Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-06T23:33:50.824Z Has data issue: false hasContentIssue false

10 - Statistics and Machine Learning Based Analysis of Protein Interaction Networks

Published online by Cambridge University Press:  28 January 2010

Aidong Zhang
Affiliation:
State University of New York, Buffalo
Get access

Summary

INTRODUCTION

In recent years, the genomic sequencing of several model organisms has been completed. As of June 2006, complete genome sequences were available for 27 archaeal, 326 bacterial, and 21 eukaryotic organisms, and the sequencing of 316 bacterial, 24 archaeal, and 126 eukaryotic genomes was in progress [281]. In addition, the development of a variety of high-throughput methods, including the two-hybrid system, DNA microarrays, genomic SNP arrays, and protein chips, has generated large amounts of data suitable for the analysis of protein function. Although it is possible to determine the interactions between proteins and their functions accurately using biochemical/molecular experiments, such efforts are often very slow, costly and require extensive experimental validation. Therefore, the analysis of protein function in available databases offers an attractive prospect for less resource-intensive investigation.

Work with these sequenced genomes is hampered, however, by the fact that only 50–60% of their component genes have been annotated [281]. Several approaches have been developed to predict the functions of these unannotated proteins. The accurate prediction of protein function is of particular importance to an understanding of the critical cellular and biochemical processes in which they play a vital role. Methods that allow researchers to infer the functions of unannotated proteins using known functional annotations of proteins and the interaction patterns between them are needed.

Machine learning has been widely applied in the field of protein-protein interaction (PPI) networks and is particularly well suited to the prediction of protein functions. Methods have been developed to predict protein functions using a variety of information sources, including protein structure and sequence, protein domain, PPIs, genetic interactions, and the analysis of gene expression.

Type
Chapter
Information
Protein Interaction Networks
Computational Analysis
, pp. 199 - 215
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×