle Scholar
Sano, T. 1981 Unsteady flow past a sphere at low Reynolds number, J. Fluid Mech. 112, 433–441CrossRefGoogle Scholar
Selberg, B. P. and Nicholls, J. A. 1968 Drag coefficient of small spehrical particles, AIAA J. 6, 401–408Google Scholar
Taylor, K. J. 1976 Absolute measurement of acoustic particle velocity, J. Acoust. Soc. Amer. 59, 691–694CrossRefGoogle Scholar
Temkin, S. 1972 On the response of a sphere to an acoustic pulse, J. Fluid Mech. 54, 339–349CrossRefGoogle Scholar
Temkin, S. 1993 Particle force and heat transfer in a dusty gas sustaining an acoustic wave, Phys. Fluids 5, 1296–1304CrossRefGoogle Scholar
Temkin, S. and Kim, S. S. 1980 Droplet motion induced by weak shock waves, J. Fluid Mech. 96, 133–157CrossRefGoogle Scholar
Temkin, S. and Leung, C.-M. 1976 On the velocity of a rigid sphere in a sound wave, J. Sound Vib., 49, 75–92CrossRefGoogle Scholar
Temkin, S. and Mehta, H. K. 1982 Droplet drag in an accelerating and decelerating flow, J. Fluid Mech. 116, 297–313CrossRefGoogle Scholar
Thomas, P. J. 1992 On the influence of the Basset history force on the motion of a particle through a fluid, Phys. Fluids A 4, 2090–2093CrossRefGoogle Scholar
Vainshtein, P., Fichman, M., and Pnueli, D. 1992 On the drift of aerosol particles in sonic fields, J. Aerosol Sci. 23, 631–637CrossRefGoogle Scholar
Crum, L. A. 1983 The polytropic exponent of gas contained within air bubbles pulsating in a liquid, J. Acoust. Soc. Amer. 73, 116–120CrossRefGoogle Scholar
Crum, L. A. and Prosperetti, A. 1983 Nonlinear oscillations of gas bubbles in liquids: An interpretation of some experimental results, J. Acoust. Soc. Amer. 73, 121–127CrossRefGoogle Scholar
Devin, C. Jr., 1959 Survey of thermal, radiation, and viscous damping of pulsating air-bubbles in water, J. Acoust. Soc. Amer. 31, 1654–1667CrossRefGoogle Scholar
Exner, M. L. and Hampe, W. 1953 Experimental determination of the damping of pulsating air bubbles in water, Acustica 3, 67–72Google Scholar
Kennard, E. H. 1943 Radial motion of water surrounding a sphere of gas in relation to pressure waves, in Underwater Explosion Research, Vol. II. The Gas Globe, Office of Naval Research
Lauterborn, W. 1976 Numerical investigation of nonlinear oscillations of gas bubbles in liquids, J. Acoust. Soc. Amer. 59, 283–293CrossRefGoogle Scholar
Meyer, E. and Skudrzyk, E. 1953 Über die akustischen eigenschaften von gasblasenschleiern in wasser, Acustica 3, 435–440Google Scholar
Minnaert, M. 1933 On musical air bubbles and the sounds of running water, Phil. Mag. XVI (7th Series), 235–248CrossRefGoogle Scholar
Prosperetti, A. 1977 Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids, J. Acoust. Soc. Amer. 61, 17–27CrossRefGoogle Scholar
Prosperetti, A. 1987 The equation of bubble dynamics in a compressible liquid, Phys. Fluids 30, 3626–3628CrossRefGoogle Scholar
Prosperetti, A. 1988 Nonlinear bubble dynamics, J. Acoust. Soc. Amer. 83, 502–514CrossRefGoogle Scholar
Prosperetti, A. 1991 The thermal behaviour of oscillating gas bubbles, J. Fluid Mech. 222, 587–616CrossRefGoogle Scholar
Prosperetti, A. and Lezzi, A. 1986 Bubble dynamics in a compressible liquid. Part 1. First-order theory, J. Fluid Mech. 168, 457–478CrossRefGoogle Scholar
Prosperetti, A. and Lezzi, A. 1987 Bubble dynamics in a compressible liquid. Part 2. Second-order theory, J. Fluid Mech. 185, 289–321Google Scholar
Schiffers, W. P., Emmony, D. C., and Shaw, S. J. 1997 Visualization of the fluid flow around a laser generated oscillating bubble, Phys. Fluids 9, 3201–3208CrossRefGoogle Scholar
Strasberg, M. 1956 Gas bubbles as sources of sound in liquids, J. Acoust. Soc. Amer. 28, 20–26CrossRefGoogle Scholar
Temkin, S. 1999 Radial pulsations of a fluid particle in a sound wave, J. Fluid. Mech. 380, 1–38CrossRefGoogle Scholar
Temkin, S. 2001b Corrigendum: Radial pulsations of a fluid sphere in a sound wave, J. Fluid. Mech. 430, 407–410CrossRefGoogle Scholar
Lee, C. P., Lyell, M. J., and Wang, T.G 1985 Viscous damping of the oscillations of a rotating simple drop, Phys. Fluids 28, 3187–3188CrossRefGoogle Scholar
Rubinow, S. I. and Keller, J. B. 1961 The transverse force on a spinning sphere in a viscous fluid, J. Fluid Mech. 11, 447–459CrossRefGoogle Scholar
Chiu, H. H. 1970 Dynamics of deformation of liquid drops, Astronautica Acta 15, 199–213Google Scholar
Cox, R. G. 1969 The deformation of a drop in a general time-dependent fluid flow, J. Fluid Mech. 37, 601–623CrossRefGoogle Scholar
Lundgren, T. S. and Mansour, N. N. 1988 Oscillations of drops in zero gravity with weak viscous effects, J. Fluid Mech. 194, 479–510CrossRefGoogle Scholar
Marston, P. L. 1980 Shape oscillations and static deformation of drops and bubbles driven by modulated radiation stresses – Theory, J. Acoust. Soc. Amer. 67, 15–26CrossRefGoogle Scholar
Faxen, H. 1921 Einwirkung der Gefäßwände auf den Widerstend gegen die Bewegung einer kleinen Kugel in einer Zähen Flussigkeit. Diss. Upsala. (See Oseen, 1927, Section 9.)
Williams, Ffowcs J. E. and Guo, Y. P. 1991 On resonant non-linear bubble oscillations, J. Fluid Mech. 224, 507–529CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1989 Monopole emission of sound by asymmetric bubble oscillations. Part 1. Normal modes, J. Fluid Mech. 201, 525–541CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1989 Monopole emission of sound by asymmetric bubble oscillations. Part 2. An initial-value problem, J. Fluid Mech. 201, 543–565CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1991 Resonance in nonlinear bubble oscillations, J. Fluid Mech. 224, 531–549CrossRefGoogle Scholar
Magnaudet, J. and Legendre, D. 1998 The viscous drag force on a spherical bubble with a time-dependent radius, Phys. Fluids 10, 550–554CrossRefGoogle Scholar
Watanabe, T. and Kukita, Y. 1993 Translational and radial motions of a bubble in an acoustic standing wave field, Phys. Fluids A 5, 2682–2688CrossRefGoogle Scholar
Brazier, R., Sparks, R. S. J., Carey, S. N., Sigurdsson, H., and Westgate, J. A. 1983 Bimodal grain size distribution and secondary thickening in air-fall ash layers, Nature 301, 115–119CrossRefGoogle Scholar
Gelbard, F., Tambour, Y., and Seinfeld, J. H.Sectional representation for simulating aerosol dynamics, J. Colloid Interface Sci. 76, 541–556, 1980CrossRefGoogle Scholar
Jaenicke, R. and Davies, C. N. 1976 The mathematical expression of the size distribution of atmospheric aerosols, J. Aerosol Sci. 7, 255–259CrossRefGoogle Scholar
Lee, R. E. Jr., 1972 The size of suspended particulate matter in air, Science 178, 567–575CrossRefGoogle ScholarPubMed
Mugele, R. A. and Evans, H. D. 1951 Droplet size distribution in sprays, Indust. Eng. Chem., 43, 1317–1324CrossRefGoogle Scholar
Smith, J. E. and Jordan, M. L. 1964 Mathematical and graphical interpretation of the log-normal law for particle size distribution analysis, J. Colloid Sci., 19, 549–559, 1964CrossRefGoogle Scholar
Weickmann, H. K. and Kampe, Aufm H. J. 1953 Physical properties of cumulus clouds, J. Met. 10, 204. [See Mason, B. K., The Physics of Clouds, pp. 98–103.]2.0.CO;2>CrossRefGoogle Scholar
Davis, M. C. 1978 Coal slurry diagnostics by ultrasound transmission, J. Acoust. Soc. Amer. 64, 406–410CrossRefGoogle Scholar
Dobbins, R. A. 1963 Measurement of mean particle size in a gas-particle flow, AIAA J. 1, 1940–1942CrossRefGoogle Scholar
Dobbins, R. A., Crocco, L., and Glassman, I. 1963 Measurement of mean particle sizes in sprays from diffractively scattered light, AIAA J. 1, 1882–1886CrossRefGoogle Scholar
Dobbins, R. A. and Temkin, S. 1967 Acoustical measurements of aerosol particle size and concentration, J. Colloid Interface Sci. 25, 329–333CrossRefGoogle Scholar
Dukhin, A. S. and Goetz, P. 2001 Acoustic and electroacoustic spectroscopy for characterizing concentrated dispersions and emulsions, Adv. Colloid Interface Sci. 92, 73–132CrossRefGoogle ScholarPubMed
Duraiswami, R., Prabhukumar, S., and Chahine, G. L. 1998 Bubble counting using an inverse acoustic scattering method, J. Acoust. Soc. Amer. 104, 2699–2717CrossRefGoogle Scholar
König, G.Anders, K. and Frohn, A. 1986 A new light-scattering technique to measure the diameter of periodically generated moving droplets, J. Aerosol Sci. 17, 157–167CrossRefGoogle Scholar
Medwin, H. 1970 In-situ acoustic measurements of bubble populations in coastal waters, J. Geophys. Res. 75, 599–611CrossRefGoogle Scholar
Medwin, H. 1977 Acoustical determinations of bubble-size spectra, J. Acoust. Soc. Amer. 62, 1041–1044CrossRefGoogle Scholar
Newhouse, V. L. and Shankar, P. M. 1984 Bubble size measurements using the nonlinear mixing of two frequencies, J. Acoust. Soc. Amer. 75, 1473–1477CrossRefGoogle Scholar
Temkin, S. and Reichman, J.M 1972 A new technique to photograph small particles in motion, Rev. Sci. Instr. 43, 1456–1459CrossRefGoogle Scholar
Jeffrey, D. J. 1992 The calculation of the low Reynolds number resistance functions for two unequal spheres, Phys. Fluids A 4, 16–29CrossRefGoogle Scholar
Kim, S. and Mifflin, R. T. 1985 The resistance and mobility functions of two equal spheres in low-Reynolds-number flow, Phys. Fluids 28, 2033–2045CrossRefGoogle Scholar
Maul, C. and Kim, S. 1994 Image systems for a Stokeslet inside a rigid spherical container, Phys. Fluids 6, 2221–2223CrossRefGoogle Scholar
Pozrikidis, C. 1989 A singularity method for unsteady linearized flow, Phys. Fluids A 1, 1508–1520CrossRefGoogle Scholar
Buresti, G. and Casarosa, C. 1989 One dimensional adiabatic flow of equilibrium gas-particle mixtures in long vertical ducts with friction, J. Fluid Mech. 203, 251–272CrossRefGoogle Scholar
Carrier, G. F. 1958 Shock waves in a dusty gas, J. Fluid Mech. 4, 376–382CrossRefGoogle Scholar
Hamad, H. and Frohn, A. 1980 Structure of fully dispersed waves in dusty gases, J. Appl. Math. Phys. (ZAMP) 31, 66–82CrossRefGoogle Scholar
Healy, J. V. and Yang, H. T. 1972 The Stokes problems for a suspension of particles, Astronautica Acta 17, 851–856Google Scholar
Ishii, R., Hatta, N., Umeda, Y., and Yuhi, M. 1990 Supersonic gas-particle two-phase flow around a sphere, J. Fluid Mech. 221, 453–483, 1990CrossRefGoogle Scholar
Ishii, R. and Umeda, Y. 1987 Nozzle flows of gas-particle mixtures, Phys. Fluids 30, 752–760, 1987CrossRefGoogle Scholar
Liu, J. T. C. 1965 On the hydrodynamic stability of parallel dusty gas flow, Phys. Fluids 8, 1939–1945CrossRefGoogle Scholar
Liu, J. T. C. 1967 Flow induced by the impulsive motion of an infinite flat plate in a dusty gas, Astronautica Acta, 13, 369–377Google Scholar
Miura, H. and Glass, I. I. 1982 On a dusty-gas shock tube, Proc. R. Soc. Lond. A 382, 373–388CrossRefGoogle Scholar
Miura, H. and Glass, I. I. 1983 On the passage of a shock wave through a dusty-gas layer, Proc. R. Soc. Lond. A 385, 85–105CrossRefGoogle Scholar
Murray, J. D. 1967 Some basic aspects of one-dimensional incompressible particle-fluid two-phase flows, Astronautica Acta 13, 417–430Google Scholar
Neilson, J. H. and Gilchrist, A. 1968 An analytical and experimental investigation of the velocities of particles entrained by the gas flow in nozzles, J. Fluid Mech. 33, 131–149CrossRefGoogle Scholar
Rudinger, G. 1964 Some properties of shock relaxation in gas flows carrying small particles, Phys. Fluids 7, 658–663CrossRefGoogle Scholar
Rudinger, G. 1965 Some effects of finite particle volume on the dynamics of gas-particle mixtures, AIAA J. 3, 1217–1222CrossRefGoogle Scholar
Rudinger, G. 1969 Relaxation in gas-particle flows, in Nonequilibrium Flows, Wegner, P., Ed., Marcel Dekker pp. 119–161Google Scholar
Rudinger, G. 1970 Gas-particle flow in convergent nozzles at high loading ratio, AIAA J. 8, 1288–1294CrossRefGoogle Scholar
Rudinger, G. and Chang, A. 1964 Analysis of nonsteady two-phase flow, Phys. Fluids 7, 1747–1754CrossRefGoogle Scholar
Saffman, P. G. 1962 On the stability of laminar flow of a dusty gas, J. Fluid Mech. 13, 120–128CrossRefGoogle Scholar
Sauerwein, H. and Fendell, F. E. 1965 Method of characteristics in two-phase flow, Phys. Fluids 8, 1564–1565CrossRefGoogle Scholar
Schubert, Schmitt-von B. 1969 Existence and uniqueness of normal shock waves in gas-particle mixtures, J. Fluid Mech. 38, 633–655CrossRefGoogle Scholar
Tomita, Y., Tashio, H., Deguchi, K., and Jotaki, T. 1980 Sudden expansion of gas-solid two-phase flow in a pipe, Phys. Fluids 23, 663–666CrossRefGoogle Scholar
Hsieh, D.-Y.Some aspects of dynamics of bubbly liquids, Appl. Sci. Res. 38, 305–312, 1982CrossRefGoogle Scholar
Ishii, R., Umeda, Y., Murata, S., and Shishido, N. 1993 Bubbly flows through a converging-diverging nozzle, Phys. Fluids A 5, 1630–1643CrossRefGoogle Scholar
Kameda, M. and Matsumoto, Y. 1996 Shock waves in a liquid containing small gas bubbles, Phys. Fluids 8, 322–335CrossRefGoogle Scholar
Kennard, E. H. 1941 Report on Underwater Explosions, David W. Taylor Model Basin, pp. 1–51
Omta, R. 1987 Oscillations of a cloud of bubbles of small and not so small amplitude, J. Acoust. Soc. Amer. 82, 1018–1033CrossRefGoogle Scholar
Wijngaarden, L.. On the structure of shock waves in liquid-bubble mixtures, Appl. Sci. Res. 22, 366–381CrossRef
Wijngaarden, L. and Kapteyn, C. 1990 Concentration waves in dilute bubble/liquid mixtures, J. Fluid Mech. 212, 111–137CrossRefGoogle Scholar
Batchelor, G. K. and Green, J. T. 1972 The determination of the bulk stress in a suspension of spherical particles to order c2, J. Fluid Mech. 56, 401–427CrossRefGoogle Scholar
Beenakker, C. W. J. 1984 The effective viscosity of a concentrated suspension of spheres (and its relation to diffusion), Phys. A 128, 48–81CrossRefGoogle Scholar
Biesheuvel, A. and Spoelstra, S. 1989 The added mass coefficient of a dispersion of spherical gas bubbles in a liquid, Int. J. Multiphase Flow 15, 911–924CrossRefGoogle Scholar
O'Brien, R. W. 1979 A method for the calculation of the effective transport properties of suspensions of interacting particles, J. Fluid Mech. 91, 17–39CrossRefGoogle Scholar
Taylor, G. I. 1954 The two coefficients of viscosity for a liquid containing air bubbles, Proc. R. Soc. Lond. A 226, 34–39CrossRefGoogle Scholar
Allegra, J. R. and Hawley, S. A. 1972 Attenuation of sound in suspensions and emulsions: Theory and experiments, J. Acoust. Soc. Amer. 51, 1545–1564CrossRefGoogle Scholar
Chambre, P. L. 1954 Speed of a plane wave in a gross mixture, J. Acoust. Soc. Amer. 26, 329–331CrossRefGoogle Scholar
Chow, J. C. F. 1964 Attenuation of acoustic waves in dilute emulsions and suspensions, J. Acoust. Soc. Am. 36, 2395–2401CrossRefGoogle Scholar
Epstein, P. S. 1941 On the absorption of sound by suspensions and emulsions, in Contributions to Applied Mechanics, Theodore von Karman Anniversary Volume, California Institute of Technology, pp. 162–188
Epstein, P. S. and Carhart, R. R. 1953 The absorption of sound in suspensions and emulsions, I. Water fog in air, J. Acoust. Soc. Amer. 25, 553–565CrossRefGoogle Scholar
Hay, A. E. and Schaafsama, A. S. 1989 Resonance scattering in suspensions, J. Acoust. Soc. Amer. 85, 1124–1138CrossRefGoogle Scholar
Morfey, C. L. 1968 Sound attenuation by small particles in a fluid, J. Sound Vib. 8, 156–170CrossRefGoogle Scholar
Temkin, S. 1992 Sound speeds in suspensions in thermodynamic equilibrium, Phys. Fluids A 4, 2399–2409CrossRefGoogle Scholar
Temkin, S. 1996 Viscous attenuation of sound in dilute suspensions of rigid particles, J. Acoust. Soc. Amer. 100, 825–831CrossRefGoogle Scholar
Temkin, S. 1998 Sound propagation in dilute suspensions of rigid particles, J. Acoust. Soc. Amer. 103, 838–849CrossRefGoogle Scholar
Temkin, S. 2000 Attenuation and dispersion of sound in dilute suspensions of spherical particles, J. Acoust. Soc. Amer. 108, 126–146CrossRefGoogle ScholarPubMed
Temkin, S. 2002 Erratum: Attenuation and dispersion of sound in dilute suspensions of spherical particles, J. Acoust. Soc. Amer. 111, 1126–1128CrossRefGoogle Scholar
Chu, B. T. 1960 Thermodynamics of a dusty gas and its applications to some aspects of wave propagation in the gas, Brown University, Division of Engineering Report No. DA-4761/1
Cole, J. III and Dobbins, R. A. 1970 Propagation of sound through atmospheric fog, J. Atmos. Sci. 27, 426–4342.0.CO;2>CrossRefGoogle Scholar
Cole, J. E. III and Dobbins, R. A. 1971 Measurements of the attenuation of sound in a warm air fog, J. Atmos. Sci. 28, 202–2092.0.CO;2>CrossRefGoogle Scholar
Davidson, G. A. and Scott, D. S. 1973 Finite-amplitude acoustics of aerosols, J. Acoust. Soc. Amer. 53, 1717–1729CrossRefGoogle Scholar
Davidson, G. A. and Scott, D. S. 1973 Finite-amplitude acoustic phenomena in aerosols from a single governing equation, J. Acoust. Soc. Amer. 54, 1331–1342CrossRefGoogle Scholar
Foner, S. N. and Nall, B. H. 1975 Attenuation of sound by rigid spheres: Measurements of the viscous and thermal components of attenuation and comparison with theory, J. Acoust. Soc. Amer. 57, 59–66CrossRefGoogle Scholar
Gumerov, N. A., Ivanadev, A. I., and Nigmatulin, R. I. 1988 Sound waves in monodisperse gas-particle or vapour droplet mixtures, J. Fluid Mech. 193, 53–74CrossRefGoogle Scholar
Henley, D. C. and Hoidale, G. B. 1973 Attenuation and dispersion of acoustic energy by atmospheric dust, J. Acoust. Soc. Amer. 54, 437–445CrossRefGoogle Scholar
Ishii, R. and Matsuhisa, H. 1983 Steady reflection, absorption and transmission of small disturbances by a screen of dusty gas, J. Fluid Mech. 130, 259–277CrossRefGoogle Scholar
Knudsen, V. O., Wilson, J. V., and Anderson, N. S. 1948 The attenuation of audible sound in fogs and smokes, J. Acoust. Soc. Amer. 20, 849–857CrossRefGoogle Scholar
Marble, F. E. and Wooten, D. C. 1970 Sound attenuation in a condensing vapor, Phys. Fluids. 13, 2657–2664CrossRefGoogle Scholar
Margulies, T. S. and Schwarz, W. H. 1994 A multiphase continuum theory for sound wave propagation through dilute suspensions of particles, J. Acoust. Soc. Amer. 96, 319–331CrossRefGoogle Scholar
Sewell, C. J. T. 1910 On the extinction of sound in a viscous atmosphere by small obstacles of cylindrical and spherical form, Phil. Trans. R. Soc. Lond. A210, 239–270CrossRefGoogle Scholar
Temkin, S. 1993 Particle force and heat transfer in a dusty gas sustaining an acoustic wave, Phys. Fluids 5, 1296–1304CrossRefGoogle Scholar
Temkin, S. and Dobbins, R. A. 1966a Attenuation and dispersion of sound by particulate relaxation processes, J. Acoust. Soc. Amer. 40, 317–324CrossRefGoogle Scholar
Temkin, S. and Dobbins, R. A. 1966b Measurement of the attenuation and dispersion of sound by an aerosol, J. Acoust. Soc. Amer. 40, 1016–1024CrossRefGoogle Scholar
Zink, J. W. and Delsasso, L. P. 1958 Attenuation and dispersion of sound by solid particles suspended in a gas, J. Acoust. Soc. Amer. 30, 765–771CrossRefGoogle Scholar
Batchelor, G. K. 1967 Compression waves in a suspension of gas bubbles in liquid, Fluid Dynamics Transactions4, 425–445. Institute of Fundamental Technical Research, Polish Academy of Science, Warsaw
Caflisch, R. E., Miksis, M. J., Papanicolaou, G. C., and Ting, L. 1985 Wave propagation in liquids at finite volume fraction, J. Fluid Mech. 160, 1–14CrossRefGoogle Scholar
Carstensen, E. L. and Foldy, L. L. 1947 Propagation of sound through a liquid containing bubbles, J. Acoust. Soc. Amer. 19, 481–501CrossRefGoogle Scholar
Cheyne, S. A., Stebbings, C. T., and Roy, R. A. 1995 Phase velocity measurements in bubbly liquids using a fiber optic laser interferometer, J. Acoust. Soc. Amer. 97, 1621–1624CrossRefGoogle Scholar
Commander, K. W. and Prosperetti, A.1989 Linear pressure waves in bubbly liquids: Comparison between theory and experiments, J. Acoust. Soc. Amer. 85, 732–746CrossRefGoogle Scholar
Crespo, A. 1969 Sound and shock waves in liquids containing bubbles, Phys. Fluids 12, 2274–2282CrossRefGoogle Scholar
Drumheller, D. S., Kipp, M. E., and Bedford, A. 1982 Transient wave propagation in bubbly liquids, J. Fluid Mech. 119, 347–365CrossRefGoogle Scholar
Eller, A. I. 1970 Damping constants of pulsating bubbles, J. Acoust. Soc. Amer. 47, 1469–1470CrossRefGoogle Scholar
Floyd, E. R. 1981 Thermodynamic corrections to the velocity of propagation in a bubbly medium, J. Acoust. Soc. Amer. 70, 1748–1751CrossRefGoogle Scholar
Fox, F. E., Curley, S. R., and Larson, G. S. 1955 Phase velocity and absorption measurements in water containing air bubbles, J. Acoust. Soc. Amer. 27, 534–539CrossRefGoogle Scholar
Gaunaurd, G. C. and H.Überall, H. 1981 Resonance theory of bubbly liquids, J. Acoust. Soc. Amer. 69, 362–370CrossRefGoogle Scholar
Hsieh, D. Y. and Plesset, M. S. 1961 On the propagation of sound in liquids containing gas bubbles, Phys. Fluids 4, 970–975CrossRefGoogle Scholar
Karplus, H. B. 1961 The velocity of sound in liquids containing gas bubbles, Research and Development/Report ARF-4132-12, Atomic Energy Commission
Karpov, S., Propseretti, A., and Ostrovsky, L. 2003 Nonlinear wave interaction in bubbly layers, J. Acoust. Soc. Amer. 113, 1304–1316CrossRefGoogle Scholar
Kieffer, S. 1977 Sound speed in liquid-gas mixtures: Water-air and water-steam, J. Geophys. Res. 82, 2895–2904CrossRefGoogle Scholar
Miksis, M. J. and Ting, L. 1989 Effects of bubbly layers on wave propagation, J. Acoust. Soc. Amer. 86, 2349–2358CrossRefGoogle Scholar
Nicholas, M., Roy, R. A., Crum, L. A., Oguz, H., and Prosperetti, A. 1994 Sound emission by a laboratory bubble cloud, J. Acoust. Soc. Amer. 95, 3171–3181CrossRefGoogle Scholar
Nigmatulin, R. I., Khabeev, N. S., and Hai, Z. N. 1988 Waves in liquids with vapour bubbles, J. Fluid Mech. 186, 85–117CrossRefGoogle Scholar
Noordzij, L. and Wijngaarden, L.. 1974 Relaxation effects, caused by relative motion, on shock waves in gas-bubble/liquid mixtures, J. Fluid Mech. 66, 115–143CrossRefGoogle Scholar
Sangani, A. S. 1991 A pairwise interaction theory for determining the linear acoustic properties of dilute bubbly liquids, J. Fluid Mech. 232, 221–284CrossRefGoogle Scholar
Silberman, E. 1957 Sound velocity and attenuation in bubbly mixtures measured in standing wave tubes, J. Acoust. Soc. Amer. 29, 925–933CrossRefGoogle Scholar
Temkin, S. 1990 Attenuation and dispersion of sound in bubbly liquids via the Kramers-Kronig relations, J. Fluid Mech. 211, 61–72CrossRefGoogle Scholar
Evans, J. M. and Attenborough, K. 1997 Coupled phase theory for sound propagation in emulsions, J. Acoust. Soc. Amer. 102, 278–282CrossRefGoogle Scholar
Fukumoto, Y. and T. Izuyama, T. 1992 Thermal attenuation and dispersion of sound in a periodic emulsion, Phys. Rev. A 46, 4905–4921CrossRefGoogle Scholar
Hemar, Y., Hocquart, R., and Palierne, J. F. 1998 Frequency-dependent compressibility in emulsions: Probing interfaces using Isakovitch sound absorption, Europhys. Lett. 42, 253–258CrossRefGoogle Scholar
Isakovitch, M. A. 1948 On the propagation of sound in emulsions, Zh. Exper. ⅰ Teor. Fiz. 18, 907–912Google Scholar
McClements, D. J. and Povey, M. J. W. 1989 Scattering of ultrasound by emulsions, J. Phys. D: Appl. Phys. 22, 38–47CrossRefGoogle Scholar
Onuki, A. 1991 Sound propagation in phase-separating fluids, Phys. Rev. A 43, 6740–6755CrossRefGoogle ScholarPubMed
Atkinson, C. M. and Kytömaa, H. K. 1992 Acoustic wave speed and attenuation in suspensions, Int. J. Multiphase Flow 18, 577–592CrossRefGoogle Scholar
Gibson, R. L. and Toksöz, M. N. 1989 Viscous attenuation of acoustic waves in suspensions, J. Acoust. Soc. Amer. 85, 1925–1934CrossRefGoogle Scholar
Harker, A. H. and Temple, J. A. G. 1988 Velocity and attenuation of ultrasound in suspensions of particles in fluids, J. Phys. D 21, 1576–1588CrossRefGoogle Scholar
Hay, A. E. and Mercer, D. G. 1985 On the theory of sound scattering and viscous absorption in aqueous suspensions at medium and short wavelengths, J. Acoust. Soc. Amer. 78, 1761–1771CrossRefGoogle Scholar
Herzfeld, K. F. 1930 Propagation of sound in suspensions, Phil. Mag. 9 (7th Series), 752–768CrossRefGoogle Scholar
Holmes, A. K. and Challis, R. E. 1993 A wide bandwidth study of ultrasound velocity and attenuation in suspensions: Comparison of theory and experimental measurements, J. Colloid. Interface Sci. 156, 261–268CrossRefGoogle Scholar
Holmes, A. K., Challis, R. E., and Wedlock, D. J. 1994 A wide bandwidth ultrasonic study of suspensions: The variation of velocity and attenuation with particle size, J. Colloid. Interface Sci. 168, 339–348CrossRefGoogle Scholar
Urick, R. J. 1947 A sound velocity method for determining the compressibility of finely divided substances, J. Appl. Phys. 18, 983–987CrossRefGoogle Scholar
Urick, R. J. 1948 The absorption of sound of irregular particles, J. Acoust. Soc. Amer. 20, 283–289CrossRefGoogle Scholar
Urick, R. J. and Ament, W. S. 1948 The propagation of sound in composite media, J. Acoust. Soc. Amer. 21, 115–119CrossRefGoogle Scholar
Anilkumar, A. V., Lee, C. P., and Wang, T. G. 1993 Stability of an acoustically levitated and flattened drop: An experimental study, Phys. Fluids 5, 2763–2774CrossRefGoogle Scholar
Ashgriz, N. and Poo, J. Y. 1990 Coalescence and separation in binary collisions of liquid drops, J. Fluid Mech. 221, 183–204CrossRefGoogle Scholar
Beal, S. K. 1972 Turbulent agglomeration of suspensions, J. Aerosol Sci., 3, 113–125CrossRefGoogle Scholar
Blanchard, D. C. 1954 Bursting of bubbles at an air-water interface, Nature 173, 1048CrossRefGoogle Scholar
Bradley, S. G. and Stow, C. D. 1978 Collision between liquid drops, Phil. Trans. R. Soc. Lond. A 287, 635–678CrossRefGoogle Scholar
Brenn, G. and Frohn, A. 1989 Collision and merging of two equal spheres of propanol, Exp. Fluids 7, 441–446CrossRefGoogle Scholar
Crowe, C. T. and Willoughby, P. G. 1966 A mechanism for particle growth in a rocket nozzle, AIAA J. 4, 1677–1678CrossRefGoogle Scholar
Danilov, S. D. and Mirnov, M. A. 1992 Breakup of a droplet in a high-intensity sound field, J. Acoust. Soc. Amer. 92, 2747–2755CrossRefGoogle Scholar
Falkovich, G., Fouxon, A., and Stepanov, M. G. 2002 Acceleration of rain initiation by cloud turbulence, Nature 419, 151–154CrossRefGoogle ScholarPubMed
Gast, L. 1991 Capillary instability of a liquid ring. Ph.D. thesis, Rutgers University
Gelbard, F., Mondy, L. A., and Ohrt, S. E. 1991 A new method for determining hydrodynamic effects on the collision of two spheres, J. Statist. Phys. 62, 945–960, 1991CrossRefGoogle Scholar
Gelbard, F. and Seinfeld, J. 1980 Simulation of multicomponent aerosol dynamics, J. Colloid Interface Sci. 78, 485–501CrossRefGoogle Scholar
Hoffmann, T. L. and Koopmann, G. H. 1997 Visualization of acoustic particle interaction and agglomeration: Theory and experiments, J. Acoust. Soc. Amer. 101, 3421–3429CrossRefGoogle Scholar
Klett, J. D. and Davis, M. H. 1973 Theoretical collision efficiencies of cloud droplets at small Reynolds numbers, J. Atmos. Sci. 30, 107–1172.0.CO;2>CrossRefGoogle Scholar
Marble, F. E. 1964 Mechanism of particle collision in the one-dimensional dynamics of gas-particle mixtures, Phys. Fluids 7, 1270–1282CrossRefGoogle Scholar
Marble, F. E. 1967 Droplet agglomeration in rocket nozzles caused by particle slip and collision, Astronautica Acta, 13, 159–166Google Scholar
Megaridis, C. M. and Dobbins, R. A. 1990 A bimodal integral solution of the dynamic equation for an aerosol undergoing simultaneous particle inception and coagulation, Aerosol Sci. Technol. 12, 240–255CrossRefGoogle Scholar
Mehta, H. 1980 Droplet drag and breakup in shock-wave induced unsteady flows. Ph.D. thesis, Rutgers University
Pinsky, M., Khain, A., and Shapiro, M. 2001 Collision efficiency of drops in a wide range of Reynolds numbers, J. Atmos. Sci. 58, 742–7662.0.CO;2>CrossRefGoogle Scholar
Reichman, J. 1973 A study of the motion, deformation and breakup of accelerating water droplets. Ph.D. thesis, Rutgers University
Reichman, J. M. and Temkin, S. 1974 A study of the deformation and breakup of accelerating water droplets, Proceedings of the International Colloquim on Drops and Bubbles, California Institute of Technololgy, Jet Propul. Lab. 2, 446–464Google Scholar
Saffman, P. G. and Turner, J. S. 1956 On the collision of drops in turbulent clouds, J. Fluid Mech. 1, 16–30, 1956. (Corrigendum, J. Fluid Mech. 196, 599, 1988.)CrossRefGoogle Scholar
Scott, D. S. 1975 A new approach to the acoustic conditioning of industrial aerosol emissions, J. Sound Vib. 43, 607–619CrossRefGoogle Scholar
Shaw, D. T. and Tu, K. W. 1979 Acoustic particle agglomeration due to hydrodynamic interaction between monodisperse aerosols, J. Aerosol Sci. 10, 317–328CrossRefGoogle Scholar
Shuster, K., Fichman, M., Goldshtein, A., and Gutfinger, C. 2002 Agglomeration of submicrometer particle in weak periodic shock waves, Phys. Fluids 14, 1802–1805CrossRefGoogle Scholar
Szumowski, A. P. and Falkowski, K. 1995 Photographic study of the shock-induced dispersion of microscopic gas bubbles, Phys. Fluids 7, 2529–2531CrossRefGoogle Scholar
Telford, J. W., Thorndike, N. S., and Bowen, E. G. 1955 The coalescence of small water drops, Q. J. R. Met. Soc. 81, 241–250CrossRefGoogle Scholar
Temkin, S. 1969 Cloud droplet collision induced by thunder, J. Atmos. Sci. 26, 776Google Scholar
Temkin, S. 1970 Droplet agglomeration induced by weak shock waves, Phys. Fluids 13, 1639–1641CrossRefGoogle Scholar
Temkin, S. 1994 Gasdynamic agglomeration of aerosols. I. Acoustic waves, Phys. Fluids 6, 2294–2303CrossRefGoogle Scholar
Wagner, P. E. and Kerker, M. 1977 Brownian coagulation of aerosols in rarefied gases, J. Chem. Phys. 66, 638–646CrossRefGoogle Scholar
Warren, D. and Seinfeld, J. H. 1985 Simulations of aerosol size distribution evolution in systems with simultaneous nucleation, condensation and coagulation, Aerosol Sci. Technol. 4, 31–43CrossRefGoogle Scholar
Whelpdale, D. M. and List, R. 1971 The coalescence process in raindrop growth, J. Geophys. Res. 76, 2386–2856CrossRefGoogle Scholar
Zhang, X. and Davis, R. H. 1991 The rate of collisions due to Brownian or gravitational motion of small drops, J. Fluid Mech. 230, 479–504CrossRefGoogle Scholar
Allegra, J. R. and Hawley, S. A. 1972 Attenuation of sound in suspensions and emulsions: Theory and experiments, J. Acoust. Soc. Amer. 51, 1545–1564CrossRefGoogle Scholar
Chambre, P. L. 1954 Speed of a plane wave in a gross mixture, J. Acoust. Soc. Amer. 26, 329–331CrossRefGoogle Scholar
Chow, J. C. F. 1964 Attenuation of acoustic waves in dilute emulsions and suspensions, J. Acoust. Soc. Am. 36, 2395–2401CrossRefGoogle Scholar
Epstein, P. S. 1941 On the absorption of sound by suspensions and emulsions, in Contributions to Applied Mechanics, Theodore von Karman Anniversary Volume, California Institute of Technology, pp. 162–188
Epstein, P. S. and Carhart, R. R. 1953 The absorption of sound in suspensions and emulsions, I. Water fog in air, J. Acoust. Soc. Amer. 25, 553–565CrossRefGoogle Scholar
Hay, A. E. and Schaafsama, A. S. 1989 Resonance scattering in suspensions, J. Acoust. Soc. Amer. 85, 1124–1138CrossRefGoogle Scholar
Morfey, C. L. 1968 Sound attenuation by small particles in a fluid, J. Sound Vib. 8, 156–170CrossRefGoogle Scholar
Temkin, S. 1992 Sound speeds in suspensions in thermodynamic equilibrium, Phys. Fluids A 4, 2399–2409CrossRefGoogle Scholar
Temkin, S. 1996 Viscous attenuation of sound in dilute suspensions of rigid particles, J. Acoust. Soc. Amer. 100, 825–831CrossRefGoogle Scholar
Temkin, S. 1998 Sound propagation in dilute suspensions of rigid particles, J. Acoust. Soc. Amer. 103, 838–849CrossRefGoogle Scholar
Temkin, S. 2000 Attenuation and dispersion of sound in dilute suspensions of spherical particles, J. Acoust. Soc. Amer. 108, 126–146CrossRefGoogle ScholarPubMed
Temkin, S. 2002 Erratum: Attenuation and dispersion of sound in dilute suspensions of spherical particles, J. Acoust. Soc. Amer. 111, 1126–1128CrossRefGoogle Scholar
Chu, B. T. 1960 Thermodynamics of a dusty gas and its applications to some aspects of wave propagation in the gas, Brown University, Division of Engineering Report No. DA-4761/1
Cole, J. III and Dobbins, R. A. 1970 Propagation of sound through atmospheric fog, J. Atmos. Sci. 27, 426–4342.0.CO;2>CrossRefGoogle Scholar
Cole, J. E. III and Dobbins, R. A. 1971 Measurements of the attenuation of sound in a warm air fog, J. Atmos. Sci. 28, 202–2092.0.CO;2>CrossRefGoogle Scholar
Davidson, G. A. and Scott, D. S. 1973 Finite-amplitude acoustics of aerosols, J. Acoust. Soc. Amer. 53, 1717–1729CrossRefGoogle Scholar
Davidson, G. A. and Scott, D. S. 1973 Finite-amplitude acoustic phenomena in aerosols from a single governing equation, J. Acoust. Soc. Amer. 54, 1331–1342CrossRefGoogle Scholar
Foner, S. N. and Nall, B. H. 1975 Attenuation of sound by rigid spheres: Measurements of the viscous and thermal components of attenuation and comparison with theory, J. Acoust. Soc. Amer. 57, 59–66CrossRefGoogle Scholar
Gumerov, N. A., Ivanadev, A. I., and Nigmatulin, R. I. 1988 Sound waves in monodisperse gas-particle or vapour droplet mixtures, J. Fluid Mech. 193, 53–74CrossRefGoogle Scholar
Henley, D. C. and Hoidale, G. B. 1973 Attenuation and dispersion of acoustic energy by atmospheric dust, J. Acoust. Soc. Amer. 54, 437–445CrossRefGoogle Scholar
Ishii, R. and Matsuhisa, H. 1983 Steady reflection, absorption and transmission of small disturbances by a screen of dusty gas, J. Fluid Mech. 130, 259–277CrossRefGoogle Scholar
Knudsen, V. O., Wilson, J. V., and Anderson, N. S. 1948 The attenuation of audible sound in fogs and smokes, J. Acoust. Soc. Amer. 20, 849–857CrossRefGoogle Scholar
Marble, F. E. and Wooten, D. C. 1970 Sound attenuation in a condensing vapor, Phys. Fluids. 13, 2657–2664CrossRefGoogle Scholar
Margulies, T. S. and Schwarz, W. H. 1994 A multiphase continuum theory for sound wave propagation through dilute suspensions of particles, J. Acoust. Soc. Amer. 96, 319–331CrossRefGoogle Scholar
Sewell, C. J. T. 1910 On the extinction of sound in a viscous atmosphere by small obstacles of cylindrical and spherical form, Phil. Trans. R. Soc. Lond. A210, 239–270CrossRefGoogle Scholar
Temkin, S. 1993 Particle force and heat transfer in a dusty gas sustaining an acoustic wave, Phys. Fluids 5, 1296–1304CrossRefGoogle Scholar
Temkin, S. and Dobbins, R. A. 1966a Attenuation and dispersion of sound by particulate relaxation processes, J. Acoust. Soc. Amer. 40, 317–324CrossRefGoogle Scholar
Temkin, S. and Dobbins, R. A. 1966b Measurement of the attenuation and dispersion of sound by an aerosol, J. Acoust. Soc. Amer. 40, 1016–1024CrossRefGoogle Scholar
Zink, J. W. and Delsasso, L. P. 1958 Attenuation and dispersion of sound by solid particles suspended in a gas, J. Acoust. Soc. Amer. 30, 765–771CrossRefGoogle Scholar
Batchelor, G. K. 1967 Compression waves in a suspension of gas bubbles in liquid, Fluid Dynamics Transactions4, 425–445. Institute of Fundamental Technical Research, Polish Academy of Science, Warsaw
Caflisch, R. E., Miksis, M. J., Papanicolaou, G. C., and Ting, L. 1985 Wave propagation in liquids at finite volume fraction, J. Fluid Mech. 160, 1–14CrossRefGoogle Scholar
Carstensen, E. L. and Foldy, L. L. 1947 Propagation of sound through a liquid containing bubbles, J. Acoust. Soc. Amer. 19, 481–501CrossRefGoogle Scholar
Cheyne, S. A., Stebbings, C. T., and Roy, R. A. 1995 Phase velocity measurements in bubbly liquids using a fiber optic laser interferometer, J. Acoust. Soc. Amer. 97, 1621–1624CrossRefGoogle Scholar
Commander, K. W. and Prosperetti, A.1989 Linear pressure waves in bubbly liquids: Comparison between theory and experiments, J. Acoust. Soc. Amer. 85, 732–746CrossRefGoogle Scholar
Crespo, A. 1969 Sound and shock waves in liquids containing bubbles, Phys. Fluids 12, 2274–2282CrossRefGoogle Scholar
Drumheller, D. S., Kipp, M. E., and Bedford, A. 1982 Transient wave propagation in bubbly liquids, J. Fluid Mech. 119, 347–365CrossRefGoogle Scholar
Eller, A. I. 1970 Damping constants of pulsating bubbles, J. Acoust. Soc. Amer. 47, 1469–1470CrossRefGoogle Scholar
Floyd, E. R. 1981 Thermodynamic corrections to the velocity of propagation in a bubbly medium, J. Acoust. Soc. Amer. 70, 1748–1751CrossRefGoogle Scholar
Fox, F. E., Curley, S. R., and Larson, G. S. 1955 Phase velocity and absorption measurements in water containing air bubbles, J. Acoust. Soc. Amer. 27, 534–539CrossRefGoogle Scholar
Gaunaurd, G. C. and H.Überall, H. 1981 Resonance theory of bubbly liquids, J. Acoust. Soc. Amer. 69, 362–370CrossRefGoogle Scholar
Hsieh, D. Y. and Plesset, M. S. 1961 On the propagation of sound in liquids containing gas bubbles, Phys. Fluids 4, 970–975CrossRefGoogle Scholar
Karplus, H. B. 1961 The velocity of sound in liquids containing gas bubbles, Research and Development/Report ARF-4132-12, Atomic Energy Commission
Karpov, S., Propseretti, A., and Ostrovsky, L. 2003 Nonlinear wave interaction in bubbly layers, J. Acoust. Soc. Amer. 113, 1304–1316CrossRefGoogle Scholar
Kieffer, S. 1977 Sound speed in liquid-gas mixtures: Water-air and water-steam, J. Geophys. Res. 82, 2895–2904CrossRefGoogle Scholar
Miksis, M. J. and Ting, L. 1989 Effects of bubbly layers on wave propagation, J. Acoust. Soc. Amer. 86, 2349–2358CrossRefGoogle Scholar
Nicholas, M., Roy, R. A., Crum, L. A., Oguz, H., and Prosperetti, A. 1994 Sound emission by a laboratory bubble cloud, J. Acoust. Soc. Amer. 95, 3171–3181CrossRefGoogle Scholar
Nigmatulin, R. I., Khabeev, N. S., and Hai, Z. N. 1988 Waves in liquids with vapour bubbles, J. Fluid Mech. 186, 85–117CrossRefGoogle Scholar
Noordzij, L. and Wijngaarden, L.. 1974 Relaxation effects, caused by relative motion, on shock waves in gas-bubble/liquid mixtures, J. Fluid Mech. 66, 115–143CrossRefGoogle Scholar
Sangani, A. S. 1991 A pairwise interaction theory for determining the linear acoustic properties of dilute bubbly liquids, J. Fluid Mech. 232, 221–284CrossRefGoogle Scholar
Silberman, E. 1957 Sound velocity and attenuation in bubbly mixtures measured in standing wave tubes, J. Acoust. Soc. Amer. 29, 925–933CrossRefGoogle Scholar
Temkin, S. 1990 Attenuation and dispersion of sound in bubbly liquids via the Kramers-Kronig relations, J. Fluid Mech. 211, 61–72CrossRefGoogle Scholar
Evans, J. M. and Attenborough, K. 1997 Coupled phase theory for sound propagation in emulsions, J. Acoust. Soc. Amer. 102, 278–282CrossRefGoogle Scholar
Fukumoto, Y. and T. Izuyama, T. 1992 Thermal attenuation and dispersion of sound in a periodic emulsion, Phys. Rev. A 46, 4905–4921CrossRefGoogle Scholar
Hemar, Y., Hocquart, R., and Palierne, J. F. 1998 Frequency-dependent compressibility in emulsions: Probing interfaces using Isakovitch sound absorption, Europhys. Lett. 42, 253–258CrossRefGoogle Scholar
Isakovitch, M. A. 1948 On the propagation of sound in emulsions, Zh. Exper. ⅰ Teor. Fiz. 18, 907–912Google Scholar
McClements, D. J. and Povey, M. J. W. 1989 Scattering of ultrasound by emulsions, J. Phys. D: Appl. Phys. 22, 38–47CrossRefGoogle Scholar
Onuki, A. 1991 Sound propagation in phase-separating fluids, Phys. Rev. A 43, 6740–6755CrossRefGoogle ScholarPubMed
Atkinson, C. M. and Kytömaa, H. K. 1992 Acoustic wave speed and attenuation in suspensions, Int. J. Multiphase Flow 18, 577–592CrossRefGoogle Scholar
Gibson, R. L. and Toksöz, M. N. 1989 Viscous attenuation of acoustic waves in suspensions, J. Acoust. Soc. Amer. 85, 1925–1934CrossRefGoogle Scholar
Harker, A. H. and Temple, J. A. G. 1988 Velocity and attenuation of ultrasound in suspensions of particles in fluids, J. Phys. D 21, 1576–1588CrossRefGoogle Scholar
Hay, A. E. and Mercer, D. G. 1985 On the theory of sound scattering and viscous absorption in aqueous suspensions at medium and short wavelengths, J. Acoust. Soc. Amer. 78, 1761–1771CrossRefGoogle Scholar
Herzfeld, K. F. 1930 Propagation of sound in suspensions, Phil. Mag. 9 (7th Series), 752–768CrossRefGoogle Scholar
Holmes, A. K. and Challis, R. E. 1993 A wide bandwidth study of ultrasound velocity and attenuation in suspensions: Comparison of theory and experimental measurements, J. Colloid. Interface Sci. 156, 261–268CrossRefGoogle Scholar
Holmes, A. K., Challis, R. E., and Wedlock, D. J. 1994 A wide bandwidth ultrasonic study of suspensions: The variation of velocity and attenuation with particle size, J. Colloid. Interface Sci. 168, 339–348CrossRefGoogle Scholar
Urick, R. J. 1947 A sound velocity method for determining the compressibility of finely divided substances, J. Appl. Phys. 18, 983–987CrossRefGoogle Scholar
Urick, R. J. 1948 The absorption of sound of irregular particles, J. Acoust. Soc. Amer. 20, 283–289CrossRefGoogle Scholar
Urick, R. J. and Ament, W. S. 1948 The propagation of sound in composite media, J. Acoust. Soc. Amer. 21, 115–119CrossRefGoogle Scholar
Anilkumar, A. V., Lee, C. P., and Wang, T. G. 1993 Stability of an acoustically levitated and flattened drop: An experimental study, Phys. Fluids 5, 2763–2774CrossRefGoogle Scholar
Ashgriz, N. and Poo, J. Y. 1990 Coalescence and separation in binary collisions of liquid drops, J. Fluid Mech. 221, 183–204CrossRefGoogle Scholar
Beal, S. K. 1972 Turbulent agglomeration of suspensions, J. Aerosol Sci., 3, 113–125CrossRefGoogle Scholar
Blanchard, D. C. 1954 Bursting of bubbles at an air-water interface, Nature 173, 1048CrossRefGoogle Scholar
Bradley, S. G. and Stow, C. D. 1978 Collision between liquid drops, Phil. Trans. R. Soc. Lond. A 287, 635–678CrossRefGoogle Scholar
Brenn, G. and Frohn, A. 1989 Collision and merging of two equal spheres of propanol, Exp. Fluids 7, 441–446CrossRefGoogle Scholar
Crowe, C. T. and Willoughby, P. G. 1966 A mechanism for particle growth in a rocket nozzle, AIAA J. 4, 1677–1678CrossRefGoogle Scholar
Danilov, S. D. and Mirnov, M. A. 1992 Breakup of a droplet in a high-intensity sound field, J. Acoust. Soc. Amer. 92, 2747–2755CrossRefGoogle Scholar
Falkovich, G., Fouxon, A., and Stepanov, M. G. 2002 Acceleration of rain initiation by cloud turbulence, Nature 419, 151–154CrossRefGoogle ScholarPubMed
Gast, L. 1991 Capillary instability of a liquid ring. Ph.D. thesis, Rutgers University
Gelbard, F., Mondy, L. A., and Ohrt, S. E. 1991 A new method for determining hydrodynamic effects on the collision of two spheres, J. Statist. Phys. 62, 945–960, 1991CrossRefGoogle Scholar
Gelbard, F. and Seinfeld, J. 1980 Simulation of multicomponent aerosol dynamics, J. Colloid Interface Sci. 78, 485–501CrossRefGoogle Scholar
Hoffmann, T. L. and Koopmann, G. H. 1997 Visualization of acoustic particle interaction and agglomeration: Theory and experiments, J. Acoust. Soc. Amer. 101, 3421–3429CrossRefGoogle Scholar
Klett, J. D. and Davis, M. H. 1973 Theoretical collision efficiencies of cloud droplets at small Reynolds numbers, J. Atmos. Sci. 30, 107–1172.0.CO;2>CrossRefGoogle Scholar
Marble, F. E. 1964 Mechanism of particle collision in the one-dimensional dynamics of gas-particle mixtures, Phys. Fluids 7, 1270–1282CrossRefGoogle Scholar
Marble, F. E. 1967 Droplet agglomeration in rocket nozzles caused by particle slip and collision, Astronautica Acta, 13, 159–166Google Scholar
Megaridis, C. M. and Dobbins, R. A. 1990 A bimodal integral solution of the dynamic equation for an aerosol undergoing simultaneous particle inception and coagulation, Aerosol Sci. Technol. 12, 240–255CrossRefGoogle Scholar
Mehta, H. 1980 Droplet drag and breakup in shock-wave induced unsteady flows. Ph.D. thesis, Rutgers University
Pinsky, M., Khain, A., and Shapiro, M. 2001 Collision efficiency of drops in a wide range of Reynolds numbers, J. Atmos. Sci. 58, 742–7662.0.CO;2>CrossRefGoogle Scholar
Reichman, J. 1973 A study of the motion, deformation and breakup of accelerating water droplets. Ph.D. thesis, Rutgers University
Reichman, J. M. and Temkin, S. 1974 A study of the deformation and breakup of accelerating water droplets, Proceedings of the International Colloquim on Drops and Bubbles, California Institute of Technololgy, Jet Propul. Lab. 2, 446–464Google Scholar
Saffman, P. G. and Turner, J. S. 1956 On the collision of drops in turbulent clouds, J. Fluid Mech. 1, 16–30, 1956. (Corrigendum, J. Fluid Mech. 196, 599, 1988.)CrossRefGoogle Scholar
Scott, D. S. 1975 A new approach to the acoustic conditioning of industrial aerosol emissions, J. Sound Vib. 43, 607–619CrossRefGoogle Scholar
Shaw, D. T. and Tu, K. W. 1979 Acoustic particle agglomeration due to hydrodynamic interaction between monodisperse aerosols, J. Aerosol Sci. 10, 317–328CrossRefGoogle Scholar
Shuster, K., Fichman, M., Goldshtein, A., and Gutfinger, C. 2002 Agglomeration of submicrometer particle in weak periodic shock waves, Phys. Fluids 14, 1802–1805CrossRefGoogle Scholar
Szumowski, A. P. and Falkowski, K. 1995 Photographic study of the shock-induced dispersion of microscopic gas bubbles, Phys. Fluids 7, 2529–2531CrossRefGoogle Scholar
Telford, J. W., Thorndike, N. S., and Bowen, E. G. 1955 The coalescence of small water drops, Q. J. R. Met. Soc. 81, 241–250CrossRefGoogle Scholar
Temkin, S. 1969 Cloud droplet collision induced by thunder, J. Atmos. Sci. 26, 776Google Scholar
Temkin, S. 1970 Droplet agglomeration induced by weak shock waves, Phys. Fluids 13, 1639–1641CrossRefGoogle Scholar
Temkin, S. 1994 Gasdynamic agglomeration of aerosols. I. Acoustic waves, Phys. Fluids 6, 2294–2303CrossRefGoogle Scholar
Wagner, P. E. and Kerker, M. 1977 Brownian coagulation of aerosols in rarefied gases, J. Chem. Phys. 66, 638–646CrossRefGoogle Scholar
Warren, D. and Seinfeld, J. H. 1985 Simulations of aerosol size distribution evolution in systems with simultaneous nucleation, condensation and coagulation, Aerosol Sci. Technol. 4, 31–43CrossRefGoogle Scholar
Whelpdale, D. M. and List, R. 1971 The coalescence process in raindrop growth, J. Geophys. Res. 76, 2386–2856CrossRefGoogle Scholar
Zhang, X. and Davis, R. H. 1991 The rate of collisions due to Brownian or gravitational motion of small drops, J. Fluid Mech. 230, 479–504CrossRefGoogle Scholar
Adam, J. R., Cataneo, R., and Semonin, R. G. 1971 The production of equal and unequal size droplet pairs, Rev. Sci. Instr. 42, 1847–1849CrossRefGoogle Scholar
Atchley, A. and Prosperetti, A. 1989 The crevice model of bubble nucleation, J. Acoust. Soc. Amer. 86, 1065–1084CrossRefGoogle Scholar
Bassett, J. D. and Bright, A. W. 1976 Observations concerning the mechanism of atomization in an ultrasonic fountain, J. Aerosol Sci. 7, 47–51CrossRefGoogle Scholar
Brenn, G. and Lackermeier, U. 1997 Drop formation from a vibrating orifice generator driven by modulated electrical signals, Phys. Fluids 9, 3658–3669CrossRefGoogle Scholar
Chaudhary, K. C. and Maxworthy, T. 1980 The nonlinear instability of a liquid jet. Part 3. Experiments on satellite drop formation and control, J. Fluid Mech. 96, 287–297CrossRefGoogle Scholar
Clark, C. J. and Dombrowski, N. 1971 On the formation of drops from the rims of fan spray sheets, J. Aerosol Sci. 3, 173–183CrossRefGoogle Scholar
Deane, G. B. and Stokes, M. D. 2002 Scale dependence of bubble creation mechanisms in breaking waves, Nature 418, 839–844CrossRefGoogle ScholarPubMed
Dijksman, J. F. 1984 Hydrodynamics of small tubular pumps, J. Fluid Mech. 139, 173–191CrossRefGoogle Scholar
Dombrowski, N. and Neale, N. D. 1974 Formation of streams of uniform drops from fan spray pressure nozzles, J. Aerosol Sci. 5, 551–555CrossRefGoogle Scholar
Donnelly, R. J. and Glaberson, W. 1966 Experiments on the capillary instability of a liquid jet, Proc. R. Soc. A 290, 547–556CrossRefGoogle Scholar
Hibling, J. H. and Heister, S. D. 1996 Droplet size control in liquid jet breakup, Phys. Fluids 8, 1574–1581Google Scholar
Longuet-Higgins, M. S., Kerman, B. R., and Lunde, K. 1991 The release of air bubbles from an underwater nozzle, J. Fluid Mech. 230, 365–390CrossRefGoogle Scholar
Orme, M. 1991 On the genesis of droplet microspeed dispersions, Phys. Fluids A 3, 2936–2947CrossRefGoogle Scholar
Pandit, A. B. and Davidson, A. B. 1990 Hydrodynamics of the rupture of thin liquid films, J. Fluid Mech. 212, 11–24CrossRefGoogle Scholar
Philipson, K. 1973 On the production of monodisperse particles with a spinning disc, Aerosol Sci. 4, 51–57CrossRefGoogle Scholar
Thorpe, S. A. 1987 Internal waves and whitecaps, Nature 330 740–742CrossRefGoogle Scholar
Thorpe, S. A. and Humphries, P. N. 1980 Bubbles and breaking waves, Nature 283, 463–465CrossRefGoogle Scholar
Topp, M. N. 1973 Ultrasonic atomization – A photographic study of the mechanism of disintegration, Aerosol Sci. 4, 17–25CrossRefGoogle Scholar
Barber, B. P. and Putterman, S. J. 1991 Observation of synchronous picosecond sonoluminescence, Nature 352, 318–320CrossRefGoogle Scholar
Crum, L. A. 1994 Sonoluminescence, sonochemistry, and sonophysics, J. Acoust. Soc. Amer. 95, 559–562CrossRefGoogle Scholar
Didenko, Y. T., McNamara, W. B. III, and Suslik, K. S. 2000 Molecular emission from single-bubble sonoluminescence, Nature 407, 877–879Google ScholarPubMed
Didenko, Y. T. and Suslik, K. S. 2002 The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation, Nature 418, 394–397CrossRefGoogle ScholarPubMed
Flynn, H. G. 1975 Cavitation dynamics. I. A mathematical formulation, J. Acoust. Soc. Amer. 57, 1379–1396CrossRefGoogle Scholar
Flynn, H. G. 1975 Cavitation dynamics. II. Free pulsations and models for cavitation bubbles, J. Acoust. Soc. Amer. 58, 1160–1170CrossRefGoogle Scholar
Flynn, H. G. and Church, C. C. 1988 Transient pulsations of small gas bubbles in water, J. Acoust. Soc. Amer. 84, 985–998. [Erratum, J. Acoust. Soc. Amer. 84, 1863–1876.]CrossRefGoogle ScholarPubMed
Löfstedt, R., Barber, B. P., and Putterman, S. J. 1991 Toward a hydrodynamic theory of sonoluminescence, Phys. Fluids A 5, 2911–2927CrossRefGoogle Scholar
Neppiras, E. A. 1980 Acoustic cavitation, Phys. Rep. (Review Section of Physics Letters) 61, 159–251CrossRefGoogle Scholar
Prosperetti, A. 1986 Physics of acoustic cavitation in Frontiers of Physical Acoustics, Sette, D., Ed., North-Holland, pp. 145–188Google Scholar
Putterman, S. J. 1995 Sonoluminescence: Sound into light. Sci. Amer., 272, 46–51CrossRefGoogle Scholar
Suslick, K. S. 1989 The chemical effects of ultrasound, Sci. Amer., 260, 80–86CrossRefGoogle Scholar
Dukowicz, J. K. 1984 Drag of evaporating or condensing droplets in low Reynolds number flow, Phys. Fluids 27, 1351–1358CrossRefGoogle Scholar
Goosens, H. W. J., Cleijne, J. W., Smolders, H. J., and Dongen, M. E. 1988 Shock wave induced evaporation of water droplets in a gas-droplet mixture, Exp. Fluids 6, 561–568CrossRefGoogle Scholar
Hill, P. E. 1966 Condensation of water vapour during supersonic expansion in nozzles, J. Fluid Mech. 25, 593–620CrossRefGoogle Scholar
Marble, F. E. 1969 Some gasdynamics problems in the flow of condensing vapors, Astronaut. Acta 14, 585–614Google Scholar
Marston, P. L. 1979 Evaporation-condensation resonance frequency of oscillating vapor bubbles, J. Acoust. Soc. Amer. 66, 1516–1521CrossRefGoogle Scholar
Mouzurkewich, M. 1986 Aerosol growth and the condensation coefficient for water: A review, Aerosol Sci. Technol. 5, 223–236CrossRefGoogle Scholar
Okuyama, M. and Zung, J. T. 1967 Evaporation-condensation coefficient for small droplets, J. Chem. Phys. 46, 1580–1585CrossRefGoogle Scholar
Frankiel, N. A. and Acrivos, A. 1968 Heat and mass transfer from small spheres and cylinders freely suspended in shear flow, Phys. Fluids 11, 1913–1918CrossRefGoogle Scholar
Michaelides, E. E. and Feng, Z. 1994 Heat transfer from a rigid sphere in a nonuniform flow and temperature field, Int. J. Heat Mass Transfer 37, 2069–2076CrossRefGoogle Scholar
Parks, J. M., Ablow, C. M., and Wise, H. 1966 Temperature distribution within a particle during evaporation, AIAA J. 4, 1032–1035Google Scholar
Borman, S. and Curtius, J. 2002 Lasing on a cloudy afternoon, Nature 418, 826–827CrossRefGoogle Scholar
Ching, B., Golay, M. W., and Johnson, T. J. 1984 Droplet impacts upon liquid surfaces, Science 226, 535–537CrossRefGoogle Scholar
Diebold, G. J. and Westervelt, P. J. 1988 The photoacoustic effect generated by a spherical droplet in a fluid, J. Acoust. Soc. Amer. 84, 2245–2251CrossRefGoogle Scholar
Dreyfuss, D. and Temkin, S. 1983 Charge separation during rupture of small water drops in transient flows: Shock tube measurements and application to lightning, J. Geophys. Res. 88, 10,993–10,998CrossRefGoogle Scholar
Franz, G. J. 1959 Splashes as sources of sound, J. Acoust. Soc. Amer. 31, 1080–1096CrossRefGoogle Scholar
Greenspan, M. 1956 Propagation of sound in five monatomic gases, J. Acoust. Soc. Amer. 28, 644–648CrossRefGoogle Scholar
Likhterov, L. 1998 High-frequency acoustic noise emitted by initial impact of solid sphere falling onto a liquid surface, Phys. Fluids 10, 321–323CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1990 An analytical model of sound production by raindrops, J. Fluid Mech. 214, 395–410CrossRefGoogle Scholar
O'Brien, R. W. 1988 Electro-acoustic effects in a dilute suspension of spherical particles, J. Fluid Mech. 190, 71–86CrossRefGoogle Scholar
Penner, S. S. and Li, T. 1967 Thermodynamic considerations of droplets and bubbles, AIAA J. 5, 1528–1529Google Scholar
Pumphrey, H. C., Crum, L., and Bjø⊘rnø, L. 1989 Underwater sound produced by individual drop impacts and rainfall, J. Acoust. Soc. Amer. 85, 1518–1526CrossRefGoogle Scholar
Richard, D., Clanet, C., and Quére, D. 2002 Contact time of a bouncing drop, Nature 417, 811CrossRefGoogle ScholarPubMed
Roy, R., Davidson, J. F., and Tuponogov, V. G. 1990 The velocity of sound in fluidized beds, Chem. Eng. Sci. 45, 3233–3245CrossRefGoogle Scholar
Shafer, N. E. and Zare, R. N. 1991 Through a beer glass darkly, Phys. Today 44, 48–52CrossRefGoogle Scholar
Shirley, B. M., Sheldon, J. W., and Kranc, S. C. 1972 Particle charging behind shock waves in suspensions, AIAA J. 10, 1110–1111Google Scholar
Biesheuvel, A. and Wijngaarden, L. 1984 Two-phase equations for a dilute dispersion of gas bubbles in a liquid, J. Fluid Mech. 148, 301–318CrossRefGoogle Scholar
Bilicki, Z. and Kestin, J. 1990 Physical aspects of the relaxation model in two-phase flows, Proc. R. Soc. Lond. A 428, 379–397CrossRefGoogle Scholar
Caflisch, R. E., Miksis, M. J., Papanicolaou, G. C., and Ting, L. 1985 Effective equations for wave propagation in bubbly liquids, J. Fluid Mech. 153, 259–273CrossRefGoogle Scholar
Drumheller, D. S. and Bedford, A. 1979 A theory of bubbly liquids, J. Acoust. Soc. Amer. 66, 197–208CrossRefGoogle Scholar
Drumheller, D. S. and Bedford, A. 1980 A theory of liquids with vapor bubbles, J. Acoust. Soc. Amer. 67, 186–200CrossRefGoogle Scholar
Kraiko, A. N. and Sternin, L. E. 1965 Theory of flows of a two velocity continuous medium containing solid or liquid particles, Prikladnaia Matematika ⅰ Mekhanica 29, 418–429Google Scholar
Marble, F. E. 1963 Dynamics of a gas containing small solid particles, in Proceedings of the 5th AGARD Colloquim on Combustion and Propulsion, Braunschweig, Pergamon, pp. 175–215
Miksis, M. J. and Ting, L. 1992 Effective equations of multiphase flows – Waves in a bubbly liquid, Adv. Appl. Mech. 28, 141–261CrossRefGoogle Scholar
Nigmatulin, R. I. 1982 Mathematical modeling of bubbly liquid motion and hydrodynamical effects in wave propagation phenomenon, Appl. Sci. Res. 38, 267–289CrossRefGoogle Scholar
O'Brien, R. W. 1990 The electroacoustic equations for a colloidal suspension, J. Fluid Mech. 212, 81–93CrossRefGoogle Scholar
Panton, R. 1968 Flow properties for the continuum viewpoint of a non-equilibrium gas-particle mixture, J. Fluid Mech. 31, 273–303CrossRefGoogle Scholar
Wijngaarden, L.. 1968 On the equations of motion for mixtures of liquid and gas bubbles, J. Fluid Mech. 33, 465–474CrossRefGoogle Scholar
Wijngaarden, L. van. 1976 Some problems in the formulation of the equations for gas/liquid flows, in Theoretical and Applied Mechanics, Proceedings of the 14th IUTAM Congress, Delft, The Netherlands, Koiter, W. T., Ed., North-Holland., pp. 249–260
Yurkovetsky, Y. and Brady, J. F. 1996 Statistical mechanics of bubbly liquids, Phys. Fluids 8, 881–895CrossRefGoogle Scholar
Zhang, D. Z. and Prosperetti, A. 1994 Ensemble phase-averaged equations for bubbly flows, Phys. Fluids 6, 2956–2970CrossRefGoogle Scholar
Chang, E. R. and Martin, M. R. 1994 Unsteady flow about a sphere at low to moderate Reynolds number. Part 1. Oscillatory motion, J. Fluid Mech. 277, 347–379CrossRefGoogle Scholar
Crowe, C. T. 1982 Numerical models for dilute gas-particle flows, J. Fluids Eng. 104, 297–303CrossRefGoogle Scholar
Ishii, R., Umeda, Y., and Yuhi, M. 1989 Numerical analysis of gas-particle two-phase flows, J. Fluid Mech. 203, 475–515CrossRefGoogle Scholar
Kamath, V. and Prosperetti, A. 1989 Numerical integration methods in gas-bubble dynamics, J. Acoust. Soc. Amer. 85, 1538–1548CrossRefGoogle Scholar
Batchelor, G. K. and Green, J. T. 1972 The hydrodynamic interaction of two small freely-moving spheres in a linear flow field, J. Fluid Mech. 56, 375–400CrossRefGoogle Scholar
Brady, J. F., Phillips, R. J., Lester, J.C, and Bossis, G. 1988 Dynamic simulation of hydrodynamically interacting suspensions, J. Fluid Mech. 195, 257–280CrossRefGoogle Scholar
Ecker, G. 1985 Interactions of droplet pairs in weak shock-wave induced unsteady flows. Ph.D. thesis, Rutgers University
Goren, S. 1983 Resistance and stability of a line of particles moving near a wall, J. Fluid Mech. 132, 185–196CrossRefGoogle Scholar
Haber, S. G., Hetsroni, G., and Solan, A. 1973 On the low Reynolds number motion of two droplets, Int. J. Multiphase Flow 1, 57–71CrossRefGoogle Scholar
Kaneda, Y. and Ishii, K. 1982 The hydrodynamic interaction of two spheres moving in an unbounded fluid at small but finite Reynolds number, J. Fluid Mech. 124, 209–217CrossRefGoogle Scholar
Mazur, P. and Saarloos, W.. 1982 Many-sphere interactions and mobilities in a suspension, Phys. A 115, 21–57CrossRefGoogle Scholar
Mazur, P. and Saarloos, W.. 1983 Many-sphere hydrodynamic interactions. II. Mobilities at finite frequency, Phys. A 120 77–102Google Scholar
Steinberger, E. H., Pruppacher, H. R., and Neiburger, M. 1968 On the hydrodynamics of pairs of spheres falling along their line of centers in a viscous medium, J. Fluid Mech. 34, 809–819CrossRefGoogle Scholar
Stimson, M. and Jeffrey, G. B. 1926 The motion of two spheres in a viscous fluid, Proc. R. Soc. Lond. A 111, 110–116CrossRefGoogle Scholar
Tam, C. K. W. 1969 The drag on a cloud of spherical particles in low Reynolds number flow, J. Fluid Mech. 38, 537–546CrossRefGoogle Scholar
Temkin, S. and G.Ecker, G. Z. 1989 Droplet interactions in a shock-wave flow field, J. Fluid Mech. 202, 467–497CrossRefGoogle Scholar
Wijngaarden, L.. 1976 Hydrodynamic interaction between gas bubbles in liquid (with an appendix by D. J. Jeffrey), J. Fluid Mech. 77, 27–44, 1976CrossRefGoogle Scholar
Auzerais, F. M., Jackson, R., Russel, W. B., and Murphy, W. F. 1990 The transient settling of stable and flocculated dispersions, J. Fluid Mech. 221, 613–639CrossRefGoogle Scholar
Batchelor, G. K. 1972 Sedimentation in a dilute dispersion of spheres, J. Fluid Mech. 52, 245–268CrossRefGoogle Scholar
Brady, J. F. and Durlofsky, L. J. 1988 The sedimentation rate of disordered suspensions, Phys. Fluids 31, 717–727CrossRefGoogle Scholar
Haber, S. and Hetsroni, G. 1981 Sedimentation in a dilute dispersion of small drops of various sizes, J. Colloid Interface Sci. 79, 56–75CrossRefGoogle Scholar
Hanratty, T. J. and Bandukwala, A. 1957 Fluidization and sedimentation of spherical particles, AICh E J. 3, 293–296CrossRefGoogle Scholar
Alexeev, A. and Gutfinger, C. 2003 Particle drift in a resonance tube – A numerical study, J. Acoust. Soc. Amer. 114, 1357–1365CrossRefGoogle Scholar
Boyadzhiev, L. 1973 On the movement of a spherical particle in a vertically oscillating liquid, J. Fluid Mech. 57, 545–548CrossRefGoogle Scholar
Burrows, F. M. 1983 Calculation of the primary trajectories of seeds and other particles in strong winds, Proc. R. Soc. Lond. A 389, 15–66CrossRefGoogle Scholar
Chester, W. and Breach, D. R. (with an appendix by I. Proudman) 1969 On the flow past a sphere at low Reynolds number. J. Fluid Mech. 37, 751–760CrossRefGoogle Scholar
Corrsin, S. and Lumley, J. 1956 On the equation of motion for a particle in turbulent fluid, Appl. Sci. Res. Sec. A, 6, 114–116CrossRefGoogle Scholar
Danilov, S. D. and Mirnov, M. A. 2000 Mean force on a small sphere in a sound field in a viscous fluid, J. Acoust. Soc. Amer. 107, 143–153CrossRefGoogle Scholar
Galindo, V. and Gerbeth, G. 1993 A note on the force on an accelerating spherical drop at low Reynolds number, Phys. Fluids A 5, 3290–3292CrossRefGoogle Scholar
Goldstein, S. 1929 The steady flow of viscous fluid past a fixed spherical obstacle at small Reynolds numbers, Proc. R. Soc. A 123, 216–235CrossRefGoogle Scholar
Gucker, F. T. and Doyle, G. J. 1956 The amplitude of aerosol droplets in a sonic field, J. Phys. Chem. 60, 989–996, 1956CrossRefGoogle Scholar
Hoenig, S. A. 1957 Acceleration of dust particles by shock waves, J. Appl. Phys. 28, 1218–1219CrossRefGoogle Scholar
Ingebo, R. D. 1956 Drag coefficients for droplets and solid spheres in clouds accelerating in air streams, NACA Technical Note TN 3762
Ishii, R. 1984 Motion of small particles in a gas flow, Phys. Fluids 27, 33–41CrossRefGoogle Scholar
Kang, I. S. and Leal, L. G. 1988 The drag coefficient for a spherical bubble in a uniform streaming flow, Phys. Fluids 31, 233–241CrossRefGoogle Scholar
Kanwal, R. P. 1964 Drag on an axially symmetric body vibrating slowly along its axis in a viscous fluid, J. Fluid Mech. 19, 631–636CrossRefGoogle Scholar
Karanfilian, S. K. and Kotas, T. J. 1978 Drag on a sphere in unsteady motion in a liquid at rest, J. Fluid Mech. 87, 85–96CrossRefGoogle Scholar
Kim, S. S. 1977 An experimental study of droplet reponse to weak shock waves. Ph.D. thesis, Rutgers University
Legendre, D. and Magnaudet, J. 1997 A note on the lift force on a spherical bubble or drop in a low Reynolds number shear flow, Phys. Fluids 9, 3572–3574CrossRefGoogle Scholar
Liu, D. Y., Anders, K., and Frohn, A. 1988 Drag coefficients of single droplets moving in an infinite droplet chain on the axis of a tube, Int. J. Multiphase Flow 14, 217–232CrossRefGoogle Scholar
Lovalenti, P. M. and Brady, J. 1993 The force on a bubble, drop, or particle in arbitrary time-dependent motion at small Reynolds number, Phys. Fluids A 5, 2104–2116CrossRefGoogle Scholar
Magnaudet, J., Rivero, M., and Fabre, J. 1995 Accelerated flows past a rigid sphere of a spherical bubble. Part 1. Steady straining flow, J. Fluid Mech. 284, 97–135CrossRefGoogle Scholar
Maxey, M. R. and Riley, J. J. 1983 Equations of motion for a small rigid sphere in nonuniform flow, Phys. Fluids 26, 883–889CrossRefGoogle Scholar
Maxworthy, T. 1965 Accurate measurements of sphere drag at low Reynolds numbers, J. Fluid Mech. 23, 369–372CrossRefGoogle Scholar
Mei, R., Klausner, J. F., and Lawrence, C. J. 1994 A note on the history force on spherical bubble at finite Reynolds number, Phys. Fluids 6, 418–420CrossRefGoogle Scholar
Mei, R., Lawrence, C. J., and Adrian, R. J. 1991 Unsteady drag on a sphere at finite Reynolds number with small fluctuations in the free-stream velocity, J. Fluid Mech. 233, 613–631CrossRefGoogle Scholar
Morsi, S. A. and Alexander, A. J. 1972 An investigation of particle trajectories in two-phase flow systems, J. Fluid Mech. 55, 193–208CrossRefGoogle Scholar
Ockendon, J. R. 1968 The unsteady motion of a small sphere in a viscous fluid, J. Fluid Mech. 34, 229–239CrossRefGoogle Scholar
Odar, F. 1966 Verification of the proposed equation for calculation of the forces on a sphere accelerating in a viscous fluid, J. Fluid Mech. 25, 591–592CrossRefGoogle Scholar
Odar, F. and Hamilton, W. S. 1964 Forces on a sphere accelerating in a viscous fluid, J. Fluid Mech. 18, 302–314CrossRefGoogle Scholar
Ogden, T. L. and Jayaweera, K. O. L. F. 1971 Drag coefficients of water droplets decelerating in air, Q. R. Met. Soc. 97, 571–574CrossRefGoogle Scholar
Pearcey, T. and Hill, G. W. 1956 The accelerated motion of droplets and bubbles, Austr. J. Phys. 9, 19–30Google Scholar
Proudman, I. and Pearson, R. R. A. 1957 Expansions at small Reynolds numbers for the flow past a sphere and circular cylinder, J. Fluid Mech. 2, 237–262CrossRefGoogle Scholar
Rallison, J. M.Note on the Faxen relations for a particle in Stokes flow, J. Fluid Mech. 88, 529–533, 1978CrossRefGoogle Scholar
Rudinger, G. 1974 Penetration of particles into a constant cross flow, AIAA J. 12, 1138–1140CrossRefGoogle Scholar
Sano, T. 1981 Unsteady flow past a sphere at low Reynolds number, J. Fluid Mech. 112, 433–441CrossRefGoogle Scholar
Selberg, B. P. and Nicholls, J. A. 1968 Drag coefficient of small spehrical particles, AIAA J. 6, 401–408Google Scholar
Taylor, K. J. 1976 Absolute measurement of acoustic particle velocity, J. Acoust. Soc. Amer. 59, 691–694CrossRefGoogle Scholar
Temkin, S. 1972 On the response of a sphere to an acoustic pulse, J. Fluid Mech. 54, 339–349CrossRefGoogle Scholar
Temkin, S. 1993 Particle force and heat transfer in a dusty gas sustaining an acoustic wave, Phys. Fluids 5, 1296–1304CrossRefGoogle Scholar
Temkin, S. and Kim, S. S. 1980 Droplet motion induced by weak shock waves, J. Fluid Mech. 96, 133–157CrossRefGoogle Scholar
Temkin, S. and Leung, C.-M. 1976 On the velocity of a rigid sphere in a sound wave, J. Sound Vib., 49, 75–92CrossRefGoogle Scholar
Temkin, S. and Mehta, H. K. 1982 Droplet drag in an accelerating and decelerating flow, J. Fluid Mech. 116, 297–313CrossRefGoogle Scholar
Thomas, P. J. 1992 On the influence of the Basset history force on the motion of a particle through a fluid, Phys. Fluids A 4, 2090–2093CrossRefGoogle Scholar
Vainshtein, P., Fichman, M., and Pnueli, D. 1992 On the drift of aerosol particles in sonic fields, J. Aerosol Sci. 23, 631–637CrossRefGoogle Scholar
Crum, L. A. 1983 The polytropic exponent of gas contained within air bubbles pulsating in a liquid, J. Acoust. Soc. Amer. 73, 116–120CrossRefGoogle Scholar
Crum, L. A. and Prosperetti, A. 1983 Nonlinear oscillations of gas bubbles in liquids: An interpretation of some experimental results, J. Acoust. Soc. Amer. 73, 121–127CrossRefGoogle Scholar
Devin, C. Jr., 1959 Survey of thermal, radiation, and viscous damping of pulsating air-bubbles in water, J. Acoust. Soc. Amer. 31, 1654–1667CrossRefGoogle Scholar
Exner, M. L. and Hampe, W. 1953 Experimental determination of the damping of pulsating air bubbles in water, Acustica 3, 67–72Google Scholar
Kennard, E. H. 1943 Radial motion of water surrounding a sphere of gas in relation to pressure waves, in Underwater Explosion Research, Vol. II. The Gas Globe, Office of Naval Research
Lauterborn, W. 1976 Numerical investigation of nonlinear oscillations of gas bubbles in liquids, J. Acoust. Soc. Amer. 59, 283–293CrossRefGoogle Scholar
Meyer, E. and Skudrzyk, E. 1953 Über die akustischen eigenschaften von gasblasenschleiern in wasser, Acustica 3, 435–440Google Scholar
Minnaert, M. 1933 On musical air bubbles and the sounds of running water, Phil. Mag. XVI (7th Series), 235–248CrossRefGoogle Scholar
Prosperetti, A. 1977 Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids, J. Acoust. Soc. Amer. 61, 17–27CrossRefGoogle Scholar
Prosperetti, A. 1987 The equation of bubble dynamics in a compressible liquid, Phys. Fluids 30, 3626–3628CrossRefGoogle Scholar
Prosperetti, A. 1988 Nonlinear bubble dynamics, J. Acoust. Soc. Amer. 83, 502–514CrossRefGoogle Scholar
Prosperetti, A. 1991 The thermal behaviour of oscillating gas bubbles, J. Fluid Mech. 222, 587–616CrossRefGoogle Scholar
Prosperetti, A. and Lezzi, A. 1986 Bubble dynamics in a compressible liquid. Part 1. First-order theory, J. Fluid Mech. 168, 457–478CrossRefGoogle Scholar
Prosperetti, A. and Lezzi, A. 1987 Bubble dynamics in a compressible liquid. Part 2. Second-order theory, J. Fluid Mech. 185, 289–321Google Scholar
Schiffers, W. P., Emmony, D. C., and Shaw, S. J. 1997 Visualization of the fluid flow around a laser generated oscillating bubble, Phys. Fluids 9, 3201–3208CrossRefGoogle Scholar
Strasberg, M. 1956 Gas bubbles as sources of sound in liquids, J. Acoust. Soc. Amer. 28, 20–26CrossRefGoogle Scholar
Temkin, S. 1999 Radial pulsations of a fluid particle in a sound wave, J. Fluid. Mech. 380, 1–38CrossRefGoogle Scholar
Temkin, S. 2001b Corrigendum: Radial pulsations of a fluid sphere in a sound wave, J. Fluid. Mech. 430, 407–410CrossRefGoogle Scholar
Lee, C. P., Lyell, M. J., and Wang, T.G 1985 Viscous damping of the oscillations of a rotating simple drop, Phys. Fluids 28, 3187–3188CrossRefGoogle Scholar
Rubinow, S. I. and Keller, J. B. 1961 The transverse force on a spinning sphere in a viscous fluid, J. Fluid Mech. 11, 447–459CrossRefGoogle Scholar
Chiu, H. H. 1970 Dynamics of deformation of liquid drops, Astronautica Acta 15, 199–213Google Scholar
Cox, R. G. 1969 The deformation of a drop in a general time-dependent fluid flow, J. Fluid Mech. 37, 601–623CrossRefGoogle Scholar
Lundgren, T. S. and Mansour, N. N. 1988 Oscillations of drops in zero gravity with weak viscous effects, J. Fluid Mech. 194, 479–510CrossRefGoogle Scholar
Marston, P. L. 1980 Shape oscillations and static deformation of drops and bubbles driven by modulated radiation stresses – Theory, J. Acoust. Soc. Amer. 67, 15–26CrossRefGoogle Scholar
Faxen, H. 1921 Einwirkung der Gefäßwände auf den Widerstend gegen die Bewegung einer kleinen Kugel in einer Zähen Flussigkeit. Diss. Upsala. (See Oseen, 1927, Section 9.)
Williams, Ffowcs J. E. and Guo, Y. P. 1991 On resonant non-linear bubble oscillations, J. Fluid Mech. 224, 507–529CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1989 Monopole emission of sound by asymmetric bubble oscillations. Part 1. Normal modes, J. Fluid Mech. 201, 525–541CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1989 Monopole emission of sound by asymmetric bubble oscillations. Part 2. An initial-value problem, J. Fluid Mech. 201, 543–565CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1991 Resonance in nonlinear bubble oscillations, J. Fluid Mech. 224, 531–549CrossRefGoogle Scholar
Magnaudet, J. and Legendre, D. 1998 The viscous drag force on a spherical bubble with a time-dependent radius, Phys. Fluids 10, 550–554CrossRefGoogle Scholar
Watanabe, T. and Kukita, Y. 1993 Translational and radial motions of a bubble in an acoustic standing wave field, Phys. Fluids A 5, 2682–2688CrossRefGoogle Scholar
Brazier, R., Sparks, R. S. J., Carey, S. N., Sigurdsson, H., and Westgate, J. A. 1983 Bimodal grain size distribution and secondary thickening in air-fall ash layers, Nature 301, 115–119CrossRefGoogle Scholar
Gelbard, F., Tambour, Y., and Seinfeld, J. H.Sectional representation for simulating aerosol dynamics, J. Colloid Interface Sci. 76, 541–556, 1980CrossRefGoogle Scholar
Jaenicke, R. and Davies, C. N. 1976 The mathematical expression of the size distribution of atmospheric aerosols, J. Aerosol Sci. 7, 255–259CrossRefGoogle Scholar
Lee, R. E. Jr., 1972 The size of suspended particulate matter in air, Science 178, 567–575CrossRefGoogle ScholarPubMed
Mugele, R. A. and Evans, H. D. 1951 Droplet size distribution in sprays, Indust. Eng. Chem., 43, 1317–1324CrossRefGoogle Scholar
Smith, J. E. and Jordan, M. L. 1964 Mathematical and graphical interpretation of the log-normal law for particle size distribution analysis, J. Colloid Sci., 19, 549–559, 1964CrossRefGoogle Scholar
Weickmann, H. K. and Kampe, Aufm H. J. 1953 Physical properties of cumulus clouds, J. Met. 10, 204. [See Mason, B. K., The Physics of Clouds, pp. 98–103.]2.0.CO;2>CrossRefGoogle Scholar
Alexeev, A. and Gutfinger, C. 2003 Particle drift in a resonance tube – A numerical study, J. Acoust. Soc. Amer. 114, 1357–1365CrossRefGoogle Scholar
Boyadzhiev, L. 1973 On the movement of a spherical particle in a vertically oscillating liquid, J. Fluid Mech. 57, 545–548CrossRefGoogle Scholar
Burrows, F. M. 1983 Calculation of the primary trajectories of seeds and other particles in strong winds, Proc. R. Soc. Lond. A 389, 15–66CrossRefGoogle Scholar
Chester, W. and Breach, D. R. (with an appendix by I. Proudman) 1969 On the flow past a sphere at low Reynolds number. J. Fluid Mech. 37, 751–760CrossRefGoogle Scholar
Corrsin, S. and Lumley, J. 1956 On the equation of motion for a particle in turbulent fluid, Appl. Sci. Res. Sec. A, 6, 114–116CrossRefGoogle Scholar
Danilov, S. D. and Mirnov, M. A. 2000 Mean force on a small sphere in a sound field in a viscous fluid, J. Acoust. Soc. Amer. 107, 143–153CrossRefGoogle Scholar
Galindo, V. and Gerbeth, G. 1993 A note on the force on an accelerating spherical drop at low Reynolds number, Phys. Fluids A 5, 3290–3292CrossRefGoogle Scholar
Goldstein, S. 1929 The steady flow of viscous fluid past a fixed spherical obstacle at small Reynolds numbers, Proc. R. Soc. A 123, 216–235CrossRefGoogle Scholar
Gucker, F. T. and Doyle, G. J. 1956 The amplitude of aerosol droplets in a sonic field, J. Phys. Chem. 60, 989–996, 1956CrossRefGoogle Scholar
Hoenig, S. A. 1957 Acceleration of dust particles by shock waves, J. Appl. Phys. 28, 1218–1219CrossRefGoogle Scholar
Ingebo, R. D. 1956 Drag coefficients for droplets and solid spheres in clouds accelerating in air streams, NACA Technical Note TN 3762
Ishii, R. 1984 Motion of small particles in a gas flow, Phys. Fluids 27, 33–41CrossRefGoogle Scholar
Kang, I. S. and Leal, L. G. 1988 The drag coefficient for a spherical bubble in a uniform streaming flow, Phys. Fluids 31, 233–241CrossRefGoogle Scholar
Kanwal, R. P. 1964 Drag on an axially symmetric body vibrating slowly along its axis in a viscous fluid, J. Fluid Mech. 19, 631–636CrossRefGoogle Scholar
Karanfilian, S. K. and Kotas, T. J. 1978 Drag on a sphere in unsteady motion in a liquid at rest, J. Fluid Mech. 87, 85–96CrossRefGoogle Scholar
Kim, S. S. 1977 An experimental study of droplet reponse to weak shock waves. Ph.D. thesis, Rutgers University
Legendre, D. and Magnaudet, J. 1997 A note on the lift force on a spherical bubble or drop in a low Reynolds number shear flow, Phys. Fluids 9, 3572–3574CrossRefGoogle Scholar
Liu, D. Y., Anders, K., and Frohn, A. 1988 Drag coefficients of single droplets moving in an infinite droplet chain on the axis of a tube, Int. J. Multiphase Flow 14, 217–232CrossRefGoogle Scholar
Lovalenti, P. M. and Brady, J. 1993 The force on a bubble, drop, or particle in arbitrary time-dependent motion at small Reynolds number, Phys. Fluids A 5, 2104–2116CrossRefGoogle Scholar
Magnaudet, J., Rivero, M., and Fabre, J. 1995 Accelerated flows past a rigid sphere of a spherical bubble. Part 1. Steady straining flow, J. Fluid Mech. 284, 97–135CrossRefGoogle Scholar
Maxey, M. R. and Riley, J. J. 1983 Equations of motion for a small rigid sphere in nonuniform flow, Phys. Fluids 26, 883–889CrossRefGoogle Scholar
Maxworthy, T. 1965 Accurate measurements of sphere drag at low Reynolds numbers, J. Fluid Mech. 23, 369–372CrossRefGoogle Scholar
Mei, R., Klausner, J. F., and Lawrence, C. J. 1994 A note on the history force on spherical bubble at finite Reynolds number, Phys. Fluids 6, 418–420CrossRefGoogle Scholar
Mei, R., Lawrence, C. J., and Adrian, R. J. 1991 Unsteady drag on a sphere at finite Reynolds number with small fluctuations in the free-stream velocity, J. Fluid Mech. 233, 613–631CrossRefGoogle Scholar
Morsi, S. A. and Alexander, A. J. 1972 An investigation of particle trajectories in two-phase flow systems, J. Fluid Mech. 55, 193–208CrossRefGoogle Scholar
Ockendon, J. R. 1968 The unsteady motion of a small sphere in a viscous fluid, J. Fluid Mech. 34, 229–239CrossRefGoogle Scholar
Odar, F. 1966 Verification of the proposed equation for calculation of the forces on a sphere accelerating in a viscous fluid, J. Fluid Mech. 25, 591–592CrossRefGoogle Scholar
Odar, F. and Hamilton, W. S. 1964 Forces on a sphere accelerating in a viscous fluid, J. Fluid Mech. 18, 302–314CrossRefGoogle Scholar
Ogden, T. L. and Jayaweera, K. O. L. F. 1971 Drag coefficients of water droplets decelerating in air, Q. R. Met. Soc. 97, 571–574CrossRefGoogle Scholar
Pearcey, T. and Hill, G. W. 1956 The accelerated motion of droplets and bubbles, Austr. J. Phys. 9, 19–30Google Scholar
Proudman, I. and Pearson, R. R. A. 1957 Expansions at small Reynolds numbers for the flow past a sphere and circular cylinder, J. Fluid Mech. 2, 237–262CrossRefGoogle Scholar
Rallison, J. M.Note on the Faxen relations for a particle in Stokes flow, J. Fluid Mech. 88, 529–533, 1978CrossRefGoogle Scholar
Rudinger, G. 1974 Penetration of particles into a constant cross flow, AIAA J. 12, 1138–1140CrossRefGoogle Scholar
Sano, T. 1981 Unsteady flow past a sphere at low Reynolds number, J. Fluid Mech. 112, 433–441CrossRefGoogle Scholar
Selberg, B. P. and Nicholls, J. A. 1968 Drag coefficient of small spehrical particles, AIAA J. 6, 401–408Google Scholar
Taylor, K. J. 1976 Absolute measurement of acoustic particle velocity, J. Acoust. Soc. Amer. 59, 691–694CrossRefGoogle Scholar
Temkin, S. 1972 On the response of a sphere to an acoustic pulse, J. Fluid Mech. 54, 339–349CrossRefGoogle Scholar
Temkin, S. 1993 Particle force and heat transfer in a dusty gas sustaining an acoustic wave, Phys. Fluids 5, 1296–1304CrossRefGoogle Scholar
Temkin, S. and Kim, S. S. 1980 Droplet motion induced by weak shock waves, J. Fluid Mech. 96, 133–157CrossRefGoogle Scholar
Temkin, S. and Leung, C.-M. 1976 On the velocity of a rigid sphere in a sound wave, J. Sound Vib., 49, 75–92CrossRefGoogle Scholar
Temkin, S. and Mehta, H. K. 1982 Droplet drag in an accelerating and decelerating flow, J. Fluid Mech. 116, 297–313CrossRefGoogle Scholar
Thomas, P. J. 1992 On the influence of the Basset history force on the motion of a particle through a fluid, Phys. Fluids A 4, 2090–2093CrossRefGoogle Scholar
Vainshtein, P., Fichman, M., and Pnueli, D. 1992 On the drift of aerosol particles in sonic fields, J. Aerosol Sci. 23, 631–637CrossRefGoogle Scholar
Crum, L. A. 1983 The polytropic exponent of gas contained within air bubbles pulsating in a liquid, J. Acoust. Soc. Amer. 73, 116–120CrossRefGoogle Scholar
Crum, L. A. and Prosperetti, A. 1983 Nonlinear oscillations of gas bubbles in liquids: An interpretation of some experimental results, J. Acoust. Soc. Amer. 73, 121–127CrossRefGoogle Scholar
Devin, C. Jr., 1959 Survey of thermal, radiation, and viscous damping of pulsating air-bubbles in water, J. Acoust. Soc. Amer. 31, 1654–1667CrossRefGoogle Scholar
Exner, M. L. and Hampe, W. 1953 Experimental determination of the damping of pulsating air bubbles in water, Acustica 3, 67–72Google Scholar
Kennard, E. H. 1943 Radial motion of water surrounding a sphere of gas in relation to pressure waves, in Underwater Explosion Research, Vol. II. The Gas Globe, Office of Naval Research
Lauterborn, W. 1976 Numerical investigation of nonlinear oscillations of gas bubbles in liquids, J. Acoust. Soc. Amer. 59, 283–293CrossRefGoogle Scholar
Meyer, E. and Skudrzyk, E. 1953 Über die akustischen eigenschaften von gasblasenschleiern in wasser, Acustica 3, 435–440Google Scholar
Minnaert, M. 1933 On musical air bubbles and the sounds of running water, Phil. Mag. XVI (7th Series), 235–248CrossRefGoogle Scholar
Prosperetti, A. 1977 Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids, J. Acoust. Soc. Amer. 61, 17–27CrossRefGoogle Scholar
Prosperetti, A. 1987 The equation of bubble dynamics in a compressible liquid, Phys. Fluids 30, 3626–3628CrossRefGoogle Scholar
Prosperetti, A. 1988 Nonlinear bubble dynamics, J. Acoust. Soc. Amer. 83, 502–514CrossRefGoogle Scholar
Prosperetti, A. 1991 The thermal behaviour of oscillating gas bubbles, J. Fluid Mech. 222, 587–616CrossRefGoogle Scholar
Prosperetti, A. and Lezzi, A. 1986 Bubble dynamics in a compressible liquid. Part 1. First-order theory, J. Fluid Mech. 168, 457–478CrossRefGoogle Scholar
Prosperetti, A. and Lezzi, A. 1987 Bubble dynamics in a compressible liquid. Part 2. Second-order theory, J. Fluid Mech. 185, 289–321Google Scholar
Schiffers, W. P., Emmony, D. C., and Shaw, S. J. 1997 Visualization of the fluid flow around a laser generated oscillating bubble, Phys. Fluids 9, 3201–3208CrossRefGoogle Scholar
Strasberg, M. 1956 Gas bubbles as sources of sound in liquids, J. Acoust. Soc. Amer. 28, 20–26CrossRefGoogle Scholar
Temkin, S. 1999 Radial pulsations of a fluid particle in a sound wave, J. Fluid. Mech. 380, 1–38CrossRefGoogle Scholar
Temkin, S. 2001b Corrigendum: Radial pulsations of a fluid sphere in a sound wave, J. Fluid. Mech. 430, 407–410CrossRefGoogle Scholar
Lee, C. P., Lyell, M. J., and Wang, T.G 1985 Viscous damping of the oscillations of a rotating simple drop, Phys. Fluids 28, 3187–3188CrossRefGoogle Scholar
Rubinow, S. I. and Keller, J. B. 1961 The transverse force on a spinning sphere in a viscous fluid, J. Fluid Mech. 11, 447–459CrossRefGoogle Scholar
Chiu, H. H. 1970 Dynamics of deformation of liquid drops, Astronautica Acta 15, 199–213Google Scholar
Cox, R. G. 1969 The deformation of a drop in a general time-dependent fluid flow, J. Fluid Mech. 37, 601–623CrossRefGoogle Scholar
Lundgren, T. S. and Mansour, N. N. 1988 Oscillations of drops in zero gravity with weak viscous effects, J. Fluid Mech. 194, 479–510CrossRefGoogle Scholar
Marston, P. L. 1980 Shape oscillations and static deformation of drops and bubbles driven by modulated radiation stresses – Theory, J. Acoust. Soc. Amer. 67, 15–26CrossRefGoogle Scholar
Faxen, H. 1921 Einwirkung der Gefäßwände auf den Widerstend gegen die Bewegung einer kleinen Kugel in einer Zähen Flussigkeit. Diss. Upsala. (See Oseen, 1927, Section 9.)
Williams, Ffowcs J. E. and Guo, Y. P. 1991 On resonant non-linear bubble oscillations, J. Fluid Mech. 224, 507–529CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1989 Monopole emission of sound by asymmetric bubble oscillations. Part 1. Normal modes, J. Fluid Mech. 201, 525–541CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1989 Monopole emission of sound by asymmetric bubble oscillations. Part 2. An initial-value problem, J. Fluid Mech. 201, 543–565CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1991 Resonance in nonlinear bubble oscillations, J. Fluid Mech. 224, 531–549CrossRefGoogle Scholar
Magnaudet, J. and Legendre, D. 1998 The viscous drag force on a spherical bubble with a time-dependent radius, Phys. Fluids 10, 550–554CrossRefGoogle Scholar
Watanabe, T. and Kukita, Y. 1993 Translational and radial motions of a bubble in an acoustic standing wave field, Phys. Fluids A 5, 2682–2688CrossRefGoogle Scholar
Brazier, R., Sparks, R. S. J., Carey, S. N., Sigurdsson, H., and Westgate, J. A. 1983 Bimodal grain size distribution and secondary thickening in air-fall ash layers, Nature 301, 115–119CrossRefGoogle Scholar
Gelbard, F., Tambour, Y., and Seinfeld, J. H.Sectional representation for simulating aerosol dynamics, J. Colloid Interface Sci. 76, 541–556, 1980CrossRefGoogle Scholar
Jaenicke, R. and Davies, C. N. 1976 The mathematical expression of the size distribution of atmospheric aerosols, J. Aerosol Sci. 7, 255–259CrossRefGoogle Scholar
Lee, R. E. Jr., 1972 The size of suspended particulate matter in air, Science 178, 567–575CrossRefGoogle ScholarPubMed
Mugele, R. A. and Evans, H. D. 1951 Droplet size distribution in sprays, Indust. Eng. Chem., 43, 1317–1324CrossRefGoogle Scholar
Smith, J. E. and Jordan, M. L. 1964 Mathematical and graphical interpretation of the log-normal law for particle size distribution analysis, J. Colloid Sci., 19, 549–559, 1964CrossRefGoogle Scholar
Weickmann, H. K. and Kampe, Aufm H. J. 1953 Physical properties of cumulus clouds, J. Met. 10, 204. [See Mason, B. K., The Physics of Clouds, pp. 98–103.]2.0.CO;2>CrossRefGoogle Scholar
Davis, M. C. 1978 Coal slurry diagnostics by ultrasound transmission, J. Acoust. Soc. Amer. 64, 406–410CrossRefGoogle Scholar
Dobbins, R. A. 1963 Measurement of mean particle size in a gas-particle flow, AIAA J. 1, 1940–1942CrossRefGoogle Scholar
Dobbins, R. A., Crocco, L., and Glassman, I. 1963 Measurement of mean particle sizes in sprays from diffractively scattered light, AIAA J. 1, 1882–1886CrossRefGoogle Scholar
Dobbins, R. A. and Temkin, S. 1967 Acoustical measurements of aerosol particle size and concentration, J. Colloid Interface Sci. 25, 329–333CrossRefGoogle Scholar
Dukhin, A. S. and Goetz, P. 2001 Acoustic and electroacoustic spectroscopy for characterizing concentrated dispersions and emulsions, Adv. Colloid Interface Sci. 92, 73–132CrossRefGoogle ScholarPubMed
Duraiswami, R., Prabhukumar, S., and Chahine, G. L. 1998 Bubble counting using an inverse acoustic scattering method, J. Acoust. Soc. Amer. 104, 2699–2717CrossRefGoogle Scholar
König, G.Anders, K. and Frohn, A. 1986 A new light-scattering technique to measure the diameter of periodically generated moving droplets, J. Aerosol Sci. 17, 157–167CrossRefGoogle Scholar
Medwin, H. 1970 In-situ acoustic measurements of bubble populations in coastal waters, J. Geophys. Res. 75, 599–611CrossRefGoogle Scholar
Medwin, H. 1977 Acoustical determinations of bubble-size spectra, J. Acoust. Soc. Amer. 62, 1041–1044CrossRefGoogle Scholar
Newhouse, V. L. and Shankar, P. M. 1984 Bubble size measurements using the nonlinear mixing of two frequencies, J. Acoust. Soc. Amer. 75, 1473–1477CrossRefGoogle Scholar
Temkin, S. and Reichman, J.M 1972 A new technique to photograph small particles in motion, Rev. Sci. Instr. 43, 1456–1459CrossRefGoogle Scholar
Jeffrey, D. J. 1992 The calculation of the low Reynolds number resistance functions for two unequal spheres, Phys. Fluids A 4, 16–29CrossRefGoogle Scholar
Kim, S. and Mifflin, R. T. 1985 The resistance and mobility functions of two equal spheres in low-Reynolds-number flow, Phys. Fluids 28, 2033–2045CrossRefGoogle Scholar
Maul, C. and Kim, S. 1994 Image systems for a Stokeslet inside a rigid spherical container, Phys. Fluids 6, 2221–2223CrossRefGoogle Scholar
Pozrikidis, C. 1989 A singularity method for unsteady linearized flow, Phys. Fluids A 1, 1508–1520CrossRefGoogle Scholar
Buresti, G. and Casarosa, C. 1989 One dimensional adiabatic flow of equilibrium gas-particle mixtures in long vertical ducts with friction, J. Fluid Mech. 203, 251–272CrossRefGoogle Scholar
Carrier, G. F. 1958 Shock waves in a dusty gas, J. Fluid Mech. 4, 376–382CrossRefGoogle Scholar
Hamad, H. and Frohn, A. 1980 Structure of fully dispersed waves in dusty gases, J. Appl. Math. Phys. (ZAMP) 31, 66–82CrossRefGoogle Scholar
Healy, J. V. and Yang, H. T. 1972 The Stokes problems for a suspension of particles, Astronautica Acta 17, 851–856Google Scholar
Ishii, R., Hatta, N., Umeda, Y., and Yuhi, M. 1990 Supersonic gas-particle two-phase flow around a sphere, J. Fluid Mech. 221, 453–483, 1990CrossRefGoogle Scholar
Ishii, R. and Umeda, Y. 1987 Nozzle flows of gas-particle mixtures, Phys. Fluids 30, 752–760, 1987CrossRefGoogle Scholar
Liu, J. T. C. 1965 On the hydrodynamic stability of parallel dusty gas flow, Phys. Fluids 8, 1939–1945CrossRefGoogle Scholar
Liu, J. T. C. 1967 Flow induced by the impulsive motion of an infinite flat plate in a dusty gas, Astronautica Acta, 13, 369–377Google Scholar
Miura, H. and Glass, I. I. 1982 On a dusty-gas shock tube, Proc. R. Soc. Lond. A 382, 373–388CrossRefGoogle Scholar
Miura, H. and Glass, I. I. 1983 On the passage of a shock wave through a dusty-gas layer, Proc. R. Soc. Lond. A 385, 85–105CrossRefGoogle Scholar
Murray, J. D. 1967 Some basic aspects of one-dimensional incompressible particle-fluid two-phase flows, Astronautica Acta 13, 417–430Google Scholar
Neilson, J. H. and Gilchrist, A. 1968 An analytical and experimental investigation of the velocities of particles entrained by the gas flow in nozzles, J. Fluid Mech. 33, 131–149CrossRefGoogle Scholar
Rudinger, G. 1964 Some properties of shock relaxation in gas flows carrying small particles, Phys. Fluids 7, 658–663CrossRefGoogle Scholar
Rudinger, G. 1965 Some effects of finite particle volume on the dynamics of gas-particle mixtures, AIAA J. 3, 1217–1222CrossRefGoogle Scholar
Rudinger, G. 1969 Relaxation in gas-particle flows, in Nonequilibrium Flows, Wegner, P., Ed., Marcel Dekker pp. 119–161Google Scholar
Rudinger, G. 1970 Gas-particle flow in convergent nozzles at high loading ratio, AIAA J. 8, 1288–1294CrossRefGoogle Scholar
Rudinger, G. and Chang, A. 1964 Analysis of nonsteady two-phase flow, Phys. Fluids 7, 1747–1754CrossRefGoogle Scholar
Saffman, P. G. 1962 On the stability of laminar flow of a dusty gas, J. Fluid Mech. 13, 120–128CrossRefGoogle Scholar
Sauerwein, H. and Fendell, F. E. 1965 Method of characteristics in two-phase flow, Phys. Fluids 8, 1564–1565CrossRefGoogle Scholar
Schubert, Schmitt-von B. 1969 Existence and uniqueness of normal shock waves in gas-particle mixtures, J. Fluid Mech. 38, 633–655CrossRefGoogle Scholar
Tomita, Y., Tashio, H., Deguchi, K., and Jotaki, T. 1980 Sudden expansion of gas-solid two-phase flow in a pipe, Phys. Fluids 23, 663–666CrossRefGoogle Scholar
Hsieh, D.-Y.Some aspects of dynamics of bubbly liquids, Appl. Sci. Res. 38, 305–312, 1982CrossRefGoogle Scholar
Ishii, R., Umeda, Y., Murata, S., and Shishido, N. 1993 Bubbly flows through a converging-diverging nozzle, Phys. Fluids A 5, 1630–1643CrossRefGoogle Scholar
Kameda, M. and Matsumoto, Y. 1996 Shock waves in a liquid containing small gas bubbles, Phys. Fluids 8, 322–335CrossRefGoogle Scholar
Kennard, E. H. 1941 Report on Underwater Explosions, David W. Taylor Model Basin, pp. 1–51
Omta, R. 1987 Oscillations of a cloud of bubbles of small and not so small amplitude, J. Acoust. Soc. Amer. 82, 1018–1033CrossRefGoogle Scholar
Wijngaarden, L.. On the structure of shock waves in liquid-bubble mixtures, Appl. Sci. Res. 22, 366–381CrossRef
Wijngaarden, L. and Kapteyn, C. 1990 Concentration waves in dilute bubble/liquid mixtures, J. Fluid Mech. 212, 111–137CrossRefGoogle Scholar
Buresti, G. and Casarosa, C. 1989 One dimensional adiabatic flow of equilibrium gas-particle mixtures in long vertical ducts with friction, J. Fluid Mech. 203, 251–272CrossRefGoogle Scholar
Carrier, G. F. 1958 Shock waves in a dusty gas, J. Fluid Mech. 4, 376–382CrossRefGoogle Scholar
Hamad, H. and Frohn, A. 1980 Structure of fully dispersed waves in dusty gases, J. Appl. Math. Phys. (ZAMP) 31, 66–82CrossRefGoogle Scholar
Healy, J. V. and Yang, H. T. 1972 The Stokes problems for a suspension of particles, Astronautica Acta 17, 851–856Google Scholar
Ishii, R., Hatta, N., Umeda, Y., and Yuhi, M. 1990 Supersonic gas-particle two-phase flow around a sphere, J. Fluid Mech. 221, 453–483, 1990CrossRefGoogle Scholar
Ishii, R. and Umeda, Y. 1987 Nozzle flows of gas-particle mixtures, Phys. Fluids 30, 752–760, 1987CrossRefGoogle Scholar
Liu, J. T. C. 1965 On the hydrodynamic stability of parallel dusty gas flow, Phys. Fluids 8, 1939–1945CrossRefGoogle Scholar
Liu, J. T. C. 1967 Flow induced by the impulsive motion of an infinite flat plate in a dusty gas, Astronautica Acta, 13, 369–377Google Scholar
Miura, H. and Glass, I. I. 1982 On a dusty-gas shock tube, Proc. R. Soc. Lond. A 382, 373–388CrossRefGoogle Scholar
Miura, H. and Glass, I. I. 1983 On the passage of a shock wave through a dusty-gas layer, Proc. R. Soc. Lond. A 385, 85–105CrossRefGoogle Scholar
Murray, J. D. 1967 Some basic aspects of one-dimensional incompressible particle-fluid two-phase flows, Astronautica Acta 13, 417–430Google Scholar
Neilson, J. H. and Gilchrist, A. 1968 An analytical and experimental investigation of the velocities of particles entrained by the gas flow in nozzles, J. Fluid Mech. 33, 131–149CrossRefGoogle Scholar
Rudinger, G. 1964 Some properties of shock relaxation in gas flows carrying small particles, Phys. Fluids 7, 658–663CrossRefGoogle Scholar
Rudinger, G. 1965 Some effects of finite particle volume on the dynamics of gas-particle mixtures, AIAA J. 3, 1217–1222CrossRefGoogle Scholar
Rudinger, G. 1969 Relaxation in gas-particle flows, in Nonequilibrium Flows, Wegner, P., Ed., Marcel Dekker pp. 119–161Google Scholar
Rudinger, G. 1970 Gas-particle flow in convergent nozzles at high loading ratio, AIAA J. 8, 1288–1294CrossRefGoogle Scholar
Rudinger, G. and Chang, A. 1964 Analysis of nonsteady two-phase flow, Phys. Fluids 7, 1747–1754CrossRefGoogle Scholar
Saffman, P. G. 1962 On the stability of laminar flow of a dusty gas, J. Fluid Mech. 13, 120–128CrossRefGoogle Scholar
Sauerwein, H. and Fendell, F. E. 1965 Method of characteristics in two-phase flow, Phys. Fluids 8, 1564–1565CrossRefGoogle Scholar
Schubert, Schmitt-von B. 1969 Existence and uniqueness of normal shock waves in gas-particle mixtures, J. Fluid Mech. 38, 633–655CrossRefGoogle Scholar
Tomita, Y., Tashio, H., Deguchi, K., and Jotaki, T. 1980 Sudden expansion of gas-solid two-phase flow in a pipe, Phys. Fluids 23, 663–666CrossRefGoogle Scholar
Hsieh, D.-Y.Some aspects of dynamics of bubbly liquids, Appl. Sci. Res. 38, 305–312, 1982CrossRefGoogle Scholar
Ishii, R., Umeda, Y., Murata, S., and Shishido, N. 1993 Bubbly flows through a converging-diverging nozzle, Phys. Fluids A 5, 1630–1643CrossRefGoogle Scholar
Kameda, M. and Matsumoto, Y. 1996 Shock waves in a liquid containing small gas bubbles, Phys. Fluids 8, 322–335CrossRefGoogle Scholar
Kennard, E. H. 1941 Report on Underwater Explosions, David W. Taylor Model Basin, pp. 1–51
Omta, R. 1987 Oscillations of a cloud of bubbles of small and not so small amplitude, J. Acoust. Soc. Amer. 82, 1018–1033CrossRefGoogle Scholar
Wijngaarden, L.. On the structure of shock waves in liquid-bubble mixtures, Appl. Sci. Res. 22, 366–381CrossRef
Wijngaarden, L. and Kapteyn, C. 1990 Concentration waves in dilute bubble/liquid mixtures, J. Fluid Mech. 212, 111–137CrossRefGoogle Scholar
Batchelor, G. K. and Green, J. T. 1972 The determination of the bulk stress in a suspension of spherical particles to order c2, J. Fluid Mech. 56, 401–427CrossRefGoogle Scholar
Beenakker, C. W. J. 1984 The effective viscosity of a concentrated suspension of spheres (and its relation to diffusion), Phys. A 128, 48–81CrossRefGoogle Scholar
Biesheuvel, A. and Spoelstra, S. 1989 The added mass coefficient of a dispersion of spherical gas bubbles in a liquid, Int. J. Multiphase Flow 15, 911–924CrossRefGoogle Scholar
O'Brien, R. W. 1979 A method for the calculation of the effective transport properties of suspensions of interacting particles, J. Fluid Mech. 91, 17–39CrossRefGoogle Scholar
Taylor, G. I. 1954 The two coefficients of viscosity for a liquid containing air bubbles, Proc. R. Soc. Lond. A 226, 34–39CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Samuel Temkin, Rutgers University, New Jersey
  • Book: Suspension Acoustics
  • Online publication: 25 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546129.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Samuel Temkin, Rutgers University, New Jersey
  • Book: Suspension Acoustics
  • Online publication: 25 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546129.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Samuel Temkin, Rutgers University, New Jersey
  • Book: Suspension Acoustics
  • Online publication: 25 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546129.017
Available formats
×