Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-28T01:44:09.627Z Has data issue: false hasContentIssue false

30 - Optogenetic Stimulation for Cochlear Prosthetics

from Part VI - Optogenetics in Sleep, Prosthetics, and Epigenetics of Neurodegenerative Diseases

Published online by Cambridge University Press:  28 April 2017

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Get access
Type
Chapter
Information
Optogenetics
From Neuronal Function to Mapping and Disease Biology
, pp. 442 - 452
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anikeeva, P., Andalman, A.S., Witten, I., Warden, M., Goshen, I., Grosenick, L., Gunaydin, L.A., Frank, L.M., Deisseroth, K., 2012. Optetrode: a multichannel readout for optogenetic control in freely moving mice. Nat. Neurosci. 15, 163170.CrossRefGoogle Scholar
Aravanis, A.M., Wang, L.-P., Zhang, F., Meltzer, L.A., Mogri, M.Z., Schneider, M.B., Deisseroth, K., 2007. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 4, S143S156.CrossRefGoogle ScholarPubMed
Bartels, M., Hernandez, V.H., Krenkel, M., Moser, T., Salditt, T., 2013. Phase contrast tomography of the mouse cochlea at microfocus x-ray sources. Appl. Phys. Lett. 103, 083703.CrossRefGoogle Scholar
Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K., 2005. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 12631268.CrossRefGoogle ScholarPubMed
Brackmann, D.E., Hitselberger, W.E., Nelson, R.A., Moore, J., Waring, M.D., Portillo, F., Shannon, R.V., Telischi, F.F., 1993. Auditory brainstem implant: I. Issues in surgical implantation. Otolaryngol. Head Neck Surg. 108, 624633.CrossRefGoogle ScholarPubMed
Colletti, V., Shannon, R.V., Carner, M., Veronese, S., Colletti, L., 2009. Progress in restoration of hearing with the auditory brainstem implant. Prog. Brain Res. 175, 333345.CrossRefGoogle ScholarPubMed
Deisseroth, K., Feng, G., Majewska, A.K., Miesenböck, G., Ting, A., Schnitzer, M.J., 2006. Next-generation optical technologies for illuminating genetically targeted brain circuits. J. Neurosci. 26, 1038010386.CrossRefGoogle ScholarPubMed
Donaldson, G.S., Kreft, H.A., Litvak, L., 2005. Place-pitch discrimination of single- versus dual-electrode stimuli by cochlear implant users (L). J. Acoust. Soc. Am. 118, 623626.CrossRefGoogle ScholarPubMed
Fetterman, B.L., Domico, E.H., 2002. Speech recognition in background noise of cochlear implant patients. Otolaryngol. Head Neck Surg. 126, 257263.CrossRefGoogle ScholarPubMed
Fishman, K.E., Shannon, R.V., Slattery, W.H., 1997. Speech recognition as a function of the number of electrodes used in the SPEAK cochlear implant speech processor. J. Speech Lang. Hear. Res. 40, 12011215.CrossRefGoogle ScholarPubMed
Friesen, L.M., Shannon, R.V., Baskent, D., Wang, X., 2001. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. J. Acoust. Soc. Am. 110, 11501163.CrossRefGoogle ScholarPubMed
Hernandez, V.H., Gehrt, A., Reuter, K., Jing, Z., Jeschke, M., Mendoza Schulz, A., Hoch, G., Bartels, M., Vogt, G., Garnham, C.W., Yawo, H., Fukazawa, Y., Augustine, G.J., Bamberg, E., Kügler, S., Salditt, T., de Hoz, L., Strenzke, N., Moser, T., 2014. Optogenetic stimulation of the auditory pathway. J. Clin. Invest. 124, 11141129.CrossRefGoogle ScholarPubMed
Herrmann, B.S., Brown, M.C., Eddington, D.K., Hancock, K.E., Lee, D.J., 2015. Auditory brainstem implant: electrophysiologic responses and subject perception. Ear Hear. 36, 368376.CrossRefGoogle ScholarPubMed
Hight, A.E., Kozin, E.D., Darrow, K., Lehmann, A., Boyden, E., Brown, M.C., Lee, D.J., 2015. Superior temporal resolution of Chronos versus channelrhodopsin-2 in an optogenetic model of the auditory brainstem implant. Hear. Res. 322, 235241.CrossRefGoogle Scholar
Hososhima, S., Yuasa, H., Ishizuka, T., Hoque, M.R., Yamashita, T., Yamanaka, A., Sugano, E., Tomita, H., Yawo, H., 2015. Near-infrared (NIR) up-conversion optogenetics. Sci. Rep. 5, 16533.CrossRefGoogle ScholarPubMed
Izzo, A.D., Richter, C.-P., Jansen, E.D., Walsh, J.T., 2006. Laser stimulation of the auditory nerve. Lasers Surg. Med. 38, 745753.CrossRefGoogle ScholarPubMed
Izzo, A.D., Walsh, J.T., Jansen, E.D., Bendett, M., Webb, J., Ralph, H., Richter, C.-P., 2007. Optical parameter variability in laser nerve stimulation: a study of pulse duration, repetition rate, and wavelength. IEEE Trans. Biomed. Eng. 54, 11081114.CrossRefGoogle Scholar
Izzo, A.D., Walsh, J.T., Ralph, H., Webb, J., Bendett, M., Wells, J., Richter, C.-P., 2008. Laser stimulation of auditory neurons: effect of shorter pulse duration and penetration depth. Biophys. J. 94, 31593166.CrossRefGoogle ScholarPubMed
Klapoetke, N.C., Murata, Y., Kim, S.S., Pulver, S.R., Birdsey-Benson, A., Cho, Y.K., Morimoto, T.K., Chuong, A.S., Carpenter, E.J., Tian, Z., Wang, J., Xie, Y., Yan, Z., Zhang, Y., Chow, B.Y., Surek, B., Melkonian, M., Jayaraman, V., Constantine-Paton, M., Wong, G.K.-S., Boyden, E.S., 2014. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338346.CrossRefGoogle ScholarPubMed
Kleinlogel, S., Feldbauer, K., Dempski, R.E., Fotis, H., Wood, P.G., Bamann, C., Bamberg, E., 2011. Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh. Nat. Neurosci. 14, 513518.CrossRefGoogle ScholarPubMed
Knöpfel, Boyden, 2012. Optogenetics: Tools for Controlling and Monitoring Neuronal Activity. Elsevier.Google Scholar
Kohlberg, G., Spitzer, J.B., Mancuso, D., Lalwani, A.K., 2014. Does cochlear implantation restore music appreciation? The Laryngoscope 124, 587588.CrossRefGoogle ScholarPubMed
Kral, A., Hartmann, R., Mortazavi, D., Klinke, R., 1998. Spatial resolution of cochlear implants: the electrical field and excitation of auditory afferents. Hear. Res. 121, 1128.CrossRefGoogle ScholarPubMed
Littlefield, P.D., Vujanovic, I., Mundi, J., Matic, A.I., Richter, C.-P., 2010. Laser stimulation of single auditory nerve fibers. The Laryngoscope 120, 20712082.CrossRefGoogle ScholarPubMed
Miller, C.A., Abbas, P.J., Robinson, B.K., Nourski, K.V., Zhang, F., Jeng, F.-C., 2006. Electrical excitation of the acoustically sensitive auditory nerve: single-fiber responses to electric pulse trains. J. Assoc. Res. Otolaryngol. 7, 195210.CrossRefGoogle ScholarPubMed
Müller, M., von Hünerbein, K., Hoidis, S., Smolders, J.W.T., 2005. A physiological place-frequency map of the cochlea in the CBA/J mouse. Hear. Res. 202, 6373.CrossRefGoogle ScholarPubMed
Nagel, G., Ollig, D., Fuhrmann, M., Kateriya, S., Musti, A.M., Bamberg, E., Hegemann, P., 2002. Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296, 23952398.CrossRefGoogle ScholarPubMed
Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann, P., Bamberg, E., 2003. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. U. S. A. 100, 1394013945.CrossRefGoogle ScholarPubMed
Noij, K.S., Kozin, E.D., Sethi, R., Shah, P.V., Kaplan, A.B., Herrmann, B., Remenschneider, A., Lee, D.J., 2015. Systematic review of nontumor pediatric auditory brainstem implant outcomes. Otolaryngol. Head Neck Surg. 153, 739750.CrossRefGoogle ScholarPubMed
Park, S.I., Brenner, D.S., Shin, G., Morgan, C.D., Copits, B.A., Chung, H.U., Pullen, M.Y., Noh, K.N., Davidson, S., Oh, S.J., Yoon, J., Jang, K.-I., Samineni, V.K., Norman, M., Grajales-Reyes, J.G., Vogt, S.K., Sundaram, S.S., Wilson, K.M., Ha, J.S., Xu, R., Pan, T., Kim, T.-I., Huang, Y., Montana, M.C., Golden, J.P., Bruchas, M.R., Gereau, R.W., Rogers, J.A., 2015. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotechnol. 33, 12801286.CrossRefGoogle ScholarPubMed
Richter, C.-P., Bayon, R., Izzo, A.D., Otting, M., Suh, E., Goyal, S., Hotaling, J., Walsh, J.T., 2008. Optical stimulation of auditory neurons: effects of acute and chronic deafening. Hear. Res. 242, 4251.CrossRefGoogle ScholarPubMed
Richter, C.-P., Rajguru, S.M., Matic, A.I., Moreno, E.L., Fishman, A.J., Robinson, A.M., Suh, E., Walsh, J.T., 2011. Spread of cochlear excitation during stimulation with pulsed infrared radiation: inferior colliculus measurements. J. Neural Eng. 8, 056006.CrossRefGoogle ScholarPubMed
Schultz, M., Baumhoff, P., Maier, H., Teudt, I.U., Krüger, A., Lenarz, T., Kral, A., 2012. Nanosecond laser pulse stimulation of the inner ear-a wavelength study. Biomed. Opt. Express 3, 33323345.CrossRefGoogle ScholarPubMed
Shannon, R.V., 1983. Multichannel electrical stimulation of the auditory nerve in man. II. Channel interaction. Hear. Res. 12, 116.CrossRefGoogle ScholarPubMed
Shannon, R.V., Fayad, J., Moore, J., Lo, W.W., Otto, S., Nelson, R.A., O’Leary, M., 1993. Auditory brainstem implant: II. Postsurgical issues and performance. Otolaryngol. Head Neck Surg. 108, 634642.CrossRefGoogle ScholarPubMed
Shannon, R.V., Fu, Q.-J., Galvin, J., 2004. The number of spectral channels required for speech recognition depends on the difficulty of the listening situation. Acta Otolaryngol. Suppl. 552, 5054.CrossRefGoogle Scholar
Shapiro, M.G., Homma, K., Villarreal, S., Richter, C.-P., Bezanilla, F., 2012. Infrared light excites cells by changing their electrical capacitance. Nat. Commun. 3, 736.CrossRefGoogle ScholarPubMed
Shimano, T., Fyk-Kolodziej, B., Mirza, N., Asako, M., Tomoda, K., Bledsoe, S., Pan, Z.H., Molitor, S., Holt, A.G., 2013. Assessment of the AAV-mediated expression of channelrhodopsin-2 and halorhodopsin in brainstem neurons mediating auditory signaling. Brain Res. 1511, 138152.CrossRefGoogle ScholarPubMed
Sineshchekov, O.A., Jung, K.-H., Spudich, J.L., 2002. Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. U. S. A. 99, 86898694.CrossRefGoogle ScholarPubMed
Sousa, A.F., Carvalho, A.C., Couto, M.I., Tsuji, R.K., Goffi-Gomez, M.V., Bento, R.F., Matas, C.G., Befi-Lopes, D.M., 2015. Telephone Usage and Cochlear Implant: Auditory Training Benefits. Int. Arch. Otorhinolaryngol. 19, 269272.CrossRefGoogle ScholarPubMed
Srinivasan, A.G., Padilla, M., Shannon, R.V., Landsberger, D.M., 2013. Improving speech perception in noise with current focusing in cochlear implant users. Hear. Res. 299, 2936.CrossRefGoogle ScholarPubMed
Srinivasan, A.G., Shannon, R.V., Landsberger, D.M., 2012. Improving virtual channel discrimination in a multi-channel context. Hear. Res. 286, 1929.CrossRefGoogle Scholar
Teudt, I.U., Maier, H., Richter, C.-P., Kral, A., 2011. Acoustic events and “optophonic” cochlear responses induced by pulsed near-infrared laser. IEEE Trans. Biomed. Eng. 58, 16481655.CrossRefGoogle Scholar
Ting, J.T., Feng, G., 2013. Development of transgenic animals for optogenetic manipulation of mammalian nervous system function: progress and prospects for behavioral neuroscience. Behav. Brain Res. 255, 318.CrossRefGoogle ScholarPubMed
Tomita, H., Sugano, E., Fukazawa, Y., Isago, H., Sugiyama, Y., Hiroi, T., Ishizuka, T., Mushiake, H., Kato, M., Hirabayashi, M., Shigemoto, R., Yawo, H., Tamai, M., 2009. Visual properties of transgenic rats harboring the channelrhodopsin-2 gene regulated by the Thy-1.2 promoter. PLoS One 4, e7679.CrossRefGoogle ScholarPubMed
Verma, R.U., Guex, A.A., Hancock, K.E., Durakovic, N., McKay, C.M., Slama, M.C.C., Brown, M.C., Lee, D.J., 2014. Auditory responses to electric and infrared neural stimulation of the rat cochlear nucleus. Hear. Res. 310, 6975.CrossRefGoogle ScholarPubMed
Wang, H., Peca, J., Matsuzaki, M., Matsuzaki, K., Noguchi, J., Qiu, L., Wang, D., Zhang, F., Boyden, E., Deisseroth, K., Kasai, H., Hall, W.C., Feng, G., Augustine, G.J., 2007. High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proc. Natl. Acad. Sci. U. S. A. 104, 81438148.CrossRefGoogle ScholarPubMed
WHO, 2015. Deafness and hearing loss. [www document]. URL http://www.who.int/mediacentre/factsheets/fs300/en/.Google Scholar
Wu, C.-C., Luo, X., 2014. Electrode spanning with partial tripolar stimulation mode in cochlear implants. J. Assoc. Res. Otolaryngol. 15, 10231036.CrossRefGoogle ScholarPubMed
Wu, C.-M., Liu, T.-C., Wang, N.-M., Chao, W.-C., 2013. Speech perception and communication ability over the telephone by Mandarin-speaking children with cochlear implants. Int. J. Pediatr. Otorhinolaryngol. 77, 12951302.CrossRefGoogle ScholarPubMed
Yizhar, O., Fenno, L.E., Davidson, T.J., Mogri, M., Deisseroth, K., 2011. Optogenetics in neural systems. Neuron 71, 934.CrossRefGoogle Scholar
Zeng, F.-G., Grant, G., Niparko, J., Galvin, J., Shannon, R., Opie, J., Segel, P., 2002. Speech dynamic range and its effect on cochlear implant performance. J. Acoust. Soc. Am. 111, 377386.CrossRefGoogle ScholarPubMed
Zeng, F.-G., Rebscher, S., Harrison, W., Sun, X., Feng, H., 2008. Cochlear implants: system design, integration, and evaluation. IEEE Rev. Biomed. Eng. 1, 115142.CrossRefGoogle ScholarPubMed
Zeng, F.-G., Tang, Q., Lu, T., 2014. Abnormal pitch perception produced by cochlear implant stimulation. PLoS One 9, e88662.CrossRefGoogle Scholar
Zierhofer, C.M., Hochmair-Desoyer, I.J., Hochmair, E.S., 1995. Electronic design of a cochlear implant for multichannel high-rate pulsatile stimulation strategies. IEEE Trans. Rehabil. Eng. 3, 112116.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×