Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-28T21:17:40.143Z Has data issue: false hasContentIssue false

31 - The Role of Amino Acids in Neurodegenerative and Addictive Diseases

from Part VI - Optogenetics in Sleep, Prosthetics, and Epigenetics of Neurodegenerative Diseases

Published online by Cambridge University Press:  28 April 2017

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Get access
Type
Chapter
Information
Optogenetics
From Neuronal Function to Mapping and Disease Biology
, pp. 453 - 462
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders (5th ed.) Washington, DC.Google Scholar
Anderson, G., Feibel, F., & Cohen, D. (1987). Determination of serotonin in whole blood, platelet-rich plasma, platelet-poor plasma and plasma ultrafiltrate. Life Sciences, 40(11), 10631070.CrossRefGoogle ScholarPubMed
Arnold, G., Hyman, S., Mooney, R., & Kirby, R. (2003). Plasma amino acids profiles in children with autism: potential risk of nutritional deficiencies. Journal of Autism and Developmental Disorders, 33(4), 449454.CrossRefGoogle ScholarPubMed
Avruch, J., Long, X., Ortiz-Vega, S., Rapley, J., Papageorgiou, A., & Dai, N. (2009). Amino acid regulation of TOR complex 1. AJP: Endocrinology and Metabolism, 296(4), E592E602.Google ScholarPubMed
Balasubramanian, M., Butterworth, E., & Kilberg, M. (2013). Asparagine synthetase: regulation by cell stress and involvement in tumor biology. American Journal of Physiology: Endocrinology and Metabolism, 304(8), E789E799.Google ScholarPubMed
Chez, M., Buchanan, C., Bagan, B., Hammer, M., McCarthy, K., Ovrutskaya, I., et al. (2000). Secretin and autism: a two-part clinical investigation. Journal of Autism and Developmental Disorders, 30(2), 8794.CrossRefGoogle ScholarPubMed
Coutinho, A., Oliveira, G., Morgadinho, T., Fesel, C., Macedo, T., Bento, C., et al. (2004). Variants of the serotonin transporter gene (SLC6A4) significantly contribute to hyperserotonemia in autism. Molecular Psychiatry, 9(3), 264271.CrossRefGoogle ScholarPubMed
Daly, E., Ecker, C., Hallahan, B., Deeley, Q., Craig, M., Murphy, C., et al. (2014). Response inhibition and serotonin in autism: a functional MRI study using acute tryptophan depletion. Brain, 137(Pt 9), 26002610.CrossRefGoogle ScholarPubMed
Drabkin, H. & Rajbhandary, U. (1998). Initiation of protein synthesis in mammalian cells with codons other than AUG and amino acids other than methionine. Molecular and Cellular Biology, 18(9), 51405147.CrossRefGoogle ScholarPubMed
Evans, C., Dunstan, H., Rothkirch, T., Roberts, T., Reichelt, K., Cosford, R., et al. (2008). Altered amino acid excretion in children with autism. Nutritional Neuroscience, 11(1), 917.CrossRefGoogle ScholarPubMed
Fafournoux, P., Bruhat, A., & Jousse, C. (2000). Amino acid regulation of gene expression. Biochemical Journal, 351(Pt 1), 112.CrossRefGoogle ScholarPubMed
Fairclough, P., Hegarty, J., Silk, D., & Clark, M. (1980). Comparison of the absorption of two protein hydrolysates and their effects on water and electrolyte movements in the human jejunum. Gut, 21(10), 829834.CrossRefGoogle ScholarPubMed
Felig, P. (1975). Amino acid metabolism in man. Annual Review of Biochemistry, 44, 933955.CrossRefGoogle ScholarPubMed
First, M., Spitzer, R., Gibbon, M., & Williams, J. (2002). Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Research Version, Patient Edition. New York: Biometrics Research, New York State Psychiatric Institute.Google Scholar
Guesnet, P. & Alessandri, J. (2011). Docosahexaenoic acid (DHA) and the developing central nervous system (CNS) – implications for dietary recommendations. Biochimie, 93(1), 712.CrossRefGoogle ScholarPubMed
Heil, M., Pearson, D., & Fallon, J. (2014). Low endogenous fecal chymotrypsin: a possible biomarker for autism. Poster presented at the annual IMFAR Conference on Autism, Atlanta, GA.Google Scholar
Matthews, D. (1972). Intestinal absorption of amino acids and peptides. Proceedings of the Nutrition Society, 31(2), 171177.CrossRefGoogle ScholarPubMed
McClung, C., Ulery, P., Perrotti, L., Zachariou, V., Berton, O., & Nestler, E. (2004). ΔFosB: a molecular switch for long-term adaptation in the brain. Molecular Brain Research, 132(2), 146154.CrossRefGoogle ScholarPubMed
McClung, C. & Nestler, E. (2003). Regulation of gene expression and cocaine reward by CREB and ΔFosB. Nature Neuroscience, 6(11), 12081215.CrossRefGoogle Scholar
Morimoto, R. (2012). The heat shock response: Systems biology of proteotoxic stress in aging and disease. Cold Spring Harbor Symposia on Quantitative Biology, 76, 9199.CrossRefGoogle Scholar
Munasinghe, S., Oliff, C., Finn, J., & Wray, J. (2010). Digestive enzyme supplementation for autism spectrum disorders: A double-blind randomized controlled trial. Journal of Autism and Developmental Disorders, 40(9), 11311138.CrossRefGoogle Scholar
Naushad, S., Jain, J., Prasad, C., Naik, U., & Akella, R. (2013). Autistic children exhibit distinct plasma amino acid profile. Indian Journal of Biochemistry and Biophysics, 50(5), 474478.Google ScholarPubMed
Nestler, E. (2001). Molecular basis of long-term plasticity underlying addiction. Nature Reviews Neuroscience, 2(2), 119128.CrossRefGoogle ScholarPubMed
Nestler, E., Barrot, M., & Self, D. (2001). ΔFosB: a sustained molecular switch for addiction. Proceedings of the National Academy of Sciences, 98(20), 1104211046.CrossRefGoogle ScholarPubMed
Norton, L., & Layman, D. (2006). Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. The Journal of Nutrition, 136(2), 533S537S.CrossRefGoogle Scholar
Patton, J., Stanford, M., & Barratt, E. (1995). Factor structure of the Barratt impulsiveness scale. Journal of Clinical Psychology, 51, 768774.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Rivest, J., Bernier, J., & Pomar, C. (2000). A dynamic model of protein digestion in the small intestine of pigs. Journal of Animal Science, 78, 328–240.CrossRefGoogle ScholarPubMed
Robinson, T. & Berridge, K. (2001). Incentive-sensitization and addiction. Addiction, 96(1), 103114.CrossRefGoogle ScholarPubMed
Schain, R., & Freedman, D. (1961). Studies on 5-hydroxyindole metabolism in autistic and other mentally retarded children. The Journal of Pediatrics, 58, 315320.CrossRefGoogle ScholarPubMed
Schedl, H., Pierce, C., Rider, A., & Clifton, J. (1968). Absorption of L-methionine from the human small intestine. Journal of Clinical Investigation, 47(2), 417425.CrossRefGoogle ScholarPubMed
Tang, G., Gudsnuk, K., Kuo, S., Cotrina, M., Rosoklija, G., Sosunov, A., et al. (2014). Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron, 83(5), 14821482.CrossRefGoogle Scholar
Williams, K., Wheeler, D., Silove, N., & Hazell, P. (2013). Selective serotonin reuptake inhibitors (SSRIs) for autism spectrum disorders (ASD). The Cochrane Database of Systematic Reviews, 8, CD004677.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×