Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-26T13:52:30.500Z Has data issue: false hasContentIssue false

9 - Stochastic Subgrid Modelling for Geophysical and Three-Dimensional Turbulence

Published online by Cambridge University Press:  26 January 2017

Jorgen S. Frederiksen
Affiliation:
CSIRO Oceans and Atmosphere
Vassili Kitsios
Affiliation:
CSIRO Oceans and Atmosphere
Terence J. O'kane
Affiliation:
CSIRO Oceans and Atmosphere
Meelis J. Zidikheri
Affiliation:
Australian Bureau of Meteorology
Christian L. E. Franzke
Affiliation:
Universität Hamburg
Terence J. O'Kane
Affiliation:
Marine and Atmospheric Research CSIRO, Australia
Get access

Summary

Abstract

Stochastic modelling and closure-based approaches to the representation of the effects of subgrid turbulence in large eddy simulations (LES) of turbulent fluids are reviewed. The focus is on methods in which the subgrid model is calculated self-consistently from higher resolution benchmark simulations or closures. Eddy viscosity and stochastic backscatter parametrisations are presented for two-dimensional turbulence of barotropic flows, for baroclinic quasi-geostrophic turbulence of the atmosphere and oceans, for atmospheric flows in multi-level primitive equation models and for three-dimensional boundary layer turbulence in channels. The performance of LES with these parametrisations is examined. Subgrid scale parametrisations for the complex problem of inhomogeneous flows over topography are also analysed.

Introduction

Recent progress in the development of parametrisations of subgrid scale turbulence for large eddy simulations (LES) of geophysical and three-dimensional flows is reviewed. The classes of subgrid interactions with the resolved scales for turbulent flows over topography were detailed by Frederiksen (1999, 2012a,b) and include eddy-eddy, eddy-meanfield, meanfield-meanfield, eddy-topographic and meanfield-topographic. Our main focus is on approaches where the subgrid terms are determined self-consistently from high-resolution benchmark closures or the statistics of direct numerical simulations (DNS). Unlike traditional methods of subgrid scale parametrisation no tuning parameters are employed in the LES. A brief historical introduction to the different approaches for developing subgrid models is also presented.

Deterministic Parametrisations for Atmospheric Flows

It has been clear since the very first atmospheric climate simulations that the accuracy of the large-scale flows and energy spectra is dependent upon the modelling of the subgrid processes (Smagorinsky, 1963). In its most basic form, subgrid modelling prescribes the relationship between the resolved field and the subgrid tendency, which is the contribution of the subgrid interactions to the evolution of the resolved field. One of the most widely adopted and celebrated models is the empirical Smagorinsky model (Smagorinsky, 1963), in which the subgrid stress tensor is related to the local strain rate (symmetric part of the velocity gradient tensor) via a single specified parameter. This model is more appropriate for three-dimensional turbulence than for quasi-geostrophic (QG) turbulence, where the subgrid dissipation operator typically takes the form of the Laplacian raised to a specified power.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×