Skip to main content Accessibility help
×
  • Cited by 8
Publisher:
Cambridge University Press
Online publication date:
January 2017
Print publication year:
2017
Online ISBN:
9781316339251

Book description

It is now widely recognized that the climate system is governed by nonlinear, multi-scale processes, whereby memory effects and stochastic forcing by fast processes, such as weather and convective systems, can induce regime behavior. Motivated by present difficulties in understanding the climate system and to aid the improvement of numerical weather and climate models, this book gathers contributions from mathematics, physics and climate science to highlight the latest developments and current research questions in nonlinear and stochastic climate dynamics. Leading researchers discuss some of the most challenging and exciting areas of research in the mathematical geosciences, such as the theory of tipping points and of extreme events including spatial extremes, climate networks, data assimilation and dynamical systems. This book provides graduate students and researchers with a broad overview of the physical climate system and introduces powerful data analysis and modeling methods for climate scientists and applied mathematicians.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.