Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-20T01:04:37.627Z Has data issue: false hasContentIssue false

16 - Primate diversity and environmental seasonality in historical perspective

Published online by Cambridge University Press:  10 August 2009

Nina G. Jablonski
Affiliation:
Department of Anthropology California Academy of Sciences, 875 Howard Street, San Francisco, CA 94103–3009 USA
Diane K. Brockman
Affiliation:
University of North Carolina, Charlotte
Carel P. van Schaik
Affiliation:
Universität Zürich
Get access

Summary

Introduction

The nature of the relationship between organisms and their environment has figured prominently in studies of evolution and ecology for over a century. Of particular interest has been the investigation of how climatic and environmental changes influence the course of animal evolution, and specifically how important environmental change may be relative to other factors such as migration, predation, and competition, if, in fact, its influence can be isolated sufficiently from these others to be tested. Some of the important questions that have been framed on this topic include: How are animals buffered against their environment? Why do different species appear to respond differently to environmental change? What kinds and degrees of environmental change are sufficient to induce range shifts or the “retuning” of anatomical or physiological tolerances? How directly or immediately do climatic and environmental change influence the origination or extinction of species? These questions have been the subject of many recent and important studies of mammalian evolution and diversification (e.g. Vrba [1985]; McKinney [1998]; Behrensmeyer et al. [1997]; Alroy et al. [2000]; Hooker [2000]) and have begun to figure prominently in discussions of the more specific context of primate evolution (e.g. Reed [1999]; Jablonski et al. [2000]). Different species of mammals have responded differently to changing patterns of environmental seasonality through time, coping by means of combinations of geographical range shifts and evolution of new ecological strategies, or not coping by extinction (Hooker 2000; Jablonski et al. 2000).

Type
Chapter
Information
Seasonality in Primates
Studies of Living and Extinct Human and Non-Human Primates
, pp. 465 - 486
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alroy, J., Koch, P. L., & Zachos, J. C. (2000). Global climate change and North American mammalian evolution. In Deep Time: Paleobiology's Perspective, ed. Erwin, D. H. & Wing, S. L.. Kansas: The Paleontological Society, pp. 259–88.Google Scholar
An, Z.-S., Kutzbach, J. E., Prell, W. L., & Porter, S. C. (2001). Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 411, 62–6.Google Scholar
Andrews, P., Begun, D. R., & Zylstra, M. (1997). Interrelationships between functional morphology and paleoenvironments in Miocene hominoids. In Function, Phylogeny, and Fossils: Miocene Hominoid Evolution and Adaptations, ed. Begun, D.. New York: Plenum Press, pp. 29–58.CrossRefGoogle Scholar
Barry, J. C., Morgan, M. E., Flynn, L. J., et al. (2002). Faunal and Environmental Change in the Late Miocene Siwaliks of Northern Pakistan. Lawrence, KS: The Paleontological Society.Google Scholar
Bauchop, T. (1978). Digestion of leaves in vertebrate arboreal folivores. In The Ecology of Arboreal Folivores, ed. Montgomery, G. G.. Washington, DC: Smithsonian Institution Press, pp. 193–204.Google Scholar
Beard, K. C. (1998a). East of Eden: Asia as an important center of taxonomic origination in mammalian evolution. Bulletin of the Carnegie Museum of Natural History, 34, 5–39.Google Scholar
Beard, K. C.(1998b). A new genus of Tarsiidae (Mammalia: Primates) from the middle Eocene of Shanxi Province, China, with notes on the historical biogeography of tarsiers. In Dawn of the Age of Mammals in Asia, ed. Beard, K. C. & Dawson, M. R.. Pittsburgh: Carnegie Museum of Natural History, pp. 260–77.Google Scholar
Beard, C. (2002). East of Eden at the Paleocene/Eocene boundary. Science, 295, 2028–9.CrossRefGoogle Scholar
Begun, D. (2002). The Pliopithecoidea. In The Primate Fossil Record, ed. Hartwig, W. C.. Cambridge: Cambridge University Press, pp. 221–40.Google Scholar
Behrensmeyer, A. K., Damuth, J. D., DiMichele, W. A., et al. (1992). Terrestrial Ecosystems Through Time. Chicago: University of Chicago Press.Google Scholar
Behrensmeyer, A. K., Todd, N. E., Potts, R., & McBrinn, G. E. (1997). Late Pliocene faunal turnover in the Turkana Basin of Kenya and Ethiopia. Science, 278, 1589–94.CrossRefGoogle ScholarPubMed
Benefit, B. R. & McCrossin, M. L. (2002). The Victoriapithecidae, Cercopithecoidea. In The Primate Fossil Record, ed. Hartwig, W. C.. Cambridge: Cambridge University Press, pp. 241–53.Google Scholar
Bernor, R. L. (1983). Geochronology and zoogeographic relationships of Miocene Hominoidea. In New Interpretations of Ape and Human Ancestry, ed. Ciochon, R. L. & Corruccini, R. S.. New York: Plenum Press, pp. 21–64.CrossRefGoogle Scholar
Blurton Jones, N., Hawkes, K., & O'Connell, J. F. (1999). Some current ideas about the evolution of human life history. In Comparative Primate Socioecology, ed. Lee, P. C.. Cambridge: Cambridge University Press, pp. 140–66.CrossRefGoogle Scholar
Bowen, G. J., Clyde, W. C., Kock, P. L., et al. (2002). Mammalian dispersal at the Paleocene/Eocene boundary. Science, 295, 2062–5.CrossRefGoogle ScholarPubMed
Cerling, T. E., Wang, Y., & Quade, J. (1993). Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature, 361, 344–5.CrossRefGoogle Scholar
Chivers, D. J. (1991). Species differences in tolerance to environmental change. In Primate Responses to Environmental Change, ed. Box, H. O.. London: Chapman & Hall, pp. 5–37.CrossRefGoogle Scholar
Collinson, M. E. (1992). Vegetational and floristic changes around the Eocene/Oligocene boundary in western and central Europe. In Eocene-Oligocene Climatic and Biotic Evolution, ed. Prothero, D. R. & Berggren, W. A.. Princeton: Princeton University Press, pp. 437–50.CrossRefGoogle Scholar
Collinson, M. E. & Hooker, J. J. (1987). Vegetational and mammalian faunal changes in the Early Tertiary of southern England. In The Origins of Angiosperms and Their Biological Consequences, ed. Friis, E. M., Chaloner, W. G., & Crane, P. R.. Cambridge: Cambridge University Press, pp. 259–304.Google Scholar
Crompton, R. H. (1995). “Visual predation,” habitat structure, and the ancestral primate niche. In Creatures of the Dark: The Nocturnal Prosimians, ed. Alterman, L., Doyle, G. A., & Izard, M. K.. New York: Plenum Press, pp. 11–30.CrossRefGoogle Scholar
Dettman, D. L., Kohn, M. J., Quade, J., et al. (2001). Seasonal stable isotope evidence for a strong Asian monsoon throughout the past 10.7 m.y. Geology, 29, 31–4.2.0.CO;2>CrossRefGoogle Scholar
DeVore, I. & Washburn, S. L. (1963). Baboon ecology and human evolution. In African Ecology and Human Evolution, ed. Howell, F. C. & Bourliere, F.. Chicago: Aldine Publishing Company, pp. 335–67.Google Scholar
Eeley, H. A.C. & Lawes, M. J. (1999). Large-scale patterns of species richness and species range size in anthropoid primates. In Primate Communities, ed. Fleagle, J. G., Janson, C., & Reed, K. E.. Cambridge: Cambridge University Press, pp. 191–219.CrossRefGoogle Scholar
Emmons, L. H. (1995). Mammals of rain forest canopies. In Forest Canopies, ed. Lowman, M. D. & Nadkarni, N. M.. San Diego: Academic Press, pp. 199–223.Google Scholar
Fleagle, J. G. (1999). Primate Adaptation and Evolution. San Diego: Academic Press.Google Scholar
Fleagle, J. G. & Reed, K. E. (1999). Phylogenetic and temporal perspectives on primate ecology. In Primate Communities, ed. Fleagle, J. G., Janson, C., & Reed, K. E.. Cambridge: Cambridge University Press, pp. 92–115.CrossRefGoogle Scholar
Fleagle, J. G. & Simons, E. L. (1978). Humeral morphology of the earliest apes. Nature, 276, 705–7.CrossRefGoogle Scholar
Fleagle, J. G. & Simons, E. L.(1982). Skeletal remains of Propliopithecus chirobates from the Egyptian Oligocene. Folia Primatologica, 39, 161–77.CrossRefGoogle ScholarPubMed
Fortelius, M., Werdelin, L., Andrews, P., et al. (1996). Provinciality, diversity, turnover, and paleoecology in land mammal faunas of the Later Miocene of Western Eurasia. In The Evolution of Western Eurasian Neogene Mammal Faunas, ed. Bernor, R. L., Fahlbusch, V., & Mittmann, H.-W.. New York: Columbia University Press, pp. 414–48.Google Scholar
Gebo, D. L. (2002). Adapiformes: phylogeny and adaptation. In The Primate Fossil Record, ed. Hartwig, W. C.. Cambridge: Cambridge University Press, pp. 21–43.Google Scholar
Ginsburg, L. & Mein, P. (1987). Tarsius thailandica nov. sp., premier Tarsiidea (Primates, Mammalia) fossile d'Asie. C. R. Academy of Sciences Paris, 304, 1213–15.Google Scholar
Gunnell, G. F. (1998). Mammalian faunal composition and the Paleocene/Eocene Epoch/Series boundary: evidence from northern Bighorn Basin, Wyoming. In Late Paleocene–Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records, ed. Aubry, M.-P., Lucas, S., & Berggren, W. A.. New York: Columbia University Press, pp. 409–27.Google Scholar
Gunnell, G. F. & Rose, K. D. (2002). Tarsiiformes: evolutionary history and adaptation. In The Primate Fossil Record, ed. Hartwig, W. C.. Cambridge: Cambridge University Press, pp. 45–82.Google Scholar
Gursky, S. (1999). The Tarsiidae: taxonomy, behavior, and conservation status. In The Nonhuman Primates, ed. Dolhinow, P. & Fuentes, A.. Mountain View: Mayfield Publishing Company, pp. 140–45.Google Scholar
Harrison, T. (2002). Late Oligocene to middle Miocene catarrhines from Afro-Arabia. In The Primate Fossil Record, ed. Hartwig, W. C.. Cambridge: Cambridge University Press, pp. 311–38.Google Scholar
Hooker, J. J. (1998). Mammalian faunal change across the Paleocene-Eocene transition in Europe. In Late Paleocene-Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records, ed. Aubry, M.-P., Lucas, S., & Berggren, W. A.. New York: Columbia University Press, pp. 428–50.Google Scholar
Hooker, J. J.(2000). Paleogene mammals: crises and ecological change. In Biotic Response to Global Change: The Last 145 Million Years, ed. Culver, S. J. & Rawson, P. F.. Cambridge: Cambridge University Press, pp. 333–49.CrossRefGoogle Scholar
Hrdy, S. B. (1999). Mother Nature: A History of Mothers, Infants and Natural Selection. New York: Pantheon.Google Scholar
Izard, M. K., Wright, P. C., & Simons, E. L. (1985). Gestation length in Tarsius bancanus. American Journal of Primatology, 9, 327–31.CrossRefGoogle Scholar
Jablonski, N. G. (2003). The evolution of the tarsiid niche. In Tarsiers: Past, Present, and Future, ed. Wright, P., Simons, E., & Gursky, S.. New Brunswick, NJ: Rutgers University Press, pp. 35–49.Google Scholar
Jablonski, N. G. & Crompton, R. H. (1994). Feeding behavior, mastication, and tooth wear in the western tarsier, Tarsius bancanus. International Journal of Primatology, 15, 29–59.CrossRefGoogle Scholar
Jablonski, N. G. & Kelley, J. (1997). Did a major immunological event shape the evolutionary histories of apes and Old World monkeys?Journal of Human Evolution, 33, 513–20.CrossRefGoogle Scholar
Jablonski, N. G. & Whitfort, M. G. (1999). Environmental change during the Quaternary in East Asia and its consequences for mammals. Records of the Western Australian Museum, Suppl. 57, 307–15.Google Scholar
Jablonski, N. G., Whitfort, M. G., Roberts-Smith, N., & Xu, Q.-Q. (2000). The influence of life history and diet on the distribution of catarrhine primates during the Pleistocene in eastern Asia. Journal of Human Evolution, 39, 131–57.CrossRefGoogle ScholarPubMed
Janis, C. M. (1989). A climatic explanation for patterns of evolutionary diversity in ungulate mammals. Paleoanthropology, 32, 463–81.Google Scholar
Janis, C. M.(1993). Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annual Review of Ecology and Systematics, 24, 467–500.CrossRefGoogle Scholar
Kelley, J. (1997). Paleobiological and phylogenetic significance of life history in Miocene hominoids. In Function, Phylogeny, and Fossils: Miocene Hominoid Evolution and Adaptation, ed. Begun, D. R., Ward, C. V., & Rose, M. D.. New York: Plenum Press, pp. 173–208.CrossRefGoogle Scholar
Kelley, J.(2002). Life-history evolution in Miocene and extant apes. In Human Evolution Through Developmental Change, ed. Minugh-Purvis, N. & McNamara, K. J.. Baltimore: Johns Hopkins University Press, pp. 223–48.Google Scholar
Kennett, J. P. (1985). Neogene paleoceanography and plankton evolution. South African Journal of Science, 81, 251–3.Google Scholar
Lancaster, J. (1978). Carrying and sharing in human evolution. Human Nature, 1, 82–9.Google Scholar
Leopold, E. B., Liu, G., & Clay-Poole, S. (1992). Low-biomass vegetation in the Oligocene? In Eocene-Oligocene Climatic and Biotic Evolution, ed. Prothero, D. R. & Berggren, W. A.. Princeton: Princeton University Press, pp. 399–420.CrossRefGoogle Scholar
Martin, R. D. & McLarnon, A. M. (1990). Reproductive patterns in primates and other mammals: the dichotomy between altricial and precocial offspring. In Primate Life History and Evolution, ed. Rousseau, C. J.. New York: Wiley-Liss, pp. 47–79.Google Scholar
McKinney, M. L. (1998). Biodiversity dynamics: niche preemption and saturation in diversity euilibria. In Biodiversity Dynamics: Turnover of Populations, Taxa, and Communities, ed. McKinney, M. L. & Drake, J. A.. New York: Columbia University Press, pp. 3–16.Google Scholar
McNab, B. K. & Wright, P. C. (1987). Temperature regulation and oxygen consumption in the Philippine tarsier Tarsius syrichta. Physiological Zoology, 60, 596–600.CrossRefGoogle Scholar
Morgan, M. E., Badgley, C., Gunnell, G. F., et al. (1995). Comparative paleoecology of Paleogene and Neogene mammalian faunas: body-size structure. Palaeogeography, Palaeoclimatology, and Palaeoecology, 115, 287–317.CrossRefGoogle Scholar
Morley, R. J. (2000). Origin and Evolution of Tropical Rain Forests. New York: John Wiley & Sons.Google Scholar
Oxnard, C. E. (1976). Primate quadrupedalism: some subtle structural correlates. Yearbook of Physical Anthropology 20: 538–54.Google Scholar
Parker, G. G. (1995). Structure and microclimate of forest canopies. In Forest Canopies, ed. Lowman, M. D. & Nadkarni, N. M.. New York: Academic Press, pp. 73–106.Google Scholar
Parrish, J. T. (1987). Global palaeogeography and palaeoclimate of the Late Cretaceous and Early Tertiary. In The Origins of Angiosperms and Their Biological Consequences, ed. Friis, E. M., Chaloner, W. G., & Crane, P. R.. Cambridge: Cambridge University Press, pp. 51–73.Google Scholar
Pilbeam, D. (2002). Perspectives on the Miocene Hominoidea. In The Primate Fossil Record, ed. Hartwig, W.. Cambridge: Cambridge University Press, pp. 303–10.Google Scholar
Quade, J., Cerling, T. E., & Bowman, J. R. (1989). Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature, 342, 163–6.CrossRefGoogle Scholar
Rasmussen, D. T. (2002). Early catarrhines of the African Eocene and Oligocene. In The Primate Fossil Record, ed. Hartwig, W. C.. Cambridge: Cambridge University Press, pp. 203–20.Google Scholar
Rasmussen, D. T., Conroy, G. C., & Simons, E. L. (1998). Tarsier-like locomotor specializations in the Oligocene primate Afrotarsius. Proceedings of the National Academy of Sciences, USA, 95, 14848–50.CrossRefGoogle ScholarPubMed
Read, A. F. & Harvey, P. H. (1989). Life history differences among the eutherian radiations. Journal of Zoology, London, 219, 329–53.CrossRefGoogle Scholar
Reed, K. E. (1999). Population density of primates in communities: differences in community structure. In Primate Communities, ed. Fleagle, J. G., Janson, C., & Rees, J. L.. Cambridge: Cambridge University Press, pp. 116–40.CrossRefGoogle Scholar
Retallack, G. J. (1992a). Middle Miocene fossil plants from Fort Ternan (Kenya) and evolution of African grasslands. Paleobiology, 18, 383–400.CrossRefGoogle Scholar
Retallack, G. J.(1992b). Paleosols and changes in climate and vegetation across the Eogene/Oligocene boundary. In Eocene-Oligocene Climatic and Biotic Evolution, ed. Prothero, D. R. & Berggren, W. A.. Princeton: Princeton University Press, pp. 382–98.CrossRefGoogle Scholar
Retallack, G. J., Bestland, E. A., & Dugas, D. P. (1995). Miocene paleosols and habitats of Proconsul on Rusinga Island, Kenya. Journal of Human Evolution, 29, 53–91.CrossRefGoogle Scholar
Roberts, M. (1994). Growth, development, and parental care in the western tarsier (Tarsius bancanus) in captivity: evidence for a “slow” life-history and nonmonogamous mating system. International Journal of Primatology, 15, 1–28.CrossRefGoogle Scholar
Sige, B., Jaeger, J. J., Sudre, J., & Vianey-Liaud, M. (1990). Altiatlasius koulchii n. gen. et sp. Primate omomyide du Paleocene Superieur du Moroc, et les origines des euprimates. Palaeontographica (A), 214, 31–56.Google Scholar
Simons, E. L. & Bown, T. M. (1985). Afrotarsius chatrathi, first tarsiiform primate (?Tarsiidae) from Africa. Nature, 313, 475–7.CrossRefGoogle Scholar
Simons, E. L. & Rasmussen, D. T. (1994). A remarkable cranium of Pleisopithecus teras (Primates, Prosimii) from the Eocene of Egypt. Proceedings of the National Academy of Sciences, USA, 91, 9946–50.CrossRefGoogle ScholarPubMed
Stewart, C.-B. (1999). The colobine Old World monkeys as a model system for the study of adaptive evolution at the molecular level. In The Nonhuman Primates, ed. Dolhinow, P. & Fuentes, A.. Mountain View: Mayfield Publishing Company, pp. 29–38.Google Scholar
Temerin, L. A. & Cant, J. G. H. (1983). The evolutionary divergence of Old World monkeys and apes. American Naturalist, 122, 335–51.CrossRefGoogle Scholar
Ungar, P. S. & Kay, R. F. (1995). The dietary adaptations of European Miocene catarrhines. Proceedings of the National Academy of Sciences, USA, 92, 5479–81.CrossRefGoogle ScholarPubMed
Upchurch, G. R. & Wolfe, J. A. (1987). Mid-Cretaceous to Early Tertiary vegetation and climate: evidence from fossil leaves and woods. In The Origins of Angiosperms and their Biological Consequences, ed. Friis, E. M., Chaloner, W. G., & Crane, P. R.. Cambridge: Cambridge University Press, pp. 75–105.Google Scholar
Vrba, E. S. (1985). Environment and evolution: alternative causes of the temporal distribution of evolutionary events. South African Journal of Sciences, 81, 229–36.Google Scholar
Wheatley, B. P. (1982). Energetics of foraging in Macaca fascicularis and Pongo pygmaeus and a selective advantage of large body size in the orang-utan. Primates, 23, 348–63.CrossRefGoogle Scholar
White, T. D., Suwa, G., & Asfaw, B. (1994). Australopithecus ramidus, a new species of early hominid from Aramis, Ethiopia. Nature, 371, 306–12.CrossRefGoogle ScholarPubMed
Whybrow, P. J. & Andrews, P. (2000). Response of Old World terrestrial vertebrate biotas to Neogene climate change. In Biotic Response to Global Change: The Last 145 Million Years, ed. Culver, S. J. & Rawson, P. F.. Cambridge: Cambridge University Press, pp. 350–66.CrossRefGoogle Scholar
Wing, S. L. & Harrington, G. J. (2001). Floral response to rapid warming in the earliest Eocene and implications for concurrent faunal change. Paleobiology, 27, 539–63.2.0.CO;2>CrossRefGoogle Scholar
Wolfe, J. A. (1992). Climatic, floristic, and vegetational changes near the Eocene/Oligocene boundary in North America. In Eocene-Oligocene Climatic and Biotic Evolution, ed. Prothero, D. R. & Berggren, W. A.. Princeton: Princeton University Press, pp. 421–36.CrossRefGoogle Scholar
Wrangham, R. W., Conklin-Brittain, N. L., & Hunt, K. D. (1998). Dietary response of chimpanzees and cercopithecines to seasonal variation in fruit abundance. I. Antifeedants. International Journal of Primatology, 19, 949–70.CrossRefGoogle Scholar
Wrangham, R. W., Jones, J. H., Laden, G., Pilbeam, D., & Conklin-Brittain, N. (1999). The raw and the stolen. Current Anthropolology, 40, 567–94.Google ScholarPubMed
Wright, P. C. & Martin, L. B. (1995). Predation, pollination and torpor in two nocturnal prosimians: Cheirogaleus major and Microceubs rufus in the rain forest of Madagascar. In Creatures of the Dark: The Nocturnal Prosimians, ed. Alterman, L., Doyle, G. A., & Izard, M. K.. New York: Plenum Press, pp. 45–60.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×