Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T12:34:59.276Z Has data issue: false hasContentIssue false

54 - Spinal and bulbar muscular atrophy (Kennedy's disease): a sex-limited, polyglutamine repeat expansion disorder

from Part IX - Motor neuron diseases

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Patrick S. Thomas
Affiliation:
Department of Laboratory Medicine and Center for Neurogenetics and Neurotherapeutics, University of Washington Medical Center, Seattle, WA, USA
Albert R. La Spada
Affiliation:
Department of Laboratory Medicine, Medicine and Neurology and Center for Neurogenetics and Neurotherapeutics University of Washington Medical Center, Seattle, WA, USA
Get access

Summary

Clinical background

In 1968, William Kennedy and co-workers described a slowly progressive neuromuscular disease in male members of two families (Kennedy et al., 1968). The “Kennedy's disease” syndrome that they reported was most consistent with a spinal muscular atrophy, but exhibited rather unique genetic and clinical features that differentiated it from other well-described motor neuron diseases at that time (Table 54.1). A number of other case reports describing patients with similar findings soon followed, establishing “Kennedy's disease” as a single specific genetic entity. Further work supported the classification of Kennedy's disease as a sex-linked form of spinal muscular atrophy that involved the bulbar musculature (Harding et al., 1982; Ringel et al., 1978; Stefanis et al., 1975). Because of the bulbar involvement, the disorder also came to be known as spinal and bulbar muscular atrophy, and “SBMA” was selected as its official genetic designation. While much has been learned about the pathogenesis and molecular basis of SBMA in the last 35 years, the original description provided by Dr. Kennedy and his colleagues remains an accurate clinical and laboratory vignette of what we now know as Kennedy's disease or SBMA.

SBMA is a slowly progressive motor neuronopathy that shows an X-linked pattern of inheritance, fully affecting only males. Dysfunction followed by gradual loss of motor neurons occurs in the anterior horn of the spinal cord and in the bulbar nuclei of the brainstem, while upper motor neurons are spared.

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 803 - 816
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, A. (2002). Neurologists strike gold in drug screen effort. Nature, 417, 109CrossRefGoogle ScholarPubMed
Abel, A., Walcott, J., Woods, J., Duda, J. & Merry, D. E. (2001). Expression of expanded repeat androgen receptor produces neurologic disease in transgenic mice. Hum. Mol. Genet., 10, 107–16CrossRefGoogle ScholarPubMed
Adachi, H., Kume, A., Li, M.et al. (2001). Transgenic mice with an expanded CAG repeat controlled by the human AR promoter show polyglutamine nuclear inclusions and neuronal dysfunction without neuronal cell death. Hum. Mol. Genet., 10, 1039–48CrossRefGoogle ScholarPubMed
al-Shamm a, H. A. & Arnold, A. P. (1995). Importance of target innervation in recovery from axotomy-induced loss of androgen receptor in rat perineal motoneurons. J. Neurobiol., 28, 341–53CrossRefGoogle Scholar
Amato, A. A., Prior, T. W., Barohn, R. J., Snyder, P., Papp, A. & Mendell, J. R. (1993). Kennedy's disease: a clinicopathologic correlation with mutations in the androgen receptor gene. Neurology, 43, 791–4CrossRefGoogle ScholarPubMed
Andrew, S. E., Goldberg, Y. P. & Hayden, M. R. (1997). Rethinking genotype and phenotype correlations in polyglutamine expansion disorders. Hum. Molec. Genet., 6, 2005–10CrossRefGoogle ScholarPubMed
Antonini, G., Gragnani, F., Romaniello, A.et al. (2000). Sensory involvement in spinal-bulbar muscular atrophy (Kennedy's disease). Muscle Nerve, 23, 252–83.0.CO;2-P>CrossRefGoogle Scholar
Arbizu, T., Santamaria, J., Gomez, J. M., Quilez, A. & Serra, J. P. (1983). A family with adult spinal and bulbar muscular atrophy, X-linked inheritance and associated testicular failure. J. Neurol. Sci., 59, 371–82CrossRefGoogle ScholarPubMed
Auluck, P. K. & Bonini, N. M. (2002). Pharmacological prevention of Parkinson disease in Drosophila. Nat. Med., 8, 1185–6CrossRefGoogle ScholarPubMed
Bailey, C. K., Andriola, I. F., Kampinga, H. H. & Merry, D. E. (2002). Molecular chaperones enhance the degradation of expanded polyglutamine repeat androgen receptor in a cellular model of spinal and bulbar muscular atrophy. Hum. Mol. Genet., 11, 515–23CrossRefGoogle Scholar
Bence, N. F., Sampat, R. M. & Kopito, R. R. (2001). Impairment of the ubiquitin-proteasome system by protein aggregation. Science, 292, 1552–5CrossRefGoogle ScholarPubMed
Biancalana, V., Serville, F., Pommier, J., Julien, J., Hanauer, A. & Mandel, J. L. (1992). Moderate instability of the trinucleotide repeat in spino bulbar muscular atrophy. Hum. Mol. Genet., 1, 255–8CrossRefGoogle ScholarPubMed
Breedlove, S. M. & Arnold, A. P. (1980). Hormone accumulation in a sexually dimorphic motor nucleus of the rat spinal cord. Science, 210, 564–6CrossRefGoogle Scholar
Breedlove, S. M. & Arnold, A. P. (1981). Sexually dimorphic motor nucleus in the rat lumbar spinal cord: response to adult hormone manipulation, absence in androgen-insensitive rats. Brain Res., 225, 297–307CrossRefGoogle ScholarPubMed
Brooks, B. P., Paulson, H. L., Merry, D. E.et al. (1997). Characterization of an expanded glutamine repeat androgen receptor in a neuronal cell culture system. Neurobiol. Dis., 3, 313–23CrossRefGoogle Scholar
Brown, C. J., Goss, S. J., Lubahn, D. B.et al. (1989). Androgen receptor locus on the human X chromosome: regional localization to Xq11–12 and description of a DNA polymorphism. Am. J. Hum. Genet., 44, 264–9Google ScholarPubMed
Brown, T. R., Lubahn, D. B., Wilson, E. M., Joseph, D. R., French, F. S. & Migeon, C. J. (1988). Deletion of the steroid-binding domain of the human androgen receptor gene in one family with complete androgen insensitivity syndrome: evidence for further genetic heterogeneity in this syndrome. Proc. Natl Acad. Sci. USA, 85, 8151–5CrossRefGoogle ScholarPubMed
Butler, R., Leigh, P. N., McPhaul, M. J. & Gallo, J. M. (1998). Truncated forms of the androgen receptor are associated with polyglutamine expansion in X-linked spinal and bulbar muscular atrophy. Hum. Mol. Genet., 7, 121–7CrossRefGoogle ScholarPubMed
Caplan, A. J., Langley, E., Wilson, E. M. & Vidal, J. (1995). Hormone-dependent transactivation by the human androgen receptor is regulated by a dnaJ protein. J. Biol. Chem., 270, 5251–7CrossRefGoogle ScholarPubMed
Chamberlain, N. L., Driver, E. D. & Miesfeld, R. L. (1994). The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucl. Acids Res., 22, 3181–6CrossRefGoogle ScholarPubMed
Choong, C. S., Kemppainen, J. A., Zhou, Z. X. & Wilson, E. M. (1996). Reduced androgen receptor gene expression with first exon CAG repeat expansion. Mol. Endocrinol., 10, 1527–35Google ScholarPubMed
Cummings, C. J., Reinstein, E., Sun, Y.et al. (1999). Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron, 24, 879–92CrossRefGoogle ScholarPubMed
Cummings, C. J., Sun, Y., Opal, P.et al. (2001). Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum. Mol. Genet., 10, 1511–18CrossRefGoogle ScholarPubMed
Davies, S. W., Turmaine, M., Cozens, B. A.et al. (1997). Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell, 90, 537–48CrossRefGoogle ScholarPubMed
Doyu, M., Sobue, G., Mukai, E.et al. (1992). Severity of X-linked recessive bulbospinal neuronopathy correlates with size of the tandem CAG repeat in androgen receptor gene. Ann. Neurol., 32, 707–10CrossRefGoogle ScholarPubMed
Dragatsis, I., Levine, M. S. & Zeitlin, S. (2000). Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nat Genet., 26, 300–6CrossRefGoogle ScholarPubMed
Duyao, M. P., Auerbach, A. B., Ryan, A.et al. (1995). Inactivation of the mouse Huntington's disease gene homolog Hdh. Science, 269, 407–10CrossRefGoogle ScholarPubMed
Edwards, A., Hammond, H. A., Jin, L., Caskey, C. T. & Chakraborty, R. (1992). Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics, 12, 241–53CrossRefGoogle ScholarPubMed
Ellerby, L. M., Hackam, A. S., Propp, S. S.et al. (1999). Kennedy's disease: caspase cleavage of the androgen receptor is a crucial event in cytotoxicity. J. Neurochem., 72, 185–95CrossRefGoogle ScholarPubMed
Ferrante, M. A. & Wilbourn, A. J. (1997). The characteristic electrodiagnostic features of Kennedy's disease. Muscle Nerve, 20, 323–93.0.CO;2-D>CrossRefGoogle ScholarPubMed
Fischbeck, K. H., Ionasescu, V., Ritter, A. W.et al. (1986). Localization of the gene for X-linked spinal muscular atrophy. Neurology, 36, 1595–8CrossRefGoogle ScholarPubMed
Forger, N. G., Hodges, L. L., Roberts, S. L. & Breedlove, S. M. (1992). Regulation of motoneuron death in the spinal nucleus of the bulbocavernosus. J. Neurobiol., 23, 1192–203CrossRefGoogle ScholarPubMed
Gelmann, E. P. (2002). Molecular biology of the androgen receptor. J. Clin. Oncol., 20, 3001–15CrossRefGoogle ScholarPubMed
Gerber, H. P., Seipel, K., Georgiev, O.et al. (1994). Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science, 263, 808–11CrossRefGoogle ScholarPubMed
Giovannucci, E., Stampfer, M. J., Krithivas, K.et al. (1997). The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc. Natl Acad. Sci., USA, 94, 3320–3CrossRefGoogle ScholarPubMed
Goldberg, Y. P., Kalchman, M. A., Metzler, M.et al. (1996). Absence of disease phenotype and intergenerational stability of the CAG repeat in transgenic mice expressing the human Huntington disease transcript. Hum. Mol. Genet., 5, 177–85CrossRefGoogle ScholarPubMed
Guidetti, D., Vescovini, E., Motti, L.et al. (1996). X-linked bulbar and spinal muscular atrophy, or Kennedy disease: clinical, neurophysiological, neuropathological, neuropsychological and molecular study of a large family. J. Neurol. Sci., 135, 140–8CrossRefGoogle ScholarPubMed
Harding, A. E., Thomas, P. K., Baraitser, M., Bradbury, P. G., Morgan-Hughes, J. A. & Ponsford, J. R. (1982). X-linked recessive bulbospinal neuronopathy: a report of ten cases. J. Neurol. Neurosurg. Psychiatr., 45, 1012–19CrossRefGoogle ScholarPubMed
Harper, P. S., Harley, H. G., Reardon, W. & Shaw, D. J. (1992). Anticipation in myotonic dystrophy: new light on an old problem. Am. J. Hum. Genet., 51, 10–16Google ScholarPubMed
Hartl, F. U. (1996). Molecular chaperones in cellular protein folding. Nature, 381, 571–9CrossRefGoogle ScholarPubMed
Hughes, R. E., Lo, R. S., Davis, C.et al. (2001). Altered transcription in yeast expressing expanded polyglutamine. Proc. Natl Acad. Sci., USA, 98, 13201–6CrossRefGoogle ScholarPubMed
Huntington's Disease Collaborative Research Group. (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell, 72, 971–83CrossRef
Huynh, D. P., Figueroa, K., Hoang, N. & Pulst, S. M. (2000). Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Nat. Genet., 26, 44–50Google ScholarPubMed
Ishikawa, K., Fujigasaki, H., Saegusa, H.et al. (1999). Abundant expression and cytoplasmic aggregations of [alpha]1A voltage-dependent calcium channel protein associated with neurodegeneration in spinocerebellar ataxia type 6. Hum. Mol. Genet., 8, 1185–93CrossRefGoogle Scholar
Jones, A. L. (1999). The localization and interactions of huntingtin. Phil. Trans. R. Soc. Lond. B Biol. Sci., 354, 1021–7CrossRefGoogle ScholarPubMed
Kalchman, M. A., Koide, H. B., McCutcheon, K.et al. (1997). HIP1, a human homologue of S. cerevisiae Sla2p, interacts with membrane-associated huntingtin in the brain. Nat. Genet., 16, 44–53CrossRefGoogle Scholar
Katsuno, M., Adachi, H., Kume, A.et al. (2002). Testosterone reduction prevents phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Neuron, 35, 843–54CrossRefGoogle Scholar
Kennedy, W. R., Alter, M. & Sung, J. H. (1968). Progressive proximal spinal and bulbar muscular atrophy of late onset. A sex-linked recessive trait. Neurology, 18, 671–80CrossRefGoogle ScholarPubMed
Klement, I. A., Skinner, P. J., Kaytor, M. D.et al. (1998). Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell, 95, 41–53CrossRefGoogle ScholarPubMed
Kobayashi, Y., Kume, A., Li, M.et al. (2000). Chaperones Hsp70 and Hsp40 suppress aggregate formation and apoptosis in cultured neuronal cells expressing truncated androgen receptor protein with expanded polyglutamine tract. J. Biol. Chem., 275, 8772–8CrossRefGoogle ScholarPubMed
Kobayashi, Y., Miwa, S., Merry, D. E.et al. (1998). Caspase-3 cleaves the expanded androgen receptor protein of spinal and bulbar muscular atrophy in a polyglutamine repeat length-dependent manner. Biochem. Biophys. Res. Commun., 252, 145–50CrossRefGoogle Scholar
Spada, A. R., Fu, Y., Sopher, B. L.et al. (2001). Polyglutamine-expanded ataxin-7 antagonizes CRX function and induces cone-rod dystrophy in a mouse model of SCA7. Neuron, 31, 913–27CrossRefGoogle Scholar
Spada, A. R., Roling, D. B., Harding, A. E.et al. (1992). Meiotic stability and genotype-phenotype correlation of the trinucleotide repeat in X-linked spinal and bulbar muscular atrophy. Nat. Genet., 2, 301–4CrossRefGoogle ScholarPubMed
Spada, A. R., Wilson, E. M., Lubahn, D. B., Harding, A. E. & Fischbeck, K. H. (1991). Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature, 352, 77–9CrossRefGoogle ScholarPubMed
Langley, E., Zhou, Z. X. & Wilson, E. M. (1995). Evidence for an anti-parallel orientation of the ligand-activated human androgen receptor dimer. J. Biol. Chem., 270, 29983–90Google ScholarPubMed
Li, X. J., Li, S. H., Sharp, A. H.et al. (1995). A huntingtin-associated protein enriched in brain with implications for pathology. Nature, 378, 398–402CrossRefGoogle ScholarPubMed
Li, M., Miwa, S., Kobayashi, Y.et al. (1998a). Nuclear inclusions of the androgen receptor protein in spinal and bulbar muscular atrophy. Ann. Neurol., 44, 249–54CrossRefGoogle Scholar
Li, M., Nakagomi, Y., Kobayashi, Y.et al., (1998b). Nonneural nuclear inclusions of androgen receptor protein in spinal and bulbar muscular atrophy. Am. J. Pathol., 153, 695–701CrossRefGoogle Scholar
Lieberman, A. P., Harmison, G., Strand, A. D., Olson, J. M. & Fischbeck, K. H. (2002). Altered transcriptional regulation in cells expressing the expanded polyglutamine androgen receptor. Hum. Mol. Genet., 11, 1967–76CrossRefGoogle ScholarPubMed
Lubahn, D. B., Joseph, D. R., Sar, M.et al. (1988). The human androgen receptor: complementary deoxyribonucleic acid cloning, sequence analysis and gene expression in prostate. Mol. Endocrinol., 2, 1265–75CrossRefGoogle ScholarPubMed
Lund, A., Udd, B., Juvonen, V.et al. (2000). Founder effect in spinal and bulbar muscular atrophy (SBMA) in Scandinavia. Eur. J. Hum. Genet., 8, 631–6CrossRefGoogle Scholar
Marsh, J. L., Walker, H., Theisen, H.et al. (2000). Expanded polyglutamine peptides alone are intrinsically cytotoxic and cause neurodegeneration in Drosophila. Hum. Mol. Genet., 9, 13–25CrossRefGoogle ScholarPubMed
Matilla, A., Koshy, B. T., Cummings, C. J., Isobe, T., Orr, H. T. & Zoghbi, H. Y. (1997). The cerebellar leucine-rich acidic nuclear protein interacts with ataxin-1. Nature, 389, 974–8CrossRefGoogle ScholarPubMed
Matilla, A., Roberson, E. D., Banfi, S.et al. (1998). Mice lacking ataxin-1 display learning deficits and decreased hippocampal paired-pulse facilitation. J. Neurosci., 18, 5508–16CrossRefGoogle ScholarPubMed
McCampbell, A., Taylor, J. P., Taye, A. A.et al. (2000). CREB-binding protein sequestration by expanded polyglutamine. Hum. Mol. Genet., 9, 2197–202CrossRefGoogle ScholarPubMed
McManamny, P., Chy, H. S., Finkelstein, D. I.et al. (2002). A mouse model of spinal and bulbar muscular atrophy. Hum. Mol. Genet., 11, 2103–11CrossRefGoogle ScholarPubMed
Merry, D. E., Kobayashi, Y., Bailey, C. K., Taye, A. A. & Fischbeck, K. H. (1998). Cleavage, aggregation and toxicity of the expanded androgen receptor in spinal and bulbar muscular atrophy. Hum. Mol. Genet., 7, 693–701CrossRefGoogle ScholarPubMed
Mhatre, A. N., Trifiro, M. A., Kaufman, M.et al. (1993). Reduced transcriptional regulatory competence of the androgen receptor in X-linked spinal and bulbar muscular atrophy. Nat. Genet., 5, 184–8CrossRefGoogle ScholarPubMed
Nakamura, K., Jeong, S. Y., Uchihara, T.et al. (2001). SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum. Mol. Genet., 10, 1441–8CrossRefGoogle ScholarPubMed
Nam, R. K., Elhaji, Y., Krahn, M. D.et al. (2000). Significance of the CAG repeat polymorphism of the androgen receptor gene in prostate cancer progression. J. Urol., 164, 567–72CrossRefGoogle ScholarPubMed
Nasir, J., Floresco, S. B., O'Kusky, J. R.et al. (1995). Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell, 81, 811–23CrossRefGoogle ScholarPubMed
Nelson, K. A. & Witte, J. S. (2002). Androgen receptor CAG repeats and prostate cancer. Am. J. Epidemiol., 155, 883–90CrossRefGoogle ScholarPubMed
Nordeen, E. J., Nordeen, K. W., Sengelaub, D. R. & Arnold, A. P. (1985). Androgens prevent normally occurring cell death in a sexually dimorphic spinal nucleus. Science, 229, 671–3CrossRefGoogle Scholar
Nucifora, F. C. Jr., Sasaki, M., Peters, M. F.et al. (2001). Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science, 291, 2423–8CrossRefGoogle ScholarPubMed
O'Malley, B. (1990). The steroid receptor superfamily: more excitement predicted for the future. Mol. Endocrinol., 4, 363–9CrossRefGoogle ScholarPubMed
Ogata, A., Matsuura, T., Tashiro, K.et al. (1994). Expression of androgen receptor in X-linked spinal and bulbar muscular atrophy and amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatr., 57, 1274–5CrossRefGoogle ScholarPubMed
Okazawa, H., Rich, T., Chang, A.et al. (2002). Interaction between mutant ataxin-1 and PQBP-1 affects transcription and cell death. Neuron, 34, 701–13CrossRefGoogle ScholarPubMed
Olney, R. K., Aminoff, M. J. & So, Y. T. (1991). Clinical and electrodiagnostic features of X-linked recessive bulbospinal neuronopathy. Neurology, 41, 823–8CrossRefGoogle ScholarPubMed
Ordway, J. M., Tallaksen-Greene, S., Gutekunst, C. A.et al. (1997). Ectopically expressed CAG repeats cause intranuclear inclusions and a progressive late onset neurological phenotype in the mouse. Cell, 91, 753–63CrossRefGoogle Scholar
Parboosingh, J. S., Figlewicz, D. A., Krizus, A.et al. (1997). Spinobulbar muscular atrophy can mimic ALS: the importance of genetic testing in male patients with atypical ALS. Neurology, 49, 568–72CrossRefGoogle ScholarPubMed
Paulson, H. L., Perez, M. K., Trottier, Y.et al. (1997). Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron, 19, 333–44CrossRefGoogle ScholarPubMed
Perutz, M. F., Johnson, T., Suzuki, M. & Finch, J. T. (1994). Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc. Natl Acad. Sci., USA, 91, 5355–8CrossRefGoogle ScholarPubMed
Ringel, S. P., Lava, N. S., Treihaft, M. M., Lubs, M. L. & Lubs, H. A. (1978). Late-onset X-linked recessive spinal and bulbar muscular atrophy. Muscle Nerve, 1, 297–307CrossRefGoogle ScholarPubMed
Sar, M. & Stumpf, W. E. (1977). Androgen concentration in motor neurons of cranial nerves and spinal cord. Science, 197, 77–9CrossRefGoogle ScholarPubMed
Saudou, F., Finkbeiner, S., Devys, D. & Greenberg, M. E. (1998). Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell, 95, 55–66CrossRefGoogle Scholar
Schmidt, B. J., Greenberg, C. R., Allingham-Hawkins, D. J. & Spriggs, E. L. (2002). Expression of X-linked bulbospinal muscular atrophy (Kennedy disease) in two homozygous women. Neurology, 59, 770–2CrossRefGoogle ScholarPubMed
Sengelaub, D. R. & Arnold, A. P. (1989). Hormonal control of neuron number in sexually dimorphic spinal nuclei of the rat: I. Testosterone- regulated death in the dorsolateral nucleus. J. Comp. Neurol., 280, 622–9CrossRefGoogle ScholarPubMed
Sengelaub, D. R., Jordan, C. L., Kurz, E. M. & Arnold, A. P. (1989a). Hormonal control of neuron number in sexually dimorphic spinal nuclei of the rat: II. Development of the spinal nucleus of the bulbocavernosus in androgen-insensitive (Tfm) rats. J. Comp. Neurol., 280, 630–6CrossRefGoogle Scholar
Sengelaub, D. R., Nordeen, E. J., Nordeen, K. W. & Arnold, A. P. (1989b). Hormonal control of neuron number in sexually dimorphic spinal nuclei of the rat: III. Differential effects of the androgen dihydrotestosterone. J. Comp. Neurol., 280, 637–44CrossRefGoogle Scholar
Shaywitz, A. J. & Greenberg, M. E. (1999). CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem., 68, 821–61CrossRefGoogle ScholarPubMed
Sherman, M. Y. & Goldberg, A. L. (2001). Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron, 29, 15–32CrossRefGoogle ScholarPubMed
Sipione, S. & Cattaneo, E. (2001). Modeling Huntington's disease in cells, flies, and mice. Mol. Neurobiol., 23, 21–51Google ScholarPubMed
Sobue, G., Matsuoka, Y., Mukai, E., Takayanagi, T., Sobue, I. & Hashizume, Y. (1981). Spinal and cranial motor nerve roots in amyotrophic lateral sclerosis and X-linked recessive bulbospinal muscular atrophy: morphometric and teased-fiber study. Acta Neuropathol., 55, 227–35CrossRefGoogle ScholarPubMed
Sopher, B. L., Martinez, R. A., Holm, I. E.et al. (2002). SBMA motor neuronopathy in AR YAC CAG100 transgenic mice. Am. J. Hum. Genet., 71, A62 AbstractGoogle Scholar
Stanford, J. L., Just, J. J., Gibbs, M.et al. (1997). Polymorphic repeats in the androgen receptor gene: molecular markers of prostate cancer risk. Cancer Res., 57, 1194–8Google ScholarPubMed
Stefanis, C., Papapetropoulos, T., Scarpalezos, S., Lygidakis, G. & Panayiotopoulos, C. P. (1975). X-linked spinal and bulbar muscular atrophy of late onset. A separate type of motor neuron disease?J. Neurol. Sci., 24, 493–503CrossRefGoogle ScholarPubMed
Steffan, J. S., Bodai, L., Pallos, J.et al. (2001). Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature, 413, 739–43CrossRefGoogle ScholarPubMed
Steffan, J. S., Kazantsev, A., Spasic-Boskovic, O.et al. (2000). The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc. Natl Acad. Sci., USA, 97, 6763–8CrossRefGoogle ScholarPubMed
Takeyama, K., Ito, S., Yamamoto, A.et al. (2002). Androgen-dependent neurodegeneration by polyglutamine-expanded human androgen receptor in Drosophila. Neuron, 35, 855–64CrossRefGoogle ScholarPubMed
Tanaka, F., Doyu, M., Ito, Y.et al. (1996). Founder effect in spinal and bulbar muscular atrophy (SBMA). Hum. Mol. Genet., 5, 1253–7CrossRefGoogle Scholar
Thornton, J. W. & Kelley, D. B. (1998). Evolution of the androgen receptor: structure-function implications. Bioessays, 20, 860–93.0.CO;2-S>CrossRefGoogle ScholarPubMed
Trottier, Y., Lutz, Y., Stevanin, G.et al. (1995). Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Nature, 378, 403–6CrossRefGoogle ScholarPubMed
Verkerk, A. J., Pieretti, M., Sutcliffe, J. S.et al. (1991). Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell, 65, 905–14CrossRefGoogle ScholarPubMed
Warner, C. L., Griffin, J. E., Wilson, J. D.et al. (1992). X-linked spinomuscular atrophy: a kindred with associated abnormal androgen receptor binding. Neurology, 42, 2181–4CrossRefGoogle ScholarPubMed
Warrick, J. M., Chan, H. Y., Gray-Board, G. L., Chai, Y., Paulson, H. L. & Bonini, N. M. (1999). Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat. Genet., 23, 425–8CrossRefGoogle ScholarPubMed
Wellington, C. L., Ellerby, L. M., Hackam, A. S.et al. (1998). Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J. Biol. Chem., 273, 9158–67CrossRefGoogle ScholarPubMed
Wilson, M. G., Towner, J. W., Coffin, G. S., Ebbin, A. J., Siris, E. & Brager, P. (1981). Genetic and clinical studies in 13 patients with the Wolf-Hirschhorn syndrome [del(4p)]. Hum. Genet., 59, 297–307CrossRefGoogle Scholar
Zeitlin, S., Liu, J. P., Chapman, D. L., Papaioannou, V. E. & Efstratiadis, A. (1995). Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue. Nat. Genet., 11, 155–63CrossRefGoogle ScholarPubMed
Zhang, L., Leeflang, E. P., Yu, J. & Arnheim, N. (1994). Studying human mutations by sperm typing: instability of CAG trinucleotide repeats in the human androgen receptor gene. Nat. Genet., 7, 531–5CrossRefGoogle ScholarPubMed
Zhou, Z. X., Sar, M., Simental, J. A., Lane, M. V. & Wilson, E. M. (1994). A ligand-dependent bipartite nuclear targeting signal in the human androgen receptor. Requirement for the DNA-binding domain and modulation by NH2-terminal and carboxyl-terminal sequences. J. Biol. Chem., 269, 13115–23Google ScholarPubMed
Zoghbi, H. Y. & Orr, H. T. (2000). Glutamine repeats and neurodegeneration. Annu. Rev. Neurosci., 23, 217–47CrossRefGoogle ScholarPubMed
Zuccato, C., Ciammola, A., Rigamonti, D.et al. (2001). Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease. Science, 293, 493–8CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×