Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-09T17:08:14.223Z Has data issue: false hasContentIssue false

9 - Flow-Based Analysis of Protein Interaction Networks

Published online by Cambridge University Press:  28 January 2010

Aidong Zhang
Affiliation:
State University of New York, Buffalo
Get access

Summary

INTRODUCTION

The previous three chapters have discussed in detail the analysis of protein-proteinelusive interactions, which often compromise the effectiveness of the approaches presented so far. In this chapter, we will examine flow-based approaches, another avenue for the analysis of PPI networks. These methods permit information from other sources to be integrated with PPI data to enhance the effectiveness of algorithms for protein function prediction and functional module detection. Flow-based approaches offer a novel strategy for assessing the degree of biological and topological influence of each protein over other proteins in a PPI network. Through simulation of biological or functional flows within these complex networks, these methods seek to model and predict network behavior under the influence of various realistic external stimuli.

This chapter will discuss several flow-based methods for the prediction of protein function. The first section will address the concept of functional flow introduced by Nabieva et al. [221] and the FunctionalFlow algorithm based on this model. In this approach, each protein with a known functional annotation is treated as a source of functional flow, which is then propagated to unannotated nodes, using the edges in the interaction graph as a conduit. This process is based on simple local rules. A distance effect is formulated that considers the impact of each annotated protein on any other protein, with the effect diminishing as the distance between the proteins increases.

Type
Chapter
Information
Protein Interaction Networks
Computational Analysis
, pp. 152 - 198
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×