Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T12:34:30.096Z Has data issue: false hasContentIssue false

17 - Infections and malnutrition

Published online by Cambridge University Press:  05 September 2014

Ronald O. C. Kaschula
Affiliation:
University of Cape Town
Helen C. Wainwright
Affiliation:
University of Cape Town Faculty of Health Sciences
Marta C. Cohen
Affiliation:
Sheffield Children’s Hospital
Irene Scheimberg
Affiliation:
Barts and the London NHS Trust, London
Get access

Summary

Overview of congenital infections with description of the most frequent conditions

Definition

Congenital infections are infections of the fetus or neonate that occur during pregnancy, during delivery (intrapartum), or in the immediate postnatal period. The infection may be due to ascending infection from the vagina causing chorioamnionitis, maternal fever, and leukocytosis. The infection may be due to blood spread from the mother via the chorionic villi of the placenta to the fetus, or may be due to pre-existing endometritis spreading through the membranes at 20 weeks gestation when the amniotic sac fills the uterine cavity and fuses with the endometrium.

Macroscopic features

Both the fetus and the placenta contribute to the final diagnosis. Measurements of the fetus provide a baseline for detection of abnormalities that may guide the diagnosis. The foot length provides an accurate assessment of gestational age even in the macerated and hydropic fetus; the head circumference should approximate the crown–rump length [1]. A discrepancy of greater than 20 mm suggests the presence of hydrocephalus or microcephaly in a fetus with congenital infection. A babygram (X-ray of the fetus) provides information about the skeletal system, which is frequently abnormal in congenital infections (see Chapter 18). Typical features are seen in congenital syphilis (metaphysitis) and in congenital rubella (celery stalk pattern). A babygram also shows the presence of hydrops and calcification deposited in necrotic tissue. Hydrops is a characteristic feature of congenital infection due to maternal blood spread (see also Chapter 5).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Maroun, L. L. and Graem, N.. Autopsy standards of body parameters and fresh organ weights in nonmacerated and macerated human fetuses. Pediatr Dev Pathol 2005; 8: 206–17.CrossRefGoogle ScholarPubMed
Goldenberg, R., Hauth, J., Andrews, W., et al. Intrauterine infection and preterm delivery. New Engl J Med 2000; 342: 1500–7.CrossRefGoogle ScholarPubMed
Jessop, F. and Sebire, N. J.. Histological chorioamnionitis: current concepts of diagnosis, classification and clinical significance. Fetal Maternal Med Review 2011; 22: 25–44.CrossRefGoogle Scholar
Jacques, S. M. and Qureshi, F.. Necrotizing funisitis: a study of 45 cases. Human Pathol 1992; 23(11): 1278–83.CrossRefGoogle ScholarPubMed
Redline, R. W.. Severe fetal placental vascular lesions in term infants with neurologic impairment. Am J Obstet Gynecol 2005; 192: 452–7.CrossRefGoogle ScholarPubMed
Rushton, I.. Pathology of the placenta. In Wigglesworth, J. S. and Singer, D. B., eds. Textbook of Fetal and Perinatal Pathology. 2nd edition. Boston, MA, Blackwell Science, 1998, 145–199.Google Scholar
Donders, G. G., Moerman, P., De Wet, G. H., et al. The association between Chlamydia cervicitis, chorioamnionitis and neonatal complications. Arch Gynecol Ostet 1991; 249: 79–83.CrossRefGoogle ScholarPubMed
Mehta, V., Balachandran, C., and Lonikar, V.. Blueberry muffin baby: a pictorial differential diagnosis. Dermatol Online J 2008; 14: 8Google Scholar
Singer, D. B.. Pathology of neonatal Herpes simplex virus infection. Persp Pediatr Pathol 1981; 6: 243–78.Google ScholarPubMed
Gressens, P., Langston, C., and Martin, J. R.. In situ PCR localization of herpes simplex virus DNA sequences in disseminated neonatal herpes encephalitis. J Neuropathol Exp Neurol 1994; 53: 469–82.CrossRefGoogle ScholarPubMed
Watanabe, K., Tanaka, J., Hatano, M., et al. Generalized neonatal herpes virus infection (cytomegalovirus or herpes virus type 1): comparative examination of loci attacked by two viruses. Acta Pathol Jpn 1984. 34847–58.Google ScholarPubMed
Arvin, A. M., Yeager, A. S., and Bruhn, F. W.. Neonatal herpes simplex infection in the absence of mucocutaneous lesions. J Pediatr 1982; 100: 715–21.CrossRefGoogle ScholarPubMed
Redline, R. W., Genest, D. B., and Tyeko, B.. Detection of enteroviral infection in paraffin-embedded tissue by the RNA polymerase chain reaction technique. Amer J Clin Path 1991: 96; 568–71.Google ScholarPubMed
Palmer, C. G. S. and Pauli, R. M.. Intrauterine rubella infection. J Pediatr 1988; 112: 506–7.CrossRefGoogle Scholar
Hagerman, J., Shulman, S., Schreiber, H., et al. Congenital tuberculosis: critical reappraisal of clinical findings and diagnostic procedures. Pediatrics 1980; 66: 980–4.Google Scholar
Myers, J. P., Perstein, P. H., Light, I. J., et al. Tuberculosis in pregnancy with fatal congenital infection. Pediatrics 1981; 67: 89–94.Google ScholarPubMed
Nemir, R. L. and O’Hare, D.. Congenital tuberculosis: review and diagnostic guidelines. AJDC 1985; 39: 284–7.Google Scholar
Judge, D. M.. Congenital syphilis. In: Scapelli, D. G. and Migaki, G., eds., Transplacental Effects on Fetal Health: Proceedings of a Symposium held in Bethesda, MD, Nov 5–6, 1987. New York, A. R. Liss, 1988, 87–106.Google Scholar
Oppenheimer, E. H. and Dalms, B.. Congenital syphilis in the fetus and neonate. Perspect Pediatr Pathol 1981; 6: 115–38.Google ScholarPubMed
Wendel, G. D., Maberry, M. C., Christmas, J. T., et al. Examination of amniotic fluid in diagnosing congenital syphilis with fetal death. Obstet Gynecol 1989; 74: 967–70.Google ScholarPubMed
Hanshaw, J. B.. Congenital cytomegalovirus infection: a fifteen year perspective. J infect Dis 1971; 123: 555–61.CrossRefGoogle ScholarPubMed
Becroft, D. M. O.. Prenatal cytomegalovirus infection: epidemiology, pathology and pathogenesis. Perspect Pediatr Pathol 1981; 6: 203–4.Google ScholarPubMed
Fowler, P., Stagno, S., Pass, R. F., et al. The outcome of cytomegalovirus infection related to maternal antibody status. N Eng J Med 1992; 326: 945–9.CrossRefGoogle Scholar
Frenkel, J. R.. Pathology and pathogenesis of congenital toxoplasmosis. Bull NY Acad Med 1974; 502: 182–91.Google Scholar
Dische, M. R. and Gooch, W. M.. Congenital toxoplasmosis. Perspect Pediatr Pathol 1981; 6: 83–113.Google ScholarPubMed
Harun, R., Saleh, E. K., Gandahusada, S., et al. Congenital toxoplasmosis in a 15-day-old infant: a case report. Paediatr Indones 1989; 29: 151–9.Google Scholar
Hohlfeld, P., Daffos, F., Costa, J. M., et al. Prenatal diagnosis of congenital toxoplasmosis with a polymerase-chain-reaction test on amniotic fluid. N Engl J Med 1994; 331: 695–9.CrossRefGoogle ScholarPubMed
Esterly, J. R. and Oppenheimer, E. H.. Pathological lesions due to congenital rubella. Arch Pathol 1969; 87: 380–91.Google ScholarPubMed
Wolff, S. M.. The ocular manifestations of congenital rubella. Trans Am Ophthalmol Soc 1972; 705: 77–614.Google Scholar
O’Neill, J. F.. The ocular manifestations of congenital infection: a study of the early effect and long-term outcome of maternally transmitted rubella and toxoplasmosis. Trans Am Ophthalmol Soc 1998; 96: 813–79.Google ScholarPubMed
Berry, P. J., Gray, E. S., and Porter, H. J.. Parvovirus infection of the human fetus and newborn. Semin Diagn Pathol 1992; 9: 4–12.Google Scholar
Vawter, G. F.. Listeria monocytogenes: the perinatal infection. Perspect Pediatr Pathol 1981; 6: 153–66.Google Scholar
MacDonald, A. B.. Human fetal borreliosis, toxaemia of pregnancy and fetal death. In: Proceedings of the 2nd International Symposium on Lyme Disease. Vienna, G. Fischer, 1985.Google Scholar
Bittencourt, A. L.. Congenital Chagas disease. Am J Dis Childhood 1976; 130: 97–103.Google ScholarPubMed
Bern, C., Martin, D. L., and Gilman, R. H.. Acute and congenital Chagas disease. Adv Parasitol 2011; 75: 19–47.CrossRefGoogle ScholarPubMed
Almeida, J. A., Cunha, D. F., Olivelra, G., et al. Relationship between Chagas’ disease immunoreactivity in pericardial fluid and survival of children. J Parasitol 1997; 83: 519–20.CrossRefGoogle ScholarPubMed
Hoff, R., Mott, K. E., Milanesi, M. L., et al. Congenital Chagas’ disease in an urban population: investigation of infected twins. Trans R Soc Trop Med Hyg 1978; 72: 247–50.CrossRefGoogle Scholar
Schijman, A. G.. Congenital chagas disease. In: Mushahwar, I. K., ed., Congenital and Other Infectious Disease of the Newborn. Boston, MA, Elsevier, 2007, 223–58.Google Scholar
Rudon, I., Boschi-Pinto, C., and Biloglav, Z.. Epidemiology and etiology of childhood pneumonia. Bull World Health Organ 2008; 86: 408–16.CrossRefGoogle Scholar
Meissner, H. C.. Selected populations at increased risk from respiratory syncytial virus infection. Pediatr Infect Dis J 2003; 22: S40–5.CrossRefGoogle ScholarPubMed
Dreizin, R. S., Maksimovich, N. A., Zolotarskaia, E. E., et al. Antigens of adeno-associated viruses in children dying from acute respiratory disease. Vopr Virusol 1977; 1: 82–7.Google Scholar
Matsuoka, T., Naito, T., Kubota, Y., et al. Disseminated adenovirus (type 19) infection in a neonate: rapid detection of the infection by immunofluorescence. Acta Paediatr Scand 1990; 79: 568–71.CrossRefGoogle Scholar
Colon, A. J., Teper, A. M., Vollmer, W. M., et al. Risk factors for development of bronchiolitis obliterans in children with bronchiolitis. Thorax 2006; 61: 503–6CrossRefGoogle Scholar
Vargas, S. O., Kozakewich, H. P. W., Perez-Atayde, A. R., and McAdam, A. J.. Pathology of human metapneumovirus infection: insights into the pathogenesis of a newly identified respiratory virus. Pediatr Dev Pathol 2004; 7: 478–86.CrossRefGoogle ScholarPubMed
Iwasaki, T., Monma, N., Satodate, R., et al. An immunofluorescent study of generalized Coxsackie virus B3 infection in a newborn infant. Acta Pathol Jpn 1985; 35: 741–8.Google Scholar
Iwasaki, T., Monma, N., Satodate, R., et al. Myocardial lesions by Coxsackie virus B3 and cytomegalovirus infection in infants. Heart Vessels 1985; 1: 167–72.CrossRefGoogle ScholarPubMed
Foulis, A. K., Farquharson, M. A., Cameron, S. O., et al. A search for the presence of the enteroviral capsid protein VP1 in pancreases of patients with type 1 (insulin-dependent) diabetes and pancreases and hearts of infants who died of coxsackieviral myocarditis. Diabetologia 1990; 33: 290–8.CrossRefGoogle ScholarPubMed
Fallon, J. T.. Myocarditis: Dallas criteria revisted. 2010.
Kyto, V., Sarasti, A., Voipoi-Pulkki, L.-M., et al. Incidence of fatal myocarditis: a population based study in Finland. Am J Epidemiol 2007; 165: 570–4.CrossRefGoogle ScholarPubMed
Melish, M. C. and Glasgow, L. A.. The staphylococcal Scalded Skin Syndrome. New Engl J Med 1970; 282: 1114–19.CrossRefGoogle ScholarPubMed
Ladhan, S., Joannou, C., Lochrie, D. P., et al. Clinical, microbiological and biochemical aspects of the exfoliative toxins causing staphylococcal scalded skin syndrome. Clin Microbio Rev 1999; 12: 224–42.Google Scholar
Diven, D. J.. An overview of pox viruses. J Am Acad Dermatol 2001; 44: 1–16.CrossRefGoogle Scholar
Penny, M. E.. Protein–energy malnutrition pathophysiology, clinical consequences and treatment. In: Walker, W. A., Wakins, J. B., and Dugan, C., eds, Nutrition in Pediatrics. Hamilton, BC Decker, 2003 174–94.Google Scholar
de Onis, M., Monteiro, C., and Clugson, D.. The worldwide magnitude of protein energy malnutrition: an overview from WHO global database on child growth. Bull WHO 1993; 71: 703–12.Google ScholarPubMed
Caulfield, L. E., de Onis, M., Blossner, G., et al. Undernutrition as an underlying cause of child deaths associated with diarrhea, pneumonia, malaria and measles. Am J Clin Nutr 2004; 80: 193–8.CrossRefGoogle ScholarPubMed
Joosten, K. F. M. and Hulst, J. M.. Prevalence of malnutrition in paediatric hospital patients. Curr Opin Pediatr 2008; 20: 590–6.CrossRefGoogle ScholarPubMed
Pawellek, I., Dokoupil, K., and Koletzko, B.. Prevalence of malnutrition in paediatric hospital patients. Clin Nitr 2008; 27: 72–6.CrossRefGoogle ScholarPubMed
Hendricks, H. M., Duggan, C., Gallagher, L., et al. Malnutrition in hospitalized pediatric patients: current prevalence. Arch Pediatr Adolesc Med 1995; 149: 1118–22.CrossRefGoogle ScholarPubMed
Wellcome Trust Working Party. Editorial. Lancet 1970; 2: 302–3.Google Scholar
Gomez, F., Ramos-Galvan, R., Frenk, S., et al. Mortality in second and third-degree malnutrition. J Trop Pediatr 1956; 2: 77–83.CrossRefGoogle ScholarPubMed
Lavoi-Pierre, G. J., Keller, W., Dixon, H., et al. Measuring Change in Nutritional Status: Guidelines for Assessing the Nutritional Impact of Supplementary Feeding Programmes for Vulnerable Groups. Geneva, World Health Organization, 1983, 9–101.Google Scholar
World Health Organization. Physical Status: The Use and Interpretation of Anthropometry. Geneva, World Health Organization, 1995.Google Scholar
WHO Multicentre Growth Reference Study Group. WHO child growth standards based on length/height, weight and age. Acta Paediatr 2006; 450: 76–85.Google Scholar
Grover, Z. and Ee, L. C.. Protein energy malnutrition. Pediatr Clin N Am 2009; 56: 1055–68.CrossRefGoogle ScholarPubMed
World Health Organization. Child growth standards: arm circumference for age 2007.
World Health Organization. Child growth standards and the identification of severe acute malnutrition in infants and children: a Joint Statement by WHO and UNICEF. Geneva, World Health Organization, 2009.
Briend, A., Dykewicz, C., Graven, K., et al. Usefulness of nutritional indices and classifications in predicting death of malnourished children. Br Med J (Clin Res Ed) 1986; 293: 373–5.CrossRefGoogle ScholarPubMed
Myatt, M., Khara, T., and Collins, S.. A review of methods to detect cases of severely malnourished children in the community for their admission into community-based therapeutic care programs. Food Nutr Bull 2006; 27: S7–23.CrossRefGoogle ScholarPubMed
Coward, W. A. and Lunn, P. T.. The biochemistry and physiology of kwashiorkor and marasmus. Br Med Bull 1981; 37: 19–24.CrossRefGoogle Scholar
Campbell, J. A. H.. The morbid anatomy of infantile malnutrition in Cape Town. Arch Dis Child 1956; 31: 310–14.CrossRefGoogle ScholarPubMed
Smythe, P. M., Schonland, M., Brereton-Stiles, G. G., et al. Thymolymphatic deficiency and depression of cell-mediated immunity in protein-calorie malnutrition. Lancet 1971; 2: 939–44.CrossRefGoogle ScholarPubMed
McKenzie, D., Hansen, J. D. L., Becker, W.. Herpes simplex virus infection: dissemination in association with malnutrition. Arch Dis Child 1959; 34: 250–6.CrossRefGoogle ScholarPubMed
Kaschula, R. O. C.. Malnutrition and intestinal malabsorption. In Doerr, W., Seifert, G., and Uehlinger, E., eds., Tropical Pathology, vol. 8. 2nd edition. London, Springer-Verlag, 1995, 985–1030.CrossRefGoogle Scholar
Webber, B. L. and Freiman, I.. The liver in kwashiorkor: a clinical and electron microscopic study. Arch Pathol 1974; 98: 400–8.Google Scholar
Gahagan, S.. Failure to thrive: a consequence of undernutrition. Pediatr Rev 2006; 27: e1–11.CrossRefGoogle ScholarPubMed
Mei, Z., Grummer-Strawn, L. M., Thompson, D., et al. Shifts in percentiles of growth during early childhood: analysis of longitudinal data from the California child health and development study. Pediatrics 2004; 113: e617–27.CrossRefGoogle ScholarPubMed
Edwards, A., Halse, P., Parkin, M., et al. Recognising failure to thrive in early childhood. Arch Dis Child 1990; 65: 1263–5.CrossRefGoogle ScholarPubMed
Horner, J. M., Thorsson, A. V., and Hintz, R. L.. Growth deceleration patterns in children with constitutional short stature: an aid to diagnosis. Pediatrics 1978; 62: 529–34.Google Scholar
Markowitz, R., Watkins, J. B., and Duggan, C.. Failure to thrive: malnutrition in the pediatric outpatient setting. In Duggan, C., Watkins, J. B., Walker, W. A., eds., Nutrition in Pediatrics 4. Shelton, CT, People’s Medical Publishing House, 2009, 479–89.Google Scholar
Bools, C. N., Neale, B. A., and Meadow, S. R.. Co-morbidity associated with fabricated illness (Munchausen syndrome by proxy). Arch Dis Child 1992; 67: 77–9.CrossRefGoogle Scholar
Villar, J., Smeriglio, V., Martorell, R., et al. Heterogeneous growth and mental development of intrauterine growth-retarded infants during the first 3 years of life. Pediatrics 1984; 74: 783–91.Google ScholarPubMed
Kelleher, K. J., Casey, P. H., Bradley, R. H., et al. Risk factors and out-comes for failure to thrive in low birth weight preterm infants. Pediatrics 1993; 91: 941–8.Google Scholar
Kuczmarski, R. J., Ogden, C. L., Guo, S. S., et al. 2000 CDC growth charts in the United States: methods and development. Vital Health Stat 2002; 11: 1–190.Google Scholar
Cole, T. J., Bellizzi, M. C., Flegal, K. M., and Dietz, W. H.. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 2000; 329: 1240–3.CrossRefGoogle Scholar
Hoppin, A. G.. Evaluation and management of obesity. In Duggan, C., Watkins, J. B., and Walker, W. A., eds., Nutrition in Pediatrics 4. Shelton, CT, People’s Medical Publishing House, 2009, 441–53.Google Scholar
Cunningham-Rundles, S., Moon, A., and McNeeley, D. F.. Malnutrition and host defense. In Duggan, C., Watkins, J. B., and Walker, W. A., eds., Nutrition in Pediatrics 4. Shelton, CT, People’s Medical Publishing House, 2009, 261–70.Google Scholar
Kaschula, R. O. C., Druker, J., and Kipps, A.. Late morphological consequences of measles: a lethal and debilitating disease among the poor. Rev Infect Dis 1983; 5: 395–404.CrossRefGoogle Scholar
Bhettay, E. M. and Bakst, C. M.. Hypervitaminosis A causing intracranial hypertension. S Afr Med J 1988; 74: 584–5.Google ScholarPubMed
Persson, B., Tunnell, R., and Ekengren, K.. Chronic vitamin A intoxication during the first year of life. Acta Paediatr Scand 1965; 54: 49–60.CrossRefGoogle Scholar
Sinha, S., Davies, J., Toner, N., et al. Vitamin E supplementation reduces frequency of periventricular haemorrhage in very preterm babies. Lancet 1987; 1: 466–71.CrossRefGoogle ScholarPubMed
Cywes, S.. Haemoperitoneum in the newborn. S Afr Med J 1967; 41: 1063–73.Google ScholarPubMed
Bray, G. W.. Vitamin deficiency in infants: its possibility, prevalence and prophylaxis. Trans R Soc Trop Med Hyg 1928; 22: 9–36.CrossRefGoogle Scholar
Winckel, W. E. F.. Changes of the myenteric plexus in pellagra. Doc Med Geogr Trop 1951; 3: 100–4.Google Scholar
Smithells, R. W.. Prevention of neural tube defects by vitamin supplementation. In Dobbing, J., ed., Prevention of Spina Bifida and Other Neural Tube Defects. London, Academic Press, 1983, 53–84.Google Scholar
De Luca, H. F. and Schnoes, H. K.. Vitamin D: recent advances. Annu Rev Biochem 1983; 52: 411–39.CrossRefGoogle Scholar
Holick, M. F.. Vitamin D Deficiency. New Eng J Med 2007; 357: 266–81.CrossRefGoogle ScholarPubMed
Davies, J. H. and Shaw, N. J.. Preventable but no strategy: vatamin D deficiency in UK. Arch Dis Child 2011; 96: 614–15.CrossRefGoogle Scholar
Cohen, M. C., Offiah, A., Sprigg, A., and Al-Adnani, M.. Vatamin D deficiency and sudden unexpected death in infancy and childhood: a cohort study. Ped Devel Path 2013; 16: 292–300.CrossRefGoogle Scholar
Gordon, C. M., Feldman, H. A., L. Sinclair, et al. Prevalence of Vitamin D deficiency among healthy infants and toddlers. Arch Pediatr Adolesc Med 2008; 162: 505–12.CrossRefGoogle Scholar
Oski, F. A.. Iron deficiency: facts and fallacies. Pediatr Clin North Am 1985; 32: 493–7.CrossRefGoogle ScholarPubMed
Lozoff, B. and Wolf, A.. Does abnormal behavior account for low Bayley scores in iron deficient infants (Abstr). Pediatr Res 1983; 17: 100A.Google Scholar
Golden, M. H. N., Golden, B. E., Harland, P. S. E. G., and Jackson, A. A.. Zinc and immune-competence in protein energy malnutrition. Lancet 1978; 1: 1226–7.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×