Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T05:49:28.226Z Has data issue: false hasContentIssue false

9 - The abnormal heart

Published online by Cambridge University Press:  05 September 2014

Glenn P. Taylor
Affiliation:
The Hospital for Sick Children, Toronto
Mary N. Sheppard
Affiliation:
Royal Brompton and Harefield NHS Foundation Trust, London, UK
S. Yen Ho
Affiliation:
Royal Brompton Hospital, London, UK
Marta C. Cohen
Affiliation:
Sheffield Children’s Hospital
Irene Scheimberg
Affiliation:
Barts and the London NHS Trust, London
Get access

Summary

Introduction

The pathology of the heart in the pediatric age group can be divided into that of congenital lesions and postnatally acquired heart disease. Acquired disease in the setting of congenital heart disease is achieving increasing significance, with more surgery being performed on even very complex cases with long-term survival. Pathologists need not only be familiar with congenital heart lesions, but the complex surgical techniques which have evolved since the 1940s in dealing with these cardiac lesions.

While adult cardiac autopsy concentrates on coronary artery disease, in children congenital cardiac lesions predominate [1,2]. The incidence of congenital heart disease has been estimated at approximately 8 per 1000 live births [3]. Incidence in stillbirths is higher [4]. Many pathologists are totally ignorant and apprehensive concerning a congenitally malformed heart and the complex procedures evolved over the years in dealing with these lesions.

Although congenital heart disease is the most prevalent form of heart pathology in the fetus and child, other types of heart disease occur, with their own challenges for the autopsy prosector. These include cardiomyopathies with a very wide range of rare metabolic and genetic causes, myocarditis that can masquerade as sudden infant death syndrome (SIDS) or cause sudden death, and certain heart tumors that primarily affect children. Many of these conditions have genetic associations with potential consequences to current and future siblings, necessitating an accurate and clinically relevant diagnosis. Autopsy of the fetal or pediatric heart is further challenged by the macerated stillbirth, very small pre-term fetus, and disrupted terminated conceptus that often present to the pathology laboratory. Congenital heart disease in a fetus or infant may have been identified by ante mortem clinical investigations or be a complete surprise at autopsy.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sheppard, M. N.. Autopsy cardiac examination. In: Practical Cardiovascular Pathology. London, Hodder Arnold, 2011, 5–23.CrossRefGoogle Scholar
Sheppard, M. N.. Approach to the cardiac autopsy. J Clin Pathol 2012; 65: 484–95.CrossRefGoogle ScholarPubMed
van der Linde, D., Konings, E. E., Slager, M. A., et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol 2011; 58: 2241–7.CrossRefGoogle ScholarPubMed
Taylor, G. P.. Cardiovascular system. In: Dimmick, J. E. and Kalousek, D. K., eds., Developmental Pathology of the Embryo and Fetus. Philadelphia, PA, J. B. Lippincott Company, 1992, 467–508.Google Scholar
Hamilton, L. E., Lew, E. O., Matshes, E. W.. “Grown-up” congenital heart disease and sudden death in a medical examiner’s population. J Forensic Sci 2011; 56: 1206–12.CrossRefGoogle Scholar
Botto, L. D., Correa, A., and Erickson, J. D.. Racial and temporal variations in the prevalence of heart defects. Pediatrics 2001; 107: E32.CrossRefGoogle ScholarPubMed
Hoffman, J. I. and Kaplan, S.. The incidence of congenital heart disease. J Am Coll Cardiol 2002; 39: 1890–900.CrossRefGoogle ScholarPubMed
Cantrell, J. R., Haller, J. A., and Ravitch, M. M.. A syndrome of congenital defects involving the abdominal wall, sternum, diaphragm, pericardium, and heart. Surgery Gynecol Obstet 1958; 107: 602–14.Google ScholarPubMed
Bartram, U., Wirbelauer, J., and Speer, C. P.. Heterotaxy syndrome: asplenia and polysplenia as indicators of visceral malposition and complex congenital heart disease. Biol Neonate 2005; 88: 278–90.CrossRefGoogle ScholarPubMed
Anderson, R. H., Wilkinson, J. L., Gerlis, L. M., Smith, A., and Becker, A. E.. Atresia of the right atrioventricular orifice. Br Heart J 1977; 39: 414–28.CrossRefGoogle ScholarPubMed
Tandon, R., Moller, J. H., and Edwards, J. E.. Anomalies associated with the parachute mitral valve: a pathologic analysis of 52 cases. Canadian J Cardiol 1986; 2: 278–81.Google ScholarPubMed
Paranon, S. and Acar, P.. Ebstein’s anomaly of the tricuspid valve: from fetus to adult – congenital heart disease. Heart 2008; 94: 237–43.CrossRefGoogle ScholarPubMed
Craig, B.. Atrioventricular septal defect: from fetus to adult. Heart 2006; 92: 1879–85.CrossRefGoogle ScholarPubMed
van Praagh, R., Plett, J. A., and van Praagh, S.. Single ventricle: pathology, embryology, terminology and classification. Herz 1979; 4: 113–50.Google ScholarPubMed
Uhl, H. S.. A previously undescribed congenital malformation of the heart: almost total absence of the myocardium of the right ventricle. Bull Johns Hopkins Hosp 1952; 91: 197–209.Google ScholarPubMed
Anderson, R. H. and Wilcox, B. R.. The surgical anatomy of ventricular septal defect. JCS 1992; 7: 17–35.Google ScholarPubMed
Hickey, E. J., Caldarone, C. A., and McCrindle, B. W.. Left ventricular hypoplasia: a spectrum of disease involving the left ventricular outflow tract, aortic valve, and aorta. J Am Coll Cardiol 2012; 59(1 Suppl): S43–54.CrossRefGoogle ScholarPubMed
Feinstein, J. A., Benson, D. W., Dubin, A. M., et al. Hypoplastic left heart syndrome: current considerations and expectations. J Am Coll Cardiol 2012; 59(1 Suppl): S1–42.CrossRefGoogle ScholarPubMed
Yoshimura, N. and Yamaguchi, M.. Surgical strategy for pulmonary atresia with intact ventricular septum: initial management and definitive surgery. Gen Thorac Cardiovasc Surg 2009; 57: 338–46.CrossRefGoogle ScholarPubMed
Apitz, C., Webb, G. D., and Redington, A. N.. Tetralogy of Fallot. Lancet 2009; 374: 1462–71.CrossRefGoogle ScholarPubMed
Anderson, R. H., McCarthy, K., and Cook, A. C.. Continuing medical education: double outlet right ventricle. Cardiology Young 2001; 11: 329–44.CrossRefGoogle ScholarPubMed
de Siena, P., Ghorbel, M., Chen, Q., Yim, D., and Caputo, M.. Common arterial trunk: review of surgical strategies and future research. Exp Rev Cardiovasc Ther 2011; 9: 1527–38.CrossRefGoogle ScholarPubMed
Martins, P. and Castela, E.. Transposition of the great arteries. Orphanet J Rare Dis 2008; 3: 27.CrossRefGoogle ScholarPubMed
Celoria, G. C. and Patton, R. B.. Congenital absence of the aortic arch. Am Heart J 1959; 58: 407–13.CrossRefGoogle ScholarPubMed
Milewicz, D. M., Urban, Z., and Boyd, C.. Genetic disorders of the elastic fiber system. Matrix Biol 2000; 19: 471–80.CrossRefGoogle ScholarPubMed
Halushka, M. K.. Single gene disorders of the aortic wall. Cardiovascular Pathol. 2012; 21: 240–4.CrossRefGoogle ScholarPubMed
Douglas, Y. L., Jongbloed, M. R., Deruiter, M. C., and Groot, A. C. Gittenberger-de. Normal and abnormal development of pulmonary veins: state of the art and correlation with clinical entities. Int J Cardiol 2011; 147: 13–24.CrossRefGoogle ScholarPubMed
Prapa, M., McCarthy, K. P., Dimopoulos, K., et al. Histopathology of the great vessels in patients with pulmonary arterial hypertension in association with congenital heart disease: large pulmonary arteries matter too. Int J Cardiol 2013, .CrossRefGoogle ScholarPubMed
Norita, K., Noronha, S. V. D., and Sheppard, M. N.. Sudden death in congenital heart disease: a study from a specialist UK referral centre. Cardiovasc Res 2012; 93: S122.Google Scholar
Marino, B. and Digilio, M. C.. Congenital heart disease and genetic syndromes: specific correlation between cardiac phenotype and genotype. Cardiovascular Pathol 2000; 9: 303–15.CrossRefGoogle ScholarPubMed
Williams, G. D. and Hammer, G. B.. Cardiomyopathy in childhood. Curr Opin Anaesthesiol 2011; 24: 289–300.CrossRefGoogle ScholarPubMed
Pahl, E., Dipchand, A. I., and Burch, M.. Heart transplantation for heart failure in children. Heart Failure Clinics 2010; 6: 575–89.CrossRefGoogle ScholarPubMed
Moak, J. P. and Kaski, J. P.. Hypertrophic cardiomyopathy in children. Heart 2012; 98: 1044–54.CrossRefGoogle ScholarPubMed
Hsu, D. T. and Canter, C. E.. Dilated cardiomyopathy and heart failure in children. Heart Failure Clinics 2010; 6: 415–32.CrossRefGoogle ScholarPubMed
Denfield, S. W. and Webber, S. A.. Restrictive cardiomyopathy in childhood. Heart Failure Clinics 2010; 6: 445–52.CrossRefGoogle ScholarPubMed
McCormack, J.. The role of genetic testing in paediatric syndromes of sudden death: state of the art and future considerations. Cardiology Young 2009; 19 (Suppl 2): 54–65.CrossRefGoogle ScholarPubMed
Freedom, R. M., Yoo, S. J., Perrin, D., et al. The morphological spectrum of ventricular noncompaction. Cardiology Young 2005; 15: 345–64.CrossRefGoogle ScholarPubMed
Maron, B. J., Towbin, J. A., Thiene, G., et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 2006; 113: 1807–16.CrossRefGoogle Scholar
Richardson, P., McKenna, W., Bristow, M., et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies. Circulation 1996; 93: 841–2.Google ScholarPubMed
Lurie, P. R.. Changing concepts of endocardial fibroelastosis. Cardiol Young 2010; 20: 115–23.CrossRefGoogle ScholarPubMed
Shehata, B. M., Patterson, K., Thomas, J. E., et al. Histiocytoid cardiomyopathy: three new cases and a review of the literature. Pediatr Dev Pathol 1998; 1: 56–69.CrossRefGoogle Scholar
Taylor, G. P.. Neonatal mitochondrial cardiomyopathy. Pediatr Dev Pathol 2004; 7: 620–4.CrossRefGoogle ScholarPubMed
Gilbert-Barness, E.. Review: metabolic cardiomyopathy and conduction system defects in children. Ann Clin Lab Sci 2004; 34: 15–34.Google ScholarPubMed
Levine, M. C., Klugman, D., and Teach, S. J.. Update on myocarditis in children. Curr Opin Pediatr 2010; 22: 278–83.CrossRefGoogle ScholarPubMed
Freund, M. W., Kleinveld, G., Krediet, T. G., et al. Prognosis for neonates with enterovirus myocarditis. Arch Dis Child Fetal Neonatal Ed 2010; 95: F206–12.CrossRefGoogle ScholarPubMed
Landing, B. H. and Larson, E. J.. Pathological features of Kawasaki disease (mucocutaneous lymph node syndrome). Am J Cardiovasc Pathol 1987; 1: 218–29.Google Scholar
Lee, J. L., Naguwa, S. M., Cheema, G. S., et al. Acute rheumatic fever and its consequences: a persistent threat to developing nations in the 21st century. Autoimmun Rev 2009; 9: 117–23.CrossRefGoogle ScholarPubMed
Millar, B. C., Jugo, J., and Moore, J. E.. Fungal endocarditis in neonates and children. Pediatr Cardiol 2005; 26: 517–36.CrossRefGoogle ScholarPubMed
Morrow, W. R., Haas, J. E., and Benjamin, D. R.. Nonbacterial endocardial thrombosis in neonates: relationship to persistent fetal circulation. J Pediatr 1982; 100: 117–22.CrossRefGoogle ScholarPubMed
Donnelly, W. H.. Ischemic myocardial necrosis and papillary muscle dysfunction in infants and children. Am J Cardiovasc Pathol. 1987; 1: 173–88.Google ScholarPubMed
Freedom, R. M., Lee, K. J., MacDonald, C., et al. Selected aspects of cardiac tumors in infancy and childhood. Pediatr Cardiol 2000; 21: 299–316.CrossRefGoogle ScholarPubMed
Burke, A. and Virmani, R.. Pediatric heart tumors. Cardiovasc Pathol 2008; 17: 193–8.CrossRefGoogle ScholarPubMed
Machin, G. A.. Hydrops revisited: literature review of 1,414 cases published in the 1980s. Am J Med Genet. 1989; 34: 366–90.CrossRefGoogle ScholarPubMed
Gilbert-Barness, E. and Barness, L. A.. Pathogenesis of cardiac conduction disorders in children: genetic and histopathologic aspects. Am J Med Genet A 2006; 140: 1993–2006.CrossRefGoogle ScholarPubMed
Song, Y., Zhu, J., Laaksonen, H., et al. A modified method for examining the cardiac conduction system. Forensic Sci Int 1997; 86: 135–8.CrossRefGoogle ScholarPubMed
Basso, C., Carturan, E., Pilichou, K., et al. Sudden cardiac death with normal heart: molecular autopsy. Cardiovasc Pathol 2010; 19: 321–5.CrossRefGoogle ScholarPubMed
Kirk, R., Dipchand, A. I., Edwards, L. B., et al. The Registry of the International Society for Heart and Lung Transplantation: fifteenth pediatric heart transplantation report – 2012. J Heart Lung Transplant 2012; 31: 1065–72.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×