Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-04T05:06:18.981Z Has data issue: false hasContentIssue false

13 - Congenital tumors

Published online by Cambridge University Press:  05 September 2014

Sarangarajan Ranganathan
Affiliation:
University of Pittsburgh School of Medicine
Marta C. Cohen
Affiliation:
Sheffield Children’s Hospital
Irene Scheimberg
Affiliation:
Barts and the London NHS Trust, London
Get access

Summary

Introduction

Tumors detected at birth or in the perinatal period are relatively uncommon; they are even more uncommon as a cause of death resulting in post mortem study. Current therapeutic protocols have improved survival for most perinatal tumors with advanced surgical options that are far advanced and intensive care support that has resulted in many of the newborns surviving to much older ages and even being completely freed of these tumors. Many of the congenital tumors are detected later in the first year of life and hence may not all come into the purview of perinatal (antenatal and neonatal) tumors [1–4]. The ones most likely to come to attention at birth or in utero are large tumors that may interfere with the birth of the child, or those that cause intrauterine distress or fetal hydrops. A majority of the tumors detected in the perinatal/neonatal period are benign tumors; some are even considered to be hamartomas rather than malignant neoplasms (Table 13.1). Both may result in death of the fetus or newborn due to their systemic effects and hence will be covered in this chapter.

The most likely malignant tumor that is detected prenatally is a teratoma that is usually detected by prenatal ultrasounds, more so if it is large and either sacrococcygeal or cervical. Most of the other tumors do not interfere with delivery unless associated with other congenital anomalies or complications that make them evident during the course of investigations in the perinatal period. Rare instances of tumors that can be detected antenatally include lung cystic lesions or rare instances of incidentally detected renal or adrenal masses. It is important to realize that a large proportion of visceral lesions that manifest in the perinatal period or are detected antenatally are benign tumor-like conditions such as cystic renal disease or cystic adenomatoid malformation of the lung rather than true neoplasms, and hence are not included in this chapter.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Isaacs, H.. Tumors of the Fetus and Newborn. Philadelphia, PA, W.B. Saunders, 1997.Google Scholar
Isaacs, H.. Tumors of the Fetus and Infant: An Atlas. New York, Springer, 2002.Google Scholar
Stocker, J. T. and Dehner, L. P.. Pediatric Pathology. 2nd edition. Philadelphia, PA, Lippincott Williams & Wilkins, 2001.Google Scholar
Naeye, R. L., Kissane, J. M., and Kaufman, N.. Perinatal Diseases. Baltimore, MD, Williams & Wilkins, 1981.Google ScholarPubMed
Bader, J. L. and Miller, R. W.. US cancer incidence and mortality in the first year of life. Am J Dis Child 1979; 133: 157–9.Google ScholarPubMed
Borch, K., Jacobsen, T., Olsen, J. H., Hirsch, F., and Hertz, H.. Neonatal cancer in Denmark 1943–1985. Pediatr Hematol Oncol 1992; 9: 209–16.Google Scholar
Isaacs, Jr. H.Congenital and neonatal malignant tumors: a 28-year experience at Children’s Hospital of Los Angeles. Am J Pediatr Hematol Oncol 1987; 9: 121–9.CrossRefGoogle ScholarPubMed
Frazier, A. L., Weldon, C., and Amatruda, J.. Fetal and neonatal germ cell tumors. Semin Fetal Neonatal Med 2012; 17: 222–30.CrossRefGoogle ScholarPubMed
Dehner, L. P., Mills, A., Talerman, A., et al. Germ cell neoplasms of head and neck soft tissues: a pathologic spectrum of teratomatous and endodermal sinus tumors. Hum Pathol 1990; 21: 309–18.CrossRefGoogle ScholarPubMed
Isaacs, Jr. H.Perinatal (fetal and neonatal) germ cell tumors. J Pediatr Surg. 2004; 39: 1003–13.CrossRefGoogle ScholarPubMed
Kamil, D., Tepelmann, J., Berg, C., et al. Spectrum and outcome of prenatally diagnosed fetal tumors. Ultrasound Obstet Gynecol 2008; 31: 296–302.CrossRefGoogle ScholarPubMed
Isaacs, Jr. H.Perinatal (congenital and neonatal) neoplasms: a report of 110 cases. Pediatr Pathol 1985; 3: 165–216.CrossRefGoogle ScholarPubMed
April, M. M., Ward, R. F., and J. M. Garelick. Diagnosis, management, and follow-up of congenital head and neck teratomas. Laryngoscope. 1998; 108: 1398–401.CrossRefGoogle Scholar
Isaacs, Jr. H.Fetal hydrops associated with tumors. Am J Perinatol. 2008; 25: 43–68.CrossRefGoogle ScholarPubMed
Walton, J. M., Rubin, S. Z., Soucy, P., et al. Fetal tumors associated with hydrops: the role of the pediatric surgeon. J Pediatr Surg 1993; 28: 1151–3.CrossRefGoogle ScholarPubMed
Isaacs, Jr. H.Fetal and neonatal cardiac tumors. Pediatr Cardiol 2004; 25: 252–73.CrossRefGoogle ScholarPubMed
Levin, M. L., Leone, Jr. C. R., Kincaid, M. C.. Congenital orbital teratomas. Am J Ophthalmol 1986; 102: 476–81.CrossRefGoogle ScholarPubMed
Isaacs, H.. Fetal brain tumors: a review of 154 cases. Am J Perinatol. 2009; 26: 453–66.CrossRefGoogle ScholarPubMed
Rostad, S., Kleinschmidt-DeMasters, B. K., and Manchester, D. K.. Two massive congenital intracranial immature teratomas with neck extension. Teratology. 1985; 32: 163–9.CrossRefGoogle ScholarPubMed
Ayres, A. W. and Pugh, S. K.. Ex utero intrapartum treatment for fetal oropharyngeal cyst. Obstet Gynecol Int 2010: .
Castillo, F., Peiro, J. L., Carreras, E., et al. The exit procedure (ex-utero intrapartum treatment): management of giant fetal cervical teratoma. J Perinat Med 2007; 35: 553–5.CrossRefGoogle ScholarPubMed
Glynn, F., Sheahan, P., Hughes, J., and Russell, J.. Successful ex utero intrapartum treatment (EXIT) procedure for congenital high airway obstruction syndrome (CHAOS) owing to a large oropharyngeal teratoma. Ir Med J 2006; 99: 242–3.Google ScholarPubMed
Chiu, H. H., Hsu, W. C., Shih, J. C., et al. The EXIT (ex utero intrapartum treatment) procedure. J Formos Med Assoc 2008; 107: 745–8.CrossRefGoogle ScholarPubMed
Heerema-McKenney, A., Harrison, M. R., Bratton, B., Farrell, J., and Zaloudek, C.. Congenital teratoma: a clinicopathologic study of 22 fetal and neonatal tumors. Am J Surg Pathol 2005; 29: 29–38.CrossRefGoogle ScholarPubMed
Moazam, F. and Talbert, J. L.. Congenital anorectal malformations: harbingers of sacrococcygeal teratomas. Arch Surg 1985; 120: 856–9.CrossRefGoogle ScholarPubMed
Lahdenne, P., Heikinheimo, M., Jaaskelainen, J., et al. Vertebral abnormalities associated with congenital sacrococcygeal teratomas. J Pediatr Orthop. 1991; 11: 603–7.CrossRefGoogle ScholarPubMed
Gilbert-Barness, E.. Potter’s Pathology of the Fetus, Infant, and Child. 2nd edition. Philadelphia, PA, Mosby Elsevier, 2007.Google Scholar
Brand, A., Alves, M. C., Saraiva, C., et al. Fetus in fetu: diagnostic criteria and differential diagnosis – a case report and literature review. J Pediatr Surg 2004; 39: 616–18.CrossRefGoogle ScholarPubMed
Gale, G. B., D’Angio, G. J., Uri, A., Chatten, J., and Koop, C. E.. Cancer in neonates: the experience at the Children’s Hospital of Philadelphia. Pediatrics 1982; 70: 409–13.Google ScholarPubMed
Isaacs, Jr. H.Fetal and neonatal neuroblastoma: retrospective review of 271 cases. Fetal Pediatr Pathol 2007; 26: 177–84.CrossRefGoogle ScholarPubMed
Boyd, T. K. and Schofield, D. E.. Monozygotic twins concordant for congenital neuroblastoma: case report and review of the literature. Pediatr Pathol Lab Med 1995; 15: 931–40.CrossRefGoogle ScholarPubMed
Bolande, R. P. and Towler, W. F.. A possible relationship of neuroblastoma to Von Recklinghausen’s disease. Cancer 1970; 26: 162–75.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Qualman, S. J., Green, W. R., Brovall, C., and Leventhal, B. G.. Neurofibromatosis and associated neuroectodermal tumors: a congenital neurocristopathy. Pediatr Pathol 1986; 5: 65–78.CrossRefGoogle ScholarPubMed
Alsultan, A., Lovell, M. A., Hayes, K. L., Allshouse, M. J., and Garrington, T. P.. Simultaneous occurrence of right adrenocortical tumor and left adrenal neuroblastoma in an infant with Beckwith–Wiedemann syndrome. Pediatr Blood Cancer 2008; 51: 695–8.CrossRefGoogle Scholar
Andersen, H. J. and Hariri, J.. Congenital neuroblastoma in a fetus with multiple malformations: metastasis in the umbilical cord as a cause of intrauterine death. Virchows Arch A Pathol Anat Histopathol 1983; 400: 219–22.CrossRefGoogle Scholar
Emery, L. G., Shields, M., Shah, N. R., and Garbes, A.. Neuroblastoma associated with Beckwith–Wiedemann syndrome. Cancer 1983; 52: 176–9.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Doss, B. J., Vicari, J., Jacques, S. M., and Qureshi, F.. Placental involvement in congenital hepatoblastoma. Pediatr Dev Pathol 1998; 1: 538–42.CrossRefGoogle ScholarPubMed
Mancini, A. F., Rosito, P., Vitelli, A., et al. IV-S neuroblastoma: a cooperative study of 30 children. Med Pediatr Oncol 1984; 12: 155–61.CrossRefGoogle ScholarPubMed
Shimada, H., Ambros, I. M., Dehner, L. P., et al. Terminology and morphologic criteria of neuroblastic tumors: recommendations by the International Neuroblastoma Pathology Committee. Cancer 1999; 86: 349–63.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Beckwith, J. B. and Perrin, E. V.. In situ neuroblastomas: a contribution to the natural history of neural crest tumors. Am J Pathol 1963; 43: 1089–104.Google ScholarPubMed
Shanklin, D. R. and Sotelo-Avila, C.. In situ tumors in fetuses, newborns and young infants. Biol Neonat 1969; 14: 286–316.CrossRefGoogle ScholarPubMed
Bolande, R. P.. The spontaneous regression of neuroblastoma: experimental evidence for a natural host immunity. Pathol Annu 1991; 26 Pt 2: 187–99.Google ScholarPubMed
Ikeda, Y., Lister, J., Bouton, J. M., and Buyukpamukcu, M.. Congenital neuroblastoma, neuroblastoma in situ, and the normal fetal development of the adrenal. J Pediatr Surg 1981; 16(4 Suppl 1): 636–44.CrossRefGoogle ScholarPubMed
Shimada, H.. In situ neuroblastoma: an important concept related to the natural history of neural crest tumors. Pediatr Dev Pathol 2005; 8: 305–6.CrossRefGoogle ScholarPubMed
Chan, H. S., Cheng, M. Y., Mancer, K., et al. Congenital mesoblastic nephroma: a clinicoradiologic study of 17 cases representing the pathologic spectrum of the disease. J Pediatr 1987; 111: 64–70.CrossRefGoogle ScholarPubMed
Isaacs, Jr. H.Fetal and neonatal renal tumors. J Pediatr Surg 2008; 43: 1587–95.CrossRefGoogle ScholarPubMed
Werb, P., Scurry, J., Ostor, A., Fortune, D., and Attwood, H.. Survey of congenital tumors in perinatal necropsies. Pathology 1992; 24: 247–53.CrossRefGoogle ScholarPubMed
de Tar, M. and Biggerstaff, J. Sanford. Congenital renal rhabdoid tumor with placental metastases: immunohistochemistry, cytogenetic, and ultrastructural findings. Pediatr Dev Pathol 2006; 9: 161–7.CrossRefGoogle ScholarPubMed
Dehner, L. P.. Congenital malignant rhabdoid tumor. Diagn Cytopathol 2005; 32: 135–6.CrossRefGoogle ScholarPubMed
Isaacs, Jr. H.Fetal and neonatal rhabdoid tumor. J Pediatr Surg 2010; 45: 619–26.CrossRefGoogle ScholarPubMed
White, F. V., Dehner, L. P., Belchis, D. A., et al. Congenital disseminated malignant rhabdoid tumor: a distinct clinicopathologic entity demonstrating abnormalities of chromosome 22q11. Am J Surg Pathol 1999; 23: 249–56.CrossRefGoogle ScholarPubMed
Wick, M. R., Ritter, J. H., Dehner, L. P.. Malignant rhabdoid tumors: a clinicopathologic review and conceptual discussion. Semin Diagn Pathol 1995; 12: 233–48.Google ScholarPubMed
Fuller, C. E., Pfeifer, J., Humphrey, P., et al. Chromosome 22q dosage in composite extrarenal rhabdoid tumors: clonal evolution or a phenotypic mimic?Hum Pathol 2001; 32: 1102–8.CrossRefGoogle ScholarPubMed
Toth, G., Zraly, C. B., Thomson, T. L., et al. Congenital anomalies and rhabdoid tumor associated with 22q11 germline deletion and somatic inactivation of the SMARCB1 tumor suppressor. Genes Chromosomes Cancer 2011; 50: 379–88.CrossRefGoogle ScholarPubMed
Beckwith, J. B. and Weeks, D. A.. Congenital mesoblastic nephroma. When should we worry?Arch Pathol Lab Med 1986; 110: 98–9.Google ScholarPubMed
Bolande, R. P.. Congenital mesoblastic nephroma of infancy. Perspect Pediatr Pathol. 1973; 1: 227–50.Google ScholarPubMed
Harms, D., Leder, L. D., Rossius, H., Albani, M., and Tillmann, W.. Congenital mesoblastic nephroma of infancy. Beitr Pathol. 1975; 154: 83–7.CrossRefGoogle ScholarPubMed
Angulo, J. C., Lopez, J. I., Ereno, C., Unda, M., and Flores, N.. Hydrops fetalis and congenital mesoblastic nephroma. Child Nephrol Urol 1991; 11: 115–16.Google ScholarPubMed
Blank, E., Neerhout, R. C., and Burry, K. A.. Congenital mesoblastic nephroma and polyhydramnios. JAMA. 1978; 240: 1504–5.CrossRefGoogle ScholarPubMed
Anderson, J., Gibson, S., and Sebire, N. J.. Expression of ETV6-NTRK in classical, cellular and mixed subtypes of congenital mesoblastic nephroma. Histopathology 2006; 48: 748–53.CrossRefGoogle ScholarPubMed
Argani, P., Fritsch, M., Kadkol, S. S., et al. Detection of the ETV6-NTRK3 chimeric RNA of infantile fibrosarcoma/cellular congenital mesoblastic nephroma in paraffin-embedded tissue: application to challenging pediatric renal stromal tumors. Mod Pathol 2000; 13: 29–36.CrossRefGoogle ScholarPubMed
Henno, S., Loeuillet, L., Henry, C., et al. Cellular mesoblastic nephroma: morphologic, cytogenetic and molecular links with congenital fibrosarcoma. Pathol Res Pract 2003; 199: 35–40.CrossRefGoogle ScholarPubMed
Knezevich, S. R., Garnett, M. J., Pysher, T. J., et al. ETV6-NTRK3 gene fusions and trisomy 11 establish a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma. Cancer Res 1998; 58: 5046–8.Google ScholarPubMed
Ritchey, M. L., Azizkhan, R. G., Beckwith, J. B., Hrabovsky, E. E., and Haase, G. M.. Neonatal Wilms tumor. J Pediatr Surg 1995; 30: 856–9.CrossRefGoogle ScholarPubMed
Geormaneanu, M., Iagaru, N., Popescu-Miclosanu, S., and Badulescu, M.. Congenital hemihypertrophy: tendency to association with other abnormalities and/or tumors. Morphol Embryol (Bucur) 1983; 29: 39–45.Google ScholarPubMed
Bond, J. V.. Bilateral Wilms’ tumour: age at diagnosis, associated congenital anormalies, and possible pattern of inheritance. Lancet 1975; 2: 482–4.CrossRefGoogle ScholarPubMed
Neri, G., Martini-Neri, M. E., Katz, B. E., and Opitz, J. M.. The Perlman syndrome: familial renal dysplasia with Wilms tumor, fetal gigantism and multiple congenital anomalies. Am J Med Genet 1984; 19: 195–207.CrossRefGoogle ScholarPubMed
Perlman, M.. Perlman syndrome: familial renal dysplasia with Wilms tumor, fetal gigantism, and multiple congenital anomalies. Am J Med Genet. 1986; 25: 793–5.CrossRefGoogle ScholarPubMed
Pilia, G., Hughes-Benzie, R. M., MacKenzie, A., et al. Mutations in GPC3, a glypican gene, cause the Simpson–Golabi–Behmel overgrowth syndrome. Nat Genet 1996; 12: 241–7.CrossRefGoogle ScholarPubMed
Neri, G., Gurrieri, F., Zanni, G., and Lin, A.. Clinical and molecular aspects of the Simpson–Golabi–Behmel syndrome. Am J Med Genet 1998; 79: 279–83.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Hung, N. A.. Congenital “clear cell sarcoma of the kidney.”Virchows Arch 2005; 446: 566–8.CrossRefGoogle ScholarPubMed
Coffin, C. M. and Dehner, L. P.. Vascular tumors in children and adolescents: a clinicopathologic study of 228 tumors in 222 patients. Pathol Annu. 1993; 28: 97–120.Google ScholarPubMed
Coffin, C. M. and Dehner, L. P.. Soft tissue tumors in first year of life: a report of 190 cases. Pediatr Pathol 1990; 10: 509–26.CrossRefGoogle ScholarPubMed
Coffin, C. M., Alaggio, R., and Dehner, L. P.. Some general considerations about the clinicopathologic aspects of soft tissue tumors in children and adolescents. Pediatr Dev Pathol 2012; 15(1 Suppl): 11–25.CrossRefGoogle ScholarPubMed
Bruder, E., Alaggio, R., Kozakewich, H. P., et al. Vascular and perivascular lesions of skin and soft tissues in children and adolescents. Pediatr Dev Pathol 2012; 15(1 Suppl): 26–61.CrossRefGoogle ScholarPubMed
Burgess, L. P., Quilligan, J. J., Moe, R. D., Lepore, M. L., and Yim, D. W.. Congenital multiple fibromatosis (infantile myofibromatosis). Arch Otolaryngol Head Neck Surg 1988; 114: 207–9.CrossRefGoogle Scholar
Coffin, C. M., Neilson, K. A., Ingels, S., Frank-Gerszberg, R., and Dehner, L. P.. Congenital generalized myofibromatosis: a disseminated angiocentric myofibromatosis. Pediatr Pathol Lab Med 1995; 15: 571–87.CrossRefGoogle ScholarPubMed
Molnar, P., Olah, E., Miko, T. L., and Gomba, S.. Aggressive infantile myofibromatosis: report of a case of a clinically progressive congenital multiple fibromatosis. Med Pediatr Oncol 1986; 14: 332–7.CrossRefGoogle ScholarPubMed
Pelluard-Nehme, F., Coatleven, F., Carles, D., et al. Multicentric infantile myofibromatosis: two perinatal cases. Eur J Pediatr. 2007; 166: 997–1001.CrossRefGoogle ScholarPubMed
Coffin, C. M. and Dehner, L. P.. Fibroblastic-myofibroblastic tumors in children and adolescents: a clinicopathologic study of 108 examples in 103 patients. Pediatr Pathol 1991; 11: 569–88.CrossRefGoogle ScholarPubMed
Inwards, C. Y., Unni, K. K., Beabout, J. W., and Shives, T. C.. Solitary congenital fibromatosis (infantile myofibromatosis) of bone. Am J Surg Pathol 1991; 15: 935–41.CrossRefGoogle Scholar
Muraoka, I., Ohno, Y., Kamitamari, A., et al. Congenital occurrence of solitary infantile myofibromatosis of the spleen. J Pediatr Surg 2008; 43: 227–30.CrossRefGoogle ScholarPubMed
Coffin, C. M. and Alaggio, R.. Fibroblastic and myofibroblastic tumors in children and adolescents. Pediatr Dev Pathol. 2012; 15(1 Suppl): 127–80.CrossRefGoogle ScholarPubMed
Kerl, K., Nowacki, M., Leuschner, I., Masjosthusmann, K., and Fruhwald, M. C.. Infantile fibrosarcoma: an important differential diagnosis of congenital vascular tumors. Pediatr Hematol Oncol. 2012; 29: 545–8.CrossRefGoogle ScholarPubMed
Bourgeois, J. M., Knezevich, S. R., Mathers, J. A., and Sorensen, P. H.. Molecular detection of the ETV6–NTRK3 gene fusion differentiates congenital fibrosarcoma from other childhood spindle cell tumors. Am J Surg Pathol 2000; 24: 937–46.CrossRefGoogle ScholarPubMed
Acharya, G., Thambapillai, E. and Hartwell, R.. Congenital rhabdomyosarcoma of maxillo-facial region associated with polyhydramnios. J Obstet Gynaecol 1999; 19: 204–5.CrossRefGoogle ScholarPubMed
Cohen, M., Ghosh, L., and Schafer, M. E.. Congenital embryonal rhabdomyosarcoma of the hand and Apert’s syndrome. J Hand Surg Am 1987; 12: 614–17.CrossRefGoogle ScholarPubMed
Himmel, S. and Siegel, H.. Congenital embryonal orbital rhabdomyosarcoma in a newborn. Arch Ophthalmol 1967; 77: 662–5.CrossRefGoogle Scholar
Kitagawa, N., Arata, J., Ohtsuki, Y., et al. Congenital alveolar rhabdomyosarcoma presenting as a blueberry muffin baby. J Dermatol. 1989; 16: 409–11.CrossRefGoogle ScholarPubMed
Mohan, K. K. and Lal, A.. Congenital embryonal rhabdomyosarcoma of the tongue. Anesth Analg 1992; 74: 930–1.CrossRefGoogle Scholar
Furukawa, T., Azakami, S., Kurosawa, H., et al. Cystic partially differentiated nephroblastoma, embryonal rhabdomyosarcoma, and multiple congenital anomalies associated with variegated mosaic aneuploidy and premature centromere division: a case report. J Pediatr Hematol Oncol 2003; 25: 896–9.CrossRefGoogle ScholarPubMed
Ilyas, E. N., Goldsmith, K., Lintner, R., and Manders, S. M.. Rhabdomyosarcoma arising in a giant congenital melanocytic nevus. Cutis. 2004; 73: 39–43.Google Scholar
Ruymann, F. B., Maddux, H. R., Ragab, A., et al. Congenital anomalies associated with rhabdomyosarcoma: an autopsy study of 115 cases. A report from the Intergroup Rhabdomyosarcoma Study Committee (representing the Children’s Cancer Study Group, the Pediatric Oncology Group, the United Kingdom Children’s Cancer Study Group, and the Pediatric Intergroup Statistical Center). Med Pediatr Oncol 1988; 16: 33–9.CrossRefGoogle Scholar
Grundy, R., Anderson, J., Gaze, M., et al. Congenital alveolar rhabdomyosarcoma: clinical and molecular distinction from alveolar rhabdomyosarcoma in older children. Cancer. 2001; 91: 606–12.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Keller, C., Hansen, M. S., Coffin, C. M., and Capecchi, M. R.. Pax3:Fkhr interferes with embryonic Pax3 and Pax7 function: implications for alveolar rhabdomyosarcoma cell of origin. Genes Dev 2004; 18: 2608–13.CrossRefGoogle ScholarPubMed
Hayashi, Y., Inaba, T., Hanada, R., and Yamamoto, K.. Translocation 2;8 in a congenital rhabdomyosarcoma. Cancer Genet Cytogenet 1988; 30: 343–5.CrossRefGoogle Scholar
Meloni-Ehrig, A., Smith, B., Zgoda, J., et al. Translocation (2;8)(q35;q13): a recurrent abnormality in congenital embryonal rhabdomyosarcoma. Cancer Genet Cytogenet 2009; 191: 43–5.CrossRefGoogle ScholarPubMed
Cates, J. M. and Coffin, C. M.. Neurogenic tumors of soft tissue. Pediatr Dev Pathol 2012; 15(1 Suppl): 62–107.CrossRefGoogle ScholarPubMed
Bridge, R. S., Rajaram, V., Dehner, L. P., Pfeifer, J. D., and Perry, A.. Molecular diagnosis of Ewing sarcoma/primitive neuroectodermal tumor in routinely processed tissue: a comparison of two FISH strategies and RT-PCR in malignant round cell tumors. Mod Pathol 2006; 19: 1–8.CrossRefGoogle ScholarPubMed
Tsokos, M., Alaggio, R. D., Dehner, L. P., and Dickman, P. S.. Ewing sarcoma/peripheral primitive neuroectodermal tumor and related tumors. Pediatr Dev Pathol 2012; 15(1 Suppl): 108–26.CrossRefGoogle ScholarPubMed
Dehner, L. P. and Ishak, K. G.. Vascular tumors of the liver in infants and children: a study of 30 cases and review of the literature. Arch Pathol 1971; 92: 101–11.Google ScholarPubMed
Cureton, E., Guo, H., Idowu, O., and Kim, S.. Hepatic vascular malformation in a patient with Simpson–Golabi–Behmel syndrome. Am J Med Genet A 2007; 143A(12): 1379–81.CrossRefGoogle Scholar
Isaacs, Jr. H.Fetal and neonatal hepatic tumors. J Pediatr Surg 2007; 42: 1797–803.CrossRefGoogle ScholarPubMed
Dehner, L. P.. Hepatic tumors in the pediatric age group: a distinctive clinicopathologic spectrum. Perspect Pediatr Pathol 1978; 4: 217–68.Google ScholarPubMed
Carta, M., Maresi, E., Giuffre, M., et al. Congenital hepatic mesenchymal hamartoma associated with mesenchymal stem villous hyperplasia of the placenta: case report. J Pediatr Surg 2005; 40: e37–9.CrossRefGoogle ScholarPubMed
Kamata, S., Nose, K., Sawai, T., et al. Fetal mesenchymal hamartoma of the liver: report of a case. J Pediatr Surg 2003; 38: 639–41.CrossRefGoogle ScholarPubMed
Bove, K. E., Blough, R. I., and Soukup, S.. Third report of t(19q)(13.4) in mesenchymal hamartoma of liver with comments on link to embryonal sarcoma. Pediatr Dev Pathol 1998; 1: 438–42.CrossRefGoogle Scholar
Mascarello, J. T. and Krous, H. F.. Second report of a translocation involving 19q13.4 in a mesenchymal hamartoma of the liver. Cancer Genet Cytogenet 1992; 58: 141–2.CrossRefGoogle Scholar
Shetty, S., Pinto, A., and Roland, B.. Mesenchymal hamartoma of the liver with inversion of chromosome 19. Pediatr Dev Pathol 2011; 14: 407–10.CrossRefGoogle ScholarPubMed
Ammann, R. A., Plaschkes, J., and Leibundgut, K.. Congenital hepatoblastoma: a distinct entity?Med Pediatr Oncol. 1999; 32: 466–8.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Ergin, H., Yildirim, B., Dagdeviren, E., et al. A prenatally detected case of congenital hepatoblastoma. Pathol Oncol Res 2008; 14: 97–100.CrossRefGoogle ScholarPubMed
Feusner, J. and Plaschkes, J.. Hepatoblastoma and low birth weight: a trend or chance observation?Med Pediatr Oncol. 2002; 39: 508–9.CrossRefGoogle ScholarPubMed
Spector, L. G., Feusner, J. H., and Ross, J. A.. Hepatoblastoma and low birth weight. Pediatr Blood Cancer. 2004; 43: 706.CrossRefGoogle ScholarPubMed
Buonuomo, P. S., Ruggiero, A., Vasta, I., et al. Second case of hepatoblastoma in a young patient with Simpson–Golabi–Behmel syndrome. Pediatr Hematol Oncol 2005; 22: 623–8.CrossRefGoogle Scholar
Orozco-Florian, R., McBride, J. A., Favara, B. E., et al. Congenital hepatoblastoma and Beckwith–Wiedemann syndrome: a case study including DNA ploidy profiles of tumor and adrenal cytomegaly. Pediatr Pathol 1991; 11: 131–42.CrossRefGoogle ScholarPubMed
Allan, L.. Diagnosis and management of fetal cardiac tumors. J Am Coll Cardiol 1996; 27: 1549–50.CrossRefGoogle ScholarPubMed
Isaacs, H.. Perinatal (fetal and neonatal) tuberous sclerosis: a review. Am J Perinat 2009; 26: 755–60.CrossRefGoogle ScholarPubMed
Yinon, Y., Chitayat, D., Blaser, S., et al. Fetal cardiac tumors: a single-center experience of 40 cases. Prenat Diagn 2010; 30: 941–9.CrossRefGoogle ScholarPubMed
Coffin, C. M.. Congenital cardiac fibroma associated with Gorlin syndrome. Pediatr Pathol 1992; 12: 255–62.CrossRefGoogle ScholarPubMed
Buetow, P. C., Smirniotopoulos, J. G., and Done, S.. Congenital brain tumors: a review of 45 cases. Am J Roentgenol. 1990; 155: 587–93.CrossRefGoogle ScholarPubMed
Cavalheiro, S., Moron, A. F., Hisaba, W., Dastoli, P., and Silva, N. S.. Fetal brain tumors. Childs Nerv Syst. 2003; 19: 529–36.CrossRefGoogle ScholarPubMed
Fort, D. W. and Rushing, E. J.. Congenital central nervous system tumors. J Child Neurol. 1997; 12: 157–64.CrossRefGoogle ScholarPubMed
Lasky, J. L., Choi, E. J., Johnston, S., et al. Congenital brain tumors: case series and review of the literature. J Pediatr Hematol Oncol 2008; 30: 326–31.CrossRefGoogle ScholarPubMed
Oi, S., Kokunai, T., and Matsumoto, S.. Congenital brain tumors in Japan (ISPN Cooperative Study): specific clinical features in neonates. Childs Nerv Syst 1990; 6: 86–91.CrossRefGoogle ScholarPubMed
Dehner, L. P., Abenoza, P., and Sibley, R. K.. Primary cerebral neuroectodermal tumors: neuroblastoma, differentiated neuroblastoma, and composite neuroectodermal tumor. Ultrastruct Pathol 1988; 12: 479–94.CrossRefGoogle ScholarPubMed
Girschick, H. J., Klein, R., Scheurlen, W. G., and Kuhl, J.. Cytogenetic and histopathologic studies of congenital supratentorial primitive neuroectodermal tumors: a case report. Pathol Oncol Res 2001; 7: 67–71.CrossRefGoogle ScholarPubMed
Krous, H. F., Chadwick, A. E., Haas, E. A., Breisch, E., and Masoumi, H.. Congenital cerebellar malignant rhabdoid tumor in an infant with junctional epidermolysis bullosa. Pediatr Dev Pathol 2007; 10: 481–6.CrossRefGoogle Scholar
Isaacs, H.. Fetal and neonatal leukemia. J Pediat Hematol Onc 2003; 25: 348–61.CrossRefGoogle ScholarPubMed
Zipursky, A., Poon, A., and Doyle, J.. Leukemia in Down syndrome: a review. Pediatr Hematol Oncol 1992; 9: 139–49.CrossRefGoogle ScholarPubMed
Zipursky, A., Rose, T., Skidmore, M., Thorner, P., and Doyle, J.. Hydrops fetalis and neonatal leukemia in Down syndrome. Pediatr Hematol Oncol. 1996; 13: 81–7.CrossRefGoogle ScholarPubMed
Sande, J. E., Arceci, R. J., and Lampkin, B. C.. Congenital and neonatal leukemia. Semin Perinatol. 1999; 23: 274–85.CrossRefGoogle ScholarPubMed
Badhe, P. B. and Sane, S. Y.. Congenital leukemia: organ involvement in six autopsy cases. J Postgrad Med 1992; 38: 127–9.Google ScholarPubMed
Al-Kasim, F., Doyle, J. J., Massey, G. V., Weinstein, H. J., and Zipursky, A.. Incidence and treatment of potentially lethal diseases in transient leukemia of Down syndrome: Pediatric Oncology Group Study. J Pediatr Hematol Oncol 2002; 24: 9–13.CrossRefGoogle ScholarPubMed
Chen, C. P., Lin, S. P., Chang, T. Y., and Ho, H. T.. Abnormal prenatal hematological findings in congenital leukemia of Down syndrome with hepatosplenomegaly. Prenat Diagn. 2007; 27: 1266–7.CrossRefGoogle ScholarPubMed
Ferguson, E. C., Talley, P., and Vora, A.. Translocation (6;17)(q23;q11.2): a novel cytogenetic abnormality in congenital acute myeloid leukemia?Cancer Genet Cytogenet. 2005; 163: 71–3.CrossRefGoogle ScholarPubMed
Gale, G. B. and Toledano, S. R.. Congenital acute lymphocytic leukemia in a newborn with Klinefelter syndrome. Am J Pediatr Hematol Oncol 1984; 6: 338–9.CrossRefGoogle Scholar
Isaacs, Jr. H.Fetal and neonatal histiocytoses. Pediatr Blood Cancer 2006; 47: 123–9.CrossRefGoogle ScholarPubMed
Campbell, A. N., Chan, H. S., O’Brien, A., Smith, C. R., and Becker, L. E.. Malignant tumours in the neonate. Arch Dis Child. 1987; 62: 19–23.CrossRefGoogle ScholarPubMed
Wells, H. G.. Occurrence and significance of congenital malignant neoplasms. Arch Pathol 1940; 30: 535.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×