Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T14:44:18.203Z Has data issue: false hasContentIssue false

36 - Prion diseases

from Part VI - Other Dementias

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Hayrettin Tumani
Affiliation:
Department of Neurology, University of Ulm, Germany
Albert C. Ludolph
Affiliation:
Department of Neurology, University of Ulm, Germany
Adriano Aguzzi
Affiliation:
Institute of Neuropathology, University of Zürich, Switzerland
Get access

Summary

Introduction

Prion diseases represent a disease complex that is clinically rare. However, they are epidemiologically important severe diseases, and very likely to be important for our basic understanding of neurodegeneration in principle. This is reflected in this introductory clinical overview, which presents the clinical diagnostic and differential diagnostic approach to the patient; then a review follows which focuses on the current status of the field of basic sciences of prion diseases.

The history of prion diseases started in the year 1920 when Hans Gerhard Creutzfeldt described a mysterious focal disease of the central nervous system of a 22-year-old female patient, which clinically was characterized by progressive psychomotor disturbances and cortical symptoms (Creutzfeldt, 1920). In his autopsy he observed a pronounced gliosis which accompanied non-inflammatory focal lesions of the cortex. One year later, Alfons Jakob saw three similar cases which he also considered a new entity – he described a spastic pseudosclerosis and encephalomyelitis with disseminated focal degeneration (Jakob, 1921). Based on the similarity of the reported cases, Walter Spielmeyer suggested the name Creutzfeldt–Jakob disease (CJD). In 1936, the Gerstmann–Sträussler–Schenker (GSS) syndrome was first described and in 1957 fatal familial insomnia (FFI) (Gerstmann & Sträussler 1936; Lugaresi et al., 1986). In the 1960s, interest in the epidemiology of prion diseases increased when Gajdusek and Gibbs showed that Kuru – a disease first observed by the German Walter Zigas and Carleton Gajdusek among the Fore in Papua New Guinea and thought to be associated with cannibalism – could be transmitted to non-human primates and had similarities with the spongiform encephalopathy of sheep-scrapie (Zigas & Gajdusek, 1957; Hadlow, 1959; Gajdusek & Gibbs, 1966).

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 512 - 548
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, N. J., Farrington, C. P., Ward, H. J. T., et al. (2003). Deaths from variant Creutzfeldt–Jakob disease in the UK. Lancet, 361, 751–2CrossRefGoogle ScholarPubMed
Bieschke, J., Giese, A., Schulz-Schaeffer, W.et al. (2000). Ultrasensitive detection of pathological prion protein aggregates by dual – color scanning for intensely fluorescent targets. Proc. Natl Acad. Sci., USA, 97, 5468–73CrossRefGoogle ScholarPubMed
Brown, P., Gibbs, C. J., Rodgers-Johnson, P.et al. (1994). Human spongiform encephalopathy: the National Institutes of Health series of 300 cases of experimentally transmitted disease. Ann. Neurol., 35, 513–29CrossRefGoogle ScholarPubMed
Brown, P., Will, R. G., Bradley, R., Asher, D. M. & Detwiler, L. (2001). Bovine spongiform encephalopathy and variant Creutzfeldt–Jakob disease: background, evolution, and current concerns. Emerg. Infect. Dis. 7, 6–16CrossRefGoogle ScholarPubMed
Caughey, B. & Race, R. E. (1992). Potent inhibition of scrapie-associated PrP accumulation by congo red. J. Neurochem., 59, 768–71CrossRefGoogle ScholarPubMed
Collins, P. S., Lawson, V. A. & Masters, P. C. (2004). Transmissible spongiform encephalopathies. Lancet, 363, 51–61CrossRefGoogle ScholarPubMed
Collins, S. J., Lewis, V., Brazier, M.et al. (2002). Quinacrine does not prolong survival in a murine Creutzfeldt–Jakob disease model. Ann. Neurol., 52, 503–6CrossRefGoogle ScholarPubMed
Creutzfeld, H. G. (1920). Über eine eigenartige herdförmige Erkrankung des Zentralnervensystems. Z. Neurol. Psychiatr., 57, 1–18CrossRefGoogle Scholar
Enari, M., Flechsig, E. & Weissmann, C. (2001). Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody. Proc. Natl Acad. Sci., USA, 98, 9295–9CrossRefGoogle ScholarPubMed
Finkenstedt, M., Szurdra, A., Zerr, I.et al. (1996). MR imaging of Creutzfeldt–Jakob disease. Radiology, 199, 793–8CrossRefGoogle Scholar
Gajdusek, D. C., Gibbs, C. J. & Alpers, M. (1966). Experimental transmission of a kuru-like syndrome to chimpanzees. Nature, 209, 794–6CrossRefGoogle ScholarPubMed
Gerstmann, J. (1928). Über ein noch nicht beschriebenes Reflexphänomen beieiner Erkrankung des zerebellären Systems. Wien Med. Wochenschr., 78, 906–8Google Scholar
Gerstmann, J. & Sträussler, E. (1936). Über eine eigenartige hereditär-familiäre Erkrankung des Zentralnervensystems. Zugleich ein Beitrag zur Frage des vorzeitigen lokalen Alterns. Z. Neurol., 154, 736–62Google Scholar
Gertz, H. J., Henkes, H. & Cervos, N. J. (1988). Creutzfeldt–Jakob disease: correlation of MRI and neuropathologic findings. Neurology, 38, 1481–2CrossRefGoogle ScholarPubMed
Ghani, A. C., Donnelly, C. A., Ferguson, N. M.et al. (2000). Assessment of the prevalence of vCJD through testing tonsils and appendices for abnormal prion protein. Proc. R. Soc. Lond. B. Biol. Sci., 267, 23–9CrossRefGoogle ScholarPubMed
Hadlow, W. J. (1959). Scrapie and Kuru. Lancet, 2, 289–90CrossRefGoogle Scholar
Harries-Jones, R., Knight, R., Will, R. G.et al. (1988). Creutzfeldt–Jakob disease in England and Wales, 1980–1984: a case-control study of potential risk factors. J. Neurol. Neurosurg. Psychiatr., 51, 1113–19CrossRefGoogle ScholarPubMed
Harrington, M. G., Merril, C. R., Asher, D. M.et al. (1986). Abnormal proteins in the cerebrospinal fluid of patients with Creutzfeldt–Jakob disease. N. Engl. J. Med., 315, 279–83CrossRefGoogle ScholarPubMed
Hsich, G., Kenney, K., Gibbs, C. J.et al. (1996). The 14-3-3 brain protein in cerebrospinal fluid as a marker for transmissible spongiform encephalopathies. N. Engl. J. Med., 335, 924–30CrossRefGoogle ScholarPubMed
Jakob, A. (1921). Über eine eigenartige Erkrankung des Zentralnervensystems mit bemerkenswertem anatomischen Befund (Spastische Pseudosklerose – Encephalopathie mit disseminierten Degenerationsherden). Z. Ges. Neurol. Psychiat., 64, 147–228CrossRefGoogle Scholar
Jacobi, C., Zerr, I., Arlt, S.et al. (2000). Cerebrospinal fluid pattern in patients with definite Creutzfeldt–Jakob disease. J. Neurol., 247, III/14Google Scholar
Korth, C., May, B. C., Cohen, F. E.et al. (2001). Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc. Natl Acad. Sci., USA, 98, 9836–41CrossRefGoogle ScholarPubMed
Kretzschmar, H. A., Ironside, J. W., DeArmond, S. J.et al. (1996). Diagnostic criteria for sporadic Creutzfeldt–Jakob disease. Arch. Neurol., 53, 913–20CrossRefGoogle ScholarPubMed
Levy, S. R., Chiappa, K. H., Burke, C. J.et al. (1986). Early evolution and incidence of electroencephalographic abnormalities in Creutzfeldt–Jakob disease. J. Clin. Neurophysiol., 3, 1–21CrossRefGoogle ScholarPubMed
Lopez, O. L., Litvan, I., Catt, K. E.et al. (1999). Accuracy of four clinical diagnostic criteria for the diagnosis of neurodegenerative dementias. Neurology, 53, 1292–9CrossRefGoogle Scholar
Lugaresi, E., Medori, R., Montagna, P.et al. (1986). Fatal familial insomnia and dysautonomia with selective degeneration of thalamic nuclei. N. Engl. J. Med., 315, 997–1003CrossRefGoogle ScholarPubMed
Maissen, M., Roeckl, C., Glatzel, M.et al. (2001). Plasminogen binds to disease-associated prion protein of multiple species. Lancet, 357, 2026–8CrossRefGoogle ScholarPubMed
Masters, C. L., Harris, J. O., Gajdusek, D. C., Gibbs, C. J., Bernoulli, C. & Asher, D. M. (1979). Creutzfeldt–Jakob disease: patterns of worldwide occurrence and the significance of familial and sporadic clustering. Ann. Neurol., 5, 177–88CrossRefGoogle ScholarPubMed
Masters, C. L., Gajdusek, D. C. & Gibbs, C. J. (1981). Creutzfeldt–Jakob disease virus isolations from the Gerstmann–Sträussler syndrome with an analysis of the forms of amyloid plaque deposition in the virus-induced spongiform change. Brain, 104, 559–88CrossRefGoogle Scholar
Medori, R., Tritschler, H. J., LeBlanc, A.et al. (1992). Fatal familial insomnia, a prion disease with a mutation at codon 178 of the prion protein gene. N. Engl. J. Med., 326, 444–9CrossRefGoogle ScholarPubMed
Mollenhauer, B., Zerr, I., Ruge, D.et al. (2002). Epidemiologie und klinische Symptomatik der Creutzfeldt–Jakob–Krankheit. [Epidemiology and clinical symptomatology of Creutzfeldt–Jakob disease]. Dtsch. Med. Wochenschr., 127, 312–17CrossRefGoogle Scholar
Moore, R. C., Xiang, F., Monaghan, J.et al. (2001). Huntington disease phenocopy is a familial prion disease. Am. J. Hum. Gen., 69, 1385–8CrossRefGoogle ScholarPubMed
Otto, M., Wiltfang, J., Tumani, H.et al. (1997). Elevated levels of tau-protein in cerebrospinal fluid of patients with Creutzfeldt–Jakob disease. Neurosci. Lett., 225, 210–12CrossRefGoogle ScholarPubMed
Otto, M., Wiltfang, J., Schütz, E.et al. (1998). Diagnosis of Creutzfeldt–Jakob disease by measurement of S100 protein in serum: prospective case-control study. Br. Med. J. 316, 577–82CrossRefGoogle ScholarPubMed
Parchi, P., Giese, A., Capellari, S.et al. (1999). Classification of sporadic Creutzfeldt–Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann. Neurol., 46, 224–333.0.CO;2-W>CrossRefGoogle ScholarPubMed
Peretz, D., Williamson, R. A., Kaneko, K.et al. (2001). Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature, 412, 739–43CrossRefGoogle ScholarPubMed
Pocchiari, M., Schmittinger, S. & Masullo, C. (1987). Amphotericin B delays the incubation period of scrapie in intracerebrally inoculated hamsters. J. Gen. Virol., 68, 219–23CrossRefGoogle ScholarPubMed
Poser, S., Mollenhauer, B., Krauß, A.et al. (1999). How to improve the clinical diagnosis of Creutzfeldt–Jakob disease. Brain, 122, 2345–51CrossRefGoogle ScholarPubMed
Röther, J., Schwartz, A., Harle, M.et al. (1992). Magnetic resonance imaging follow-up in Creutzfeldt–Jakob disease. J. Neurol., 239, 404–6Google ScholarPubMed
Saborio, G. P., Permanne, B. & Soto, C. (2001). Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature, 411, 810–13CrossRefGoogle ScholarPubMed
Samman, I., Schulz-Schaeffer, W. J., Wohrle, J. C.et al. (1999). Clinical range and MRI in Creutzfeldt–Jakob disease with heterozygosity at codon 129 and prion protein type 2. J. Neurol. Neurosurg. Psychiatr., 67, 678–81CrossRefGoogle ScholarPubMed
Schmerr, M. J., Jenny, A. L., Bulgin, M. S.et al. (1999). Use of capillary electrophoresis and fluorescent labeled peptides to detect abnormal prion protein in the blood of animals that are infected with a transmissible spongiform encephalopathy. J. Chromatogr. A., 853, 207–14CrossRefGoogle ScholarPubMed
Schröter, A., Zerr, I., Henkel, K.et al. (2000). Magnetic resonance imaging (MRI) in the clinical diagnosis of Creutzfeldt–Jakob disease. Arch. Neurol., 57, 1751–7CrossRefGoogle ScholarPubMed
Seipelt, M., Zerr, I., Nau, R.et al. (1999). Hashimoto encephalitis as a differential diagnosis of Creutzfeldt–Jakob disease. J. Neurol. Neurosurg. Psychiatr., 66, 172–6CrossRefGoogle Scholar
Shaked, G. M., Shaked, Y. & Kariv-Inbal, Z. (2001). A protease-resistant prion protein isoform is present in urine of animals and humans affected with prion diseases. J. Biol. Chem., 276, 31479–82CrossRefGoogle ScholarPubMed
Soto, C., Kascsak, R. J., Saborio, G. P.et al. (2000). Reversion of prion protein conformational changes by synthetic beta-sheet breaker peptides. Lancet, 355, 192–7CrossRefGoogle ScholarPubMed
Steinhoff, B. J., Räcker, S., Herrendorf, G.et al. (1996). Accuracy and reliability of periodic sharp wave complexes in Creutzfeldt–Jakob disease. Arch. Neurol., 53, 162–6CrossRefGoogle ScholarPubMed
Supattapone, S., Wille, H., Uyechi, L.et al. (2001). Branched polyamines cure prion-infected neuroblastoma cells. J. Virol., 75, 3453–61CrossRefGoogle ScholarPubMed
Tartaro, A., Fulgente, T., Delli-Pizzi, C.et al. (1993). MRI alterations as an early finding in Creutzfeld–Jakob disease. Eur. J. Radiol., 17, 155–8CrossRefGoogle ScholarPubMed
Tateishi, J., Brown, P., Kitamoto, T.et al. (1995). First experimental transmission of fatal familial insomnia. Nature, 376, 434–5CrossRefGoogle ScholarPubMed
Urbach, H., Klisch, J. & Wolf, H. K. (1998). MRI in sporadic Creutzfeldt–Jakob disease: correlation with clinical and neuropathological data. Neuroradiology, 40, 65–70CrossRefGoogle ScholarPubMed
Verghese, J., Crystal, H. A. & Dickson, D. W. (1999). Validity of clinical criteria for the diagnosis of dementia with Lewy bodies. Neurology, 53, 1974–82CrossRefGoogle Scholar
WHO (1998). Human transmissible spongiform encephalopathies. Weekly Epidemiol. Rec., 47, 361–5
Will, R. G., Zeidler, M., Stewart, G. E.et al. (2000). Diagnosis of new variant Creutzfeldt–Jakob disease. Ann. Neurol., 47, 575–823.0.CO;2-W>CrossRefGoogle ScholarPubMed
Zeidler, M., Sellar, R. J., Collie, D. A.et al. (2000). The pulvinar sign on magnetic resonance imaging in variant Creutzfeldt–Jakob disease. Lancet, 355, 1412–18CrossRefGoogle ScholarPubMed
Zerr, I., Bodemer, M., Räcker, S.et al. (1995). Cerebrospinal fluid concentration of neuron-specific enolase in diagnosis of Creutzfeldt–Jakob disease. Lancet, 345, 1609–10CrossRefGoogle ScholarPubMed
Zerr, I., Bodemer, M., Otto, M.et al. (1996). Diagnosis of Creutzfeldt–Jakob disease by two-dimensional gel electophoresis of cerebrospinal fluid. Lancet, 348, 846–9CrossRefGoogle Scholar
Zerr, I., Bodemer, M., Gefeller, O.et al. (1998). Detection of 14-3-3 protein in cerebrospinal fluid supports the diagnosis of Creutzfeldt–Jakob disease. Ann. Neurol., 43, 32–40CrossRefGoogle Scholar
Zerr, I., Pocchiari, M., Collins, S.et al. (2000a). Analysis of EEG and CSF 14-3-3 proteins as aids to the diagnosis of Creutzfeldt–Jakob disease. Neurology, 55, 811–15CrossRefGoogle Scholar
Zerr, I., Schulz-Schaeffer, W. J., Giese, A.et al. (2000b). Current clinical diagnosis in CJD; identification of uncommon variants. Ann. Neurol., 48, 323–93.0.CO;2-5>CrossRefGoogle Scholar
Zerr, I., Mollenhauer, B., Werner, C.et al. (2002). Früh-und Differenzialdiagnose der Creutzfeldt–Jakob Krankheit1 [Early and differential diagnosis of Creutzfeldt–Jakob disease]. Dtsch. Med. Wochenschr., 127, 323–7CrossRefGoogle Scholar
Zigas, W. & Gajdusek, D. C. (1957). Kuru: clinical study of a new syndrome resembling paralysis agitans in natives of the Eastern Highlands of Australian New Guinea. Med. J. Austr., 2, 745–54Google Scholar
Adachi, O., Kawai, T., Takeda, K.et al. (1998). Targeted disruption of the MyD88 gene results in loss of IL-1- and IL- 18-mediated function. Immunity, 9, 143–50CrossRefGoogle ScholarPubMed
Aguzzi, A. (1996). Between cows and monkeys. Nature, 381, 734CrossRefGoogle ScholarPubMed
Aguzzi, A. (1997a). Neuro-immune connection in spread of prions in the body?Lancet, 349, 742–3CrossRefGoogle Scholar
Aguzzi, A. (1997b). Prions and antiprions. B. C., 378, 1393–5Google Scholar
Aguzzi, A. (2000). Prion diseases, blood and the immune system: concerns and reality. Haematologica, 85, 3–10Google Scholar
Aguzzi, A. & Collinge, J. (1997). Post-exposure prophylaxis after accidental prion inoculation. Lancet, 350, 1519–20CrossRefGoogle ScholarPubMed
Aguzzi, A. & Heppner, F. L. (2000). Pathogenesis of prion diseases: a progress report. Cell Death Differentiation, 7, 889–902CrossRefGoogle ScholarPubMed
Aguzzi, A. & Raeber, A. J. (1998). Transgenic models of neurodegeneration. Neurodegeneration: of (transgenic) mice and men. Brain Pathol., 8, 695–7CrossRefGoogle ScholarPubMed
Aguzzi, A. & Weissmann, C. (1996a). Sleepless in Bologna: transmission of fatal familial insomnia. Trends Microbiol., 4, 129–31CrossRefGoogle Scholar
Aguzzi, A. & Weissmann, C. (1996b). Spongiform encephalopathies: a suspicious signature. Nature, 383, 666–7CrossRefGoogle Scholar
Aguzzi, A. & Weissmann, C. (1997). Prion research: the next frontiers. Nature, 389, 795–8CrossRefGoogle ScholarPubMed
Aguzzi, A., Klein, M. A., Montrasio, F.et al. (2000). Prions: pathogenesis and reverse genetics. Ann. N. Y. Acad. Sci., 920, 140–57CrossRefGoogle ScholarPubMed
Aguzzi, A., Brandner, S., Fischer, M. B.et al. (2001a). Spongiform encephalopathies: insights from transgenic models. Adv. Virus Res., 56, 313–52CrossRefGoogle Scholar
Aguzzi, A., Glatzel, M., Montrasio, F., Prinz, M. & Heppner, F. L. (2001b). Interventional strategies against prion diseases. Nat. Rev. Neurosci., 2, 745–9CrossRefGoogle Scholar
Aguzzi, A., Montrasio, F. & Kaeser, P. S. (2001c). Prions: health scare and biological challenge. Nat. Rev. Mol. Cell. Biol. 2, 118–26CrossRefGoogle Scholar
Anderson, R. M., Donnelly, C. A., Ferguson, N. M.et al. (1996). Transmission dynamics and epidemiology of BSE in British cattle. Nature, 382, 779–88CrossRefGoogle ScholarPubMed
Aucouturier, P., Geissmann, F., Damotte, D.et al. (2001). Infected splenic dendritic cells are sufficient for prion transmission to the CNS in mouse scrapie. J. Clin. Invest., 108, 703–8CrossRefGoogle ScholarPubMed
Baldauf, E., Beekes, M. & Diringer, H. (1997). Evidence for an alternative direct route of access for the scrapie agent to the brain bypassing the spinal cord. J. Gen. Virol., 78, 1187–97CrossRefGoogle ScholarPubMed
Basler, K., Oesch, B., Scott, M.et al. (1986). Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell, 46, 417–28CrossRefGoogle ScholarPubMed
Beekes, M., McBride, P. A. & Baldauf, E. (1998). Cerebral targeting indicates vagal spread of infection in hamsters fed with scrapie. J. Gen. Virol., 79 (3), 601–7CrossRefGoogle ScholarPubMed
Behrens, A. & Aguzzi, A. (2002). Small is not beautiful: antagonizing functions for the prion protein PrP(C) and its homologue Dpl. Trends Neurosci., 25, 150–4CrossRefGoogle Scholar
Behrens, A., Brandner, S., Genoud, N. & Aguzzi, A. (2001). Normal neurogenesis and scrapie pathogenesis in neural grafts lacking the prion protein homologue Doppel. EMBO Rep., 2, 347–52CrossRefGoogle ScholarPubMed
Behrens, A., Genoud, N., Naumann, H.et al. (2002). Absence of the prion protein homologue Doppel causes male sterility. EMBO J., 21, 3652–8CrossRefGoogle ScholarPubMed
Beringue, V., Demoy, M., Lasmezas, C. I.et al. (2000). Role of spleen macrophages in the clearance of scrapie agent early in pathogenesis. J. Pathol., 190, 495–5023.0.CO;2-T>CrossRefGoogle ScholarPubMed
Betmouni, S. & Perry, V. H. (1999). The acute inflammatory response in CNS following injection of prion brain homogenate or normal brain homogenate [In Process Citation]. Neuropathol. Appl. Neurobiol., 25, 20–8CrossRefGoogle Scholar
Betmouni, S., Perry, V. H. & Gordon, J. L. (1996). Evidence for an early inflammatory response in the central nervous system of mice with scrapie. Neuroscience, 74, 1–5CrossRefGoogle ScholarPubMed
Blättler, T., Brandner, S., Raeber, A. J.et al. (1997). PrP-expressing tissue required for transfer of scrapie infectivity from spleen to brain.Nature, 389, 69–73Google Scholar
Bofill, M., Akbar, A. N. & Amlot, P. L. (2000). Follicular dendritic cells share a membrane-bound protein with fibroblasts. J. Pathol., 191, 217–263.0.CO;2-6>CrossRefGoogle Scholar
Bradley, R. (2000). Veterinary research at the Central Veterinary Laboratory, Weybridge, with special reference to scrapie and bovine spongiform encephalopathy. Rev. Sci. Tech., 19, 819–30CrossRefGoogle ScholarPubMed
Brandner, S., Isenmann, S., Kuhne, G. & Aguzzi, A. (1998). Identification of the end stage of scrapie using infected neural grafts. Brain Pathol., 8, 19–27CrossRefGoogle ScholarPubMed
Brandner, S., Isenmann, S., Raeber, A.et al. (1996a). Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature, 379, 339–43CrossRefGoogle Scholar
Brandner, S., Raeber, A., Sailer, A.et al. (1996b). Normal host prion protein (PrPC) is required for scrapie spread within the central nervous system. Proc. Natl. Acad. Sci. USA, 93, 13148–51CrossRefGoogle Scholar
Brown, D. R., Qin, K., Herms, J. W.et al. (1997). The cellular prion protein binds copper in vivo. Nature, 390, 684–7CrossRefGoogle ScholarPubMed
Brown, K. L., Stewart, K., Ritchie, D. L.et al. (1999). Scrapie replication in lymphoid tissues depends on prion protein-expressing follicular dendritic cells. Nat. Med., 5, 1308–12CrossRefGoogle ScholarPubMed
Brown, P, , P. M., Brandel, J. P., Sato, T.et al. (2000). Iatrogenic Creutzfeldt–Jakob disease at the millennium. Neurology, 55, 1075–81CrossRefGoogle ScholarPubMed
Brown, D. R., Clive, C. & Haswell, S. J. (2001). Antioxidant activity related to copper binding of native prion protein. J. Neurochem., 76, 69–76CrossRefGoogle ScholarPubMed
Browning, J. L., Ngam-ek, A., Lawton, P.et al. (1993). Lymphotoxin beta, a novel member of the TNF family that forms a heteromeric complex with lymphotoxin on the cell surface. Cell, 72, 847–56CrossRefGoogle ScholarPubMed
Browning, J. L., Dougas, I., Ngam-ek, A.et al. (1995). Characterization of surface lymphotoxin forms. Use of specific monoclonal antibodies and soluble receptors. J. Immunol., 154, 33–46Google ScholarPubMed
Bruce, M. E. (1985). Agent replication dynamics in a long incubation period model of mouse scrapie. J. Gen. Virol., 66, 2517–22CrossRefGoogle Scholar
Bruce, M. E., Will, R. G., Ironside, J. W.et al. (1997). Transmissions to mice indicate that ‘new variant’ CJD is caused by the BSE agent [see comments].Nature, 389, 498–501CrossRefGoogle ScholarPubMed
Bruce, M. E., Boyle, A., Cousens, S.et al. (2002). Strain characterization of natural sheep scrapie and comparison with BSE. J. Gen. Virol., 83, 695–704CrossRefGoogle ScholarPubMed
Büeler, H. R., Fischer, M., Lang, Y.et al. (1992). Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature, 356, 577–82CrossRefGoogle ScholarPubMed
Büeler, H. R., Aguzzi, A., Sailer, A.et al. (1993). Mice devoid of PrP are resistant to scrapie. Cell, 73, 1339–47CrossRefGoogle ScholarPubMed
Carp, R. I. (1982). Transmission of scrapie by oral route: effect of gingival scarification [letter].Lancet, 1, 170–1CrossRefGoogle ScholarPubMed
Carroll, M. C. (1998). CD21/CD35 in B cell activation. Semin. Immunol., 10, 279–86CrossRefGoogle ScholarPubMed
Cashman, N. R., Loertscher, R., Nalbantoglu, J.et al. (1990). Cellular isoform of the scrapie agent protein participates in lymphocyte activation. Cell, 61, 185–92CrossRefGoogle ScholarPubMed
Caughey, B. & Race, R. E. (1992). Potent inhibition of scrapie-associated PrP accumulation by congo red. J. Neurochem., 59, 768–71CrossRefGoogle ScholarPubMed
Caughey, B. & Raymond, G. J. (1993). Sulfated polyanion inhibition of scrapie-associated PrP accumulation in cultured cells. J. Virol., 67, 643–50Google ScholarPubMed
Chazot, G., Broussolle, E., Lapras, C., Blättler, T., Aguzzi, A. & Kopp, N. (1996). New variant of Creutzfeldt–Jakob disease in a 26-year-old French man [letter]. Lancet, 347, 1181CrossRefGoogle Scholar
Chesebro, B. (1998). BSE and prions: uncertainties about the agent. Science, 279, 42–3CrossRefGoogle ScholarPubMed
Clarke, M. C. & Kimberlin, R. H. (1984). Pathogenesis of mouse scrapie: distribution of agent in the pulp and stroma of infected spleens. Vet. Microbiol., 9, 215–25CrossRefGoogle ScholarPubMed
Cole, S. & Kimberlin, R. H. (1985). Pathogenesis of mouse scrapie: dynamics of vacuolation in brain and spinal cord after intraperitoneal infection. Neuropathol. Appl. Neurobiol., 11, 213–27CrossRefGoogle ScholarPubMed
Collinge, J. & Palmer, M. S. (1994). Human prion diseases. Baillieres Clin. Neurol., 3, 241–7Google ScholarPubMed
Collinge, J., Sidle, K. C., Meads, J., Ironside, J. & Hill, A. F. (1996). Molecular analysis of prion strain variation and the aetiology of ‘new variant’ CJD. Nature, 383, 685–90CrossRefGoogle ScholarPubMed
Collinge, J., Whittington, M. A., Sidle, K. C.et al. (1994). Prion protein is necessary for normal synaptic function. Nature, 370, 295–7CrossRefGoogle ScholarPubMed
Collins, S. J., Lewis, V., Brazier, M., Hill, A. F., Fletcher, A. & Masters, C. L. (2002). Quinacrine does not prolong survival in a murine Creutzfeldt-Jakob disease model. Ann. Neurol., 52, 503–6CrossRefGoogle ScholarPubMed
Crowe, P. D., VanArsdale, T. L., Walter, B. N.et al. (1994). A lymphotoxin-beta-specific receptor. Science, 264, 707–10CrossRefGoogle ScholarPubMed
Cuille, J. & Chelle, P. L. (1939). Experimental transmission of trembling to the goat. C R Seances Acad. Sci., 208, 1058–60Google Scholar
Duffy, P., Wolf, J., Collins, G., DeVoe, A. G., Streeten, B. & Cowen, D. (1974). Possible person-to-person transmission of Creutzfeldt–Jakob disease. N. Engl. J. Med., 290, 692–3Google ScholarPubMed
Endres, R., Alimzhanov, M. B., Plitz, T.et al. (1999). Mature follicular dendritic cell networks depend on expression of lymphotoxin beta receptor by radioresistant stromal cells and of lymphotoxin beta and tumor necrosis factor by B cells. J. Exp. Med., 189, 159–68CrossRefGoogle ScholarPubMed
Farquhar, C., Dickinson, A. & Bruce, M. (1999). Prophylactic potential of pentosan polysulphate in transmissible spongiform encephalopathies [letter]. Lancet, 353, 117CrossRefGoogle Scholar
Farquhar, C. F., Dornan, J., Somerville, R. A., Tunstall, A. M. & Hope, J. (1994). Effect of Sinc genotype, agent isolate and route of infection on the accumulation of protease-resistant PrP in non-central nervous system tissues during the development of murine scrapie. J. Gen. Virol., 75, 495–504CrossRefGoogle ScholarPubMed
Felten, D. L. & Felten, S. Y. (1988). Sympathetic noradrenergic innervation of immune organs. Brain Behav. Immun., 2, 293–300CrossRefGoogle ScholarPubMed
Fischer, M., Rülicke, T., Raeber, A.et al. (1996). Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J., 15, 1255–64Google ScholarPubMed
Fischer, M. B., Goerg, S., Shen, L.et al. (1998). Dependence of germinal center B cells on expression of CD21/CD35 for survival. Science, 280, 582–5CrossRefGoogle Scholar
Fischer, M. B., Roeckl, C., Parizek, P., Schwarz, H. P. & Aguzzi, A. (2000). Binding of disease-associated prion protein to plasminogen. Nature, 408, 479–83Google ScholarPubMed
Flechsig, E., Shmerling, D., Hegyi, I.et al. (2000). Prion protein devoid of the octapeptide repeat region restores susceptibility to scrapie in PrP knockout mice. Neuron, 27, 399–408CrossRefGoogle ScholarPubMed
Fournier, J. G., Escaig Haye, F., Billette de Villemeur, T. & Robain, O. (1995). Ultrastructural localization of cellular prion protein (PrPc) in synaptic boutons of normal hamster hippocampus. C. R. Acad. Sci. III., 318, 339–44Google ScholarPubMed
Fraser, H. (1982). Neuronal spread of scrapie agent and targeting of lesions within the retino-tectal pathway. Nature, 295, 149–50CrossRefGoogle ScholarPubMed
Frigg, R., Klein, M. A., Hegyi, I., Zinkernagel, R. M. & Aguzzi, A. (1999). Scrapie pathogenesis in subclinically infected B-cell-deficient mice. J. Virol., 73, 9584–8Google ScholarPubMed
Fu, Y. X., Huang, G., Matsumoto, M., Molina, H. & Chaplin, D. D. (1997). Independent signals regulate development of primary and secondary follicle structure in spleen and mesenteric lymph node. Proc. Natl. Acad. Sci. USA, 94, 5739–43CrossRefGoogle ScholarPubMed
Gabizon, R., McKinley, M. P., Groth, D. & Prusiner, S. B. (1988). Immunoaffinity purification and neutralization of scrapie prion infectivity. Proc. Natl Acad. Sci. USA, 85, 6617–21CrossRefGoogle ScholarPubMed
Gajdusek, D. C., Gibbs, C. J. & Alpers, M. (1966). Experimental transmission of a Kuru-like syndrome to chimpanzees. Nature, 209, 794–6CrossRefGoogle ScholarPubMed
Gibbs, C. J. Jr., Gajdusek, D. C., Asher, D. M.et al. (1968). Creutzfeldt–Jakob disease (spongiform encephalopathy): transmission to the chimpanzee. Science, 161, 388–9CrossRefGoogle ScholarPubMed
Glatzel, M. & Aguzzi, A. (2000). PrP(C) expression in the peripheral nervous system is a determinant of prion neuroinvasion. J. Gen. Virol., 81, 2813–21CrossRefGoogle ScholarPubMed
Glatzel, M. & Aguzzi, A. (2001). The shifting biology of prions. Brain Res. Brain Res. Rev., 36, 241–8CrossRefGoogle ScholarPubMed
Glatzel, M., Flechsig, E., Navarro, B.et al. (2000). Adenoviral and adeno-associated viral transfer of genes to the peripheral nervous system. Proc. Natl Acad. Sci. USA, 97, 442–7CrossRefGoogle ScholarPubMed
Glatzel, M., Heppner, F. L., Albers, K. M. & Aguzzi, A. (2001). Sympathetic innervation of lymphoreticular organs is rate limiting for prion neuroinvasion. Neuron, 31, 25–34CrossRefGoogle ScholarPubMed
Glatzel, M., Rogivue, C., Ghani, A., Streffer, J., Amsler, L. & Aguzzi, A. (2002). Incidence of Creutzfeldt–Jakob disease in Switzerland. Lancet, 360, 139–41CrossRefGoogle ScholarPubMed
Gonzalez, M., Mackay, F., Browning, J. L., Kosco-Vilbois, M. H. & Noelle, R. J. (1998). The sequential role of lymphotoxin and B cells in the development of splenic follicles. J. Exp. Med., 187, 997–1007CrossRefGoogle Scholar
Griffith, J. S. (1967). Self-replication and scrapie. Nature, 215, 1043–4CrossRefGoogle ScholarPubMed
Hadlow, W. J. (1959). Scrapie and kuru. Lancet, 2, 289–90CrossRefGoogle Scholar
Hainfellner, J. A. & Budka, H. (1999). Disease associated prion protein may deposit in the peripheral nervous system in human transmissible spongiform encephalopathies. Acta Neuropathol. (Berl.), 98, 458–60CrossRefGoogle ScholarPubMed
Hazenbos, W. L., Gessner, J. E., Hofhuis, F. M.et al. (1996). Impaired IgG-dependent anaphylaxis and Arthus reaction in Fc gamma RIII (CD16) deficient mice. Immunity, 5, 181–8CrossRefGoogle ScholarPubMed
Heppner, F. L., Christ, A. D., Klein, M. A.et al. (2001a). Transepithelial prion transport by M cells. Nat. Med., 7, 976–7CrossRefGoogle Scholar
Heppner, F. L., Musahl, C., Arrighi, I.et al. (2001b). Prevention of Scrapie Pathogenesis by transgenic expression of anti-prion protein antibodies. Science, 294, 178–82CrossRefGoogle Scholar
Hill, A. F., Desbruslais, M., Joiner, S.et al. (1997a). The same prion strain causes vCJD and BSE [letter] [see comments]. Nature, 389, 448–50CrossRefGoogle Scholar
Hill, A. F., Zeidler, M., Ironside, J. & Collinge, J. (1997b). Diagnosis of new variant Creutzfeldt–Jakob disease by tonsil biopsy. Lancet, 349, 99CrossRefGoogle Scholar
Horiuchi, M. & Caughey, B. (1999). Specific binding of normal prion protein to the scrapie form via a localized domain initiates its conversion to the protease-resistant state [In Process Citation]. EMBO J., 18, 3193–203CrossRefGoogle Scholar
Houston, F., Foster, J. D., Chong, A., Hunter, N. & Bostock, C. J. (2000). Transmission of BSE by blood transfusion in sheep. Lancet, 356, 999–1000CrossRefGoogle Scholar
http://www.doh.gov.uk/cjd/stats/aug02.htm. (2002). Monthly Creutzfeldt–Jakob disease statistics. In Department of Health
Huang, F. P., Farquhar, C. F., Mabbott, N. A., Bruce, M. E. & MacPherson, G. G. (2002). Migrating intestinal dendritic cells transport PrP(Sc) from the gut. J. Gen. Virol., 83, 267–71CrossRefGoogle Scholar
Hunter, N., Foster, J., Chong, A.et al. (2002). Transmission of prion diseases by blood transfusion. J. Gen. Virol., 83, 2897–905CrossRefGoogle ScholarPubMed
Jeffrey, M., Goodsir, C. M., Bruce, M., McBride, P. A., Scott, J. R. & Halliday, W. G. (1994). Correlative light and electron microscopy studies of PrP localisation in 87V scrapie. Brain Res., 656, 329–43CrossRefGoogle ScholarPubMed
Jeffrey, M., McGovern, G., Goodsir, C. M., , K, L. B. & Bruce, M. E. (2000). Sites of prion protein accumulation in scrapie-infected mouse spleen revealed by immuno-electron microscopy [In Process Citation]. J. Pathol., 191, 323–323.0.CO;2-Z>CrossRefGoogle Scholar
Kaeser, P. S., Klein, M. A., Schwarz, P. & Aguzzi, A. (2001). Efficient lymphoreticular prion propagation requires prp(c) in stromal and hematopoietic cells. J. Virol., 75, 7097–106CrossRefGoogle ScholarPubMed
Kao, R. R., Gravenor, M. B., Baylis, M.et al. (2002). The potential size and duration of an epidemic of bovine spongiform encephalopathy in British sheep. Science, 295, 332–5CrossRefGoogle ScholarPubMed
Kapasi, Z. F., Qin, D., Kerr, W. G.et al. (1998). Follicular dendritic cell (FDC) precursors in primary lymphoid tissues. J. Immunol., 160, 1078–84Google ScholarPubMed
Kellings, K., Meyer, N., Mirenda, C., Prusiner, S. B. & Riesner, D. (1993). Analysis of nucleic acids in purified scrapie prion preparations. Arch. Virol. Supp. 7, 215–25CrossRefGoogle ScholarPubMed
Kerneis, S., Bogdanova, A., Kraehenbuhl, J. P. & Pringault, E. (1997). Conversion by Peyer's patch lymphocytes of human enterocytes into M cells that transport bacteria. Science, 277, 949–52CrossRefGoogle ScholarPubMed
Kimberlin, R. H., Hall, S. M. and Walker, C. A. (1983). Pathogenesis of mouse scrapie. Evidence for direct neural spread of infection to the CNS after injection of sciatic nerve. J. Neurol. Sci., 61, 315–25CrossRefGoogle ScholarPubMed
Kimberlin, R. H. & Walker, C. A. (1978). Pathogenesis of mouse scrapie: effect of route of inoculation on infectivity titres and dose-response curves. J. Comp. Pathol., 88, 39–47CrossRefGoogle ScholarPubMed
Kimberlin, R. H. & Wilesmith, J. W. (1994). Bovine spongiform encephalopathy. Epidemiology, low dose exposure and risks. Ann. NY Acad. Sci., USA, 724, 210–20CrossRefGoogle ScholarPubMed
Kitamoto, T., Muramoto, T., Mohri, S., Dohura, K. & Tateishi, J. (1991). Abnormal isoform of prion protein accumulates in follicular dendritic cells in mice with Creutzfeldt–Jakob disease. J. Virol., 65, 6292–5Google ScholarPubMed
Kitamura, D., Roes, J., Kuhn, R. & Rajewsky, K. (1991). A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature, 350, 423–6CrossRefGoogle Scholar
Klein, M. A., Frigg, R., Flechsig, E.et al. (1997). A crucial role for B cells in neuroinvasive scrapie. Nature, 390, 687–90CrossRefGoogle ScholarPubMed
Klein, M. A., Frigg, R., Raeber, A. J.et al. (1998). PrP expression in B lymphocytes is not required for prion neuroinvasion. Nat. Med., 4, 1429–33CrossRefGoogle Scholar
Klein, M. A., Kaeser, P. S., Schwarz, P.et al. (2001). Complement facilitates early prion pathogenesis. Nat. Med., 7, 488–92CrossRefGoogle ScholarPubMed
Koller, M. F., Grau, T. & Christen, P. (2002). Induction of antibodies against murine full-length prion protein in wild-type mice. J. Neuroimmunol., 132, 113–16CrossRefGoogle ScholarPubMed
Koni, P. A., Sacca, R., Lawton, P., Browning, J. L., Ruddle, N. H. & Flavell, R. A. (1997). Distinct roles in lymphoid organogenesis for lymphotoxins alpha and beta revealed in lymphotoxin beta-deficient mice. Immunity, 6, 491–500CrossRefGoogle ScholarPubMed
Kooyman, D. L., Byrne, G. W., McClellan, S.et al. (1995). In vivo transfer of GPI-linked complement restriction factors from erythrocytes to the endothelium. Science, 269, 89–92CrossRefGoogle ScholarPubMed
Kooyman, D. L., Byrne, G. W. & Logan, J. S. (1998). Glycosyl phosphatidylinositol anchor. Exp. Nephrol., 6, 148–51CrossRefGoogle ScholarPubMed
Korth, C., Stierli, B., Streit, P.et al. (1997). Prion (PrPSc)-specific epitope defined by a monoclonal antibody. Nature, 390, 74–7CrossRefGoogle ScholarPubMed
Künzi, V., Glatzel, M., Nakano, M. Y., Greber, U. F., Van Leuven, F. & Aguzzi, A. (2002). Unhampered prion neuroinvasion despite impaired fast axonal transport in transgenic mice overexpressing four-repeat tau. J. Neurosci., in PressCrossRef
Lasmezas, C. I., Cesbron, J. Y., Deslys, J. P.et al. (1996a). Immune system-dependent and -independent replication of the scrapie agent. J. Virol., 70, 1292–5Google Scholar
Lasmezas, C. I., Deslys, J. P., Demaimay, R.et al. (1996b). BSE transmission to macaques. Nature, 381, 743–4CrossRefGoogle Scholar
Li, A., Sakaguchi, S., Shigematsu, K.et al. (2000). Physiological expression of the gene for PrP-like protein, PrPLP/Dpl, by brain endothelial cells and its ectopic expression in neurons of PrP-deficient mice ataxic due to purkinje cell degeneration [In Process Citation]. Am. J. Pathol., 157, 1447–52CrossRefGoogle Scholar
Liu, T., Li, R., Pan, T.et al. (2002). Intercellular transfer of the cellular prion protein. J. Biol. Chem.CrossRefGoogle ScholarPubMed
Lledo, P. M., Tremblay, P., Dearmond, S. J., Prusiner, S. B. & Nicoll, R. A. (1996). Mice deficient for prion protein exhibit normal neuronal excitability and synaptic transmission in the hippocampus. Proc. Natl Acad. Sci., USA, 93, 2403–7CrossRefGoogle ScholarPubMed
Lu, K., Wang, W., Xie, Z.et al. (2000). Expression and structural characterization of the recombinant human doppel protein(,) [In Process Citation]. Biochemistry, 39, 13575–83CrossRefGoogle Scholar
Ma, J. & Lindquist, S. (2002). Conversion of PrP to a self-perpetuating PrPSc-like conformation in the cytosol. Science.CrossRefGoogle ScholarPubMed
Ma, J., Wollmann, R. & Lindquist, S. (2002). Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. ScienceCrossRefGoogle ScholarPubMed
Mabbott, N. A., Bruce, M. E., Botto, M., Walport, M. J. & Pepys, M. B. (2001). Temporary depletion of complement component C3 or genetic deficiency of C1q significantly delays onset of scrapie. Nat. Med., 7, 485–7CrossRefGoogle ScholarPubMed
Mackay, F. & Browning, J. L. (1998). Turning off follicular dendritic cells. Nature, 395, 26–7CrossRefGoogle ScholarPubMed
Mackay, F., Majeau, G. R., Lawton, P., Hochman, P. S. & Browning, J. L. (1997). Lymphotoxin but not tumor necrosis factor functions to maintain splenic architecture and humoral responsiveness in adult mice. Eur. J. Immunol., 27, 2033–42CrossRefGoogle Scholar
Maissen, M., Roeckl, C., Glatzel, M., Goldmann, W. & Aguzzi, A. (2001). Plasminogen binds to disease-associated prion protein of multiple species. Lancet, 357, 2026–8CrossRefGoogle ScholarPubMed
Mallucci, G. R., Ratte, S., Asante, E. A.et al. (2002). Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J., 21, 202–10CrossRefGoogle Scholar
Manson, J. C., Clarke, A. R., Hooper, M. L., Aitchison, L., McConnell, I. & Hope, J. (1994). 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol. Neurobiol., 8, 121–7CrossRefGoogle ScholarPubMed
Matsumoto, M., Fu, Y. X., Molina, , H. et al. (1997). Distinct roles of lymphotoxin alpha and the type I tumor necrosis factor (TNF) receptor in the establishment of follicular dendritic cells from non-bone marrow-derived cells. J. Exp. Med., 186, 1997–2004CrossRefGoogle ScholarPubMed
McBride, P. A. & Beekes, M. (1999). Pathological PrP is abundant in sympathetic and sensory ganglia of hamsters fed with scrapie. Neurosci. Lett., 265, 135–8CrossRefGoogle ScholarPubMed
Mead, S., Beck, J., Dickinson, A., Fisher, E. M. & Collinge, J. (2000). Examination of the human prion protein-like gene doppel for genetic susceptibility to sporadic and variant Creutzfeldt–Jakob disease. Neurosci. Lett., 290, 117–20CrossRefGoogle ScholarPubMed
Mo, H., Moore, R. C., Cohen, F. E.et al. (2001). Two different neurodegenerative diseases caused by proteins with similar structures. Proc. Natl Acad. Sci. USA, 98, 2352–7CrossRefGoogle ScholarPubMed
Montrasio, F., Frigg, R., Glatzel, M.et al. (2000). Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science, 288, 1257–9CrossRefGoogle ScholarPubMed
Moore, R. C., Lee, I. Y., Silverman, G. L.et al. (1999). Ataxia in prion protein (PrP)-deficient mice is associated with upregulation of the novel PrP-like protein doppel [In Process Citation]. J. Mol. Biol., 292, 797–817CrossRefGoogle Scholar
Moser, M., Oesch, B. & Bueler, H. (1993). An anti-prion protein?Nature, 362, 213–14CrossRefGoogle ScholarPubMed
Neutra, M. R., Frey, A. & Kraehenbuhl, J. P. (1996). Epithelial M cells: gateways for mucosal infection and immunization. Cell, 86, 345–8CrossRefGoogle ScholarPubMed
Nicotera, P. (2001). A route for prion neuroinvasion. Neuron, 31, 345–8CrossRefGoogle ScholarPubMed
Oesch, B., Teplow, D. B., Stahl, N., Serban, D., Hood, L. E. & Prusiner, S. B. (1990). Identification of cellular proteins binding to the scrapie prion protein. Biochemistry, 29, 5848–55CrossRefGoogle ScholarPubMed
Oesch, B., Westaway, D., Walchli, M.et al. (1985). A cellular gene encodes scrapie PrP 27–30 protein. Cell, 40, 735–46CrossRefGoogle ScholarPubMed
Park, S. Y., Ueda, S., Ohno, H.et al. (1998). Resistance of Fc receptor-deficient mice to fatal glomerulonephritis. J. Clin. Invest., 102, 1229–38CrossRefGoogle ScholarPubMed
Peoc'h, K., Guerin, C., Brandel, J. P., Launay, J. M. & Laplanche, J. L. (2000). First report of polymorphisms in the prion-like protein gene (PRND): implications for human prion diseases. Neurosci. Lett., 286, 144–8CrossRefGoogle ScholarPubMed
Peretz, D., Williamson, R. A., Kaneko, K.et al. (2001). Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature, 412, 739–43CrossRefGoogle ScholarPubMed
Perry, V. H., Cunningham, C. & Boche, D. (2002). Atypical inflammation in the central nervous system in prion disease. Curr. Opin. Neurol., 15, 349–54CrossRefGoogle ScholarPubMed
Pocchiari, M., Schmittinger, S. & Masullo, C. (1987). Amphotericin B delays the incubation period of scrapie in intracerebrally inoculated hamsters. J. Gen. Virol., 68, 219–23CrossRefGoogle ScholarPubMed
Prinz, M., Huber, G., Macpherson, A. J. S. et al. (2003). Oral prion infection requires normal numbers of Peyer's patches but not of enteric lymphocytes. submitted
Prinz, M., Montrasio, F., Klein, M. A.et al. (2002). Lymph nodal prion replication and neuroinvasion in mice devoid of follicular dendritic cells. Proc. Natl Acad. Sci. USA, 99, 919–24CrossRefGoogle ScholarPubMed
Priola, S. A., Raines, A. & Caughey, W. S. (2000). Porphyrin and phthalocyanine antiscrapie compounds [see comments]. Science, 287, 1503–6CrossRefGoogle Scholar
Prusiner, S. B. (1982). Novel proteinaceous infectious particles cause scrapie. Science, 216, 136–44CrossRefGoogle ScholarPubMed
Prusiner, S. B. (1989). Scrapie prions. Annu. Rev. Microbiol., 43, 345–74CrossRefGoogle ScholarPubMed
Prusiner, S. B., Cochran, S. P., Groth, D. F., Downey, D. E., Bowman, K. A. & Martinez, H. M. (1982). Measurement of the scrapie agent using an incubation time interval assay. Ann. Neurol., 11, 353–8CrossRefGoogle ScholarPubMed
Prusiner, S. B., Groth, D., Serban, A.et al. (1993). Ablation of the prion protein (PrP) gene in mice prevents scrapie and facilitates production of anti-PrP antibodies. Proc. Natl Acad. Sci. USA, 90, 10608–12CrossRefGoogle ScholarPubMed
Prusiner, S. B., Scott, M. R., DeArmond, S. J. and Cohen, F. E. (1998). Prion protein biology. Cell, 93, 337–48CrossRefGoogle ScholarPubMed
Race, R., Oldstone, M. & Chesebro, B. (2000). Entry versus blockade of brain infection following oral or intraperitoneal scrapie administration: role of prion protein expression in peripheral nerves and spleen. J. Virol., 74, 828–33CrossRefGoogle ScholarPubMed
Race, R. E., Priola, S. A., Bessen, R. A.et al. (1995). Neuron-specific expression of a hamster prion protein minigene in transgenic mice induces susceptibility to hamster scrapie agent. Neuron, 15, 1183–91CrossRefGoogle ScholarPubMed
Raeber, A. J., Klein, M. A., Frigg, R., Flechsig, E., Aguzzi, A. & Weissmann, C. (1999a). PrP-dependent association of prions with splenic but not circulating lymphocytes of scrapie-infected mice. EMBO J., 18, 2702–6CrossRefGoogle Scholar
Raeber, A. J., Sailer, A., Hegyi, I.et al. (1999b). Ectopic expression of prion protein (PrP) in T lymphocytes or hepatocytes of PrP knockout mice is insufficient to sustain prion replication. Proc. Natl Acad. Sci. USA, 96, 3987–92CrossRefGoogle Scholar
Rieger, R., Edenhofer, F., Lasmezas, C. I. & Weiss, S. (1997). The human 37-kDa laminin receptor precursor interacts with the prion protein in eukaryotic cells [see comments]. Nat. Med., 3, 1383–8CrossRefGoogle Scholar
Riesner, D., Kellings, K., Wiese, U., Wulfert, M., Mirenda, C. & Prusiner, S. B. (1993). Prions and nucleic acids: search for “residual” nucleic acids and screening for mutations in the PrP-gene. Dev. Biol. Stand., 80, 173–81Google ScholarPubMed
Rossi, D., Cozzio, A., Flechsig, E., Klein, M. A., Aguzzi, A. & Weissmann, C. (2001). Onset of ataxia and Purkinje cell loss in PrP null mice inversely correlated with Dpl level in brain. EMBO J., 20, 1–9CrossRefGoogle ScholarPubMed
Rother, K. I., Clay, O. K., Bourquin, J. P., Silke, J. & Schaffner, W. (1997). Long non-stop reading frames on the antisense strand of heat shock protein 70 genes and prion protein (PrP) genes are conserved between species [see comments]. Biol. Chem., 378, 1521–30CrossRefGoogle Scholar
Rubenstein, R., Merz, P. A., Kascsak, R. J.et al. (1991). Scrapie-infected spleens: analysis of infectivity, scrapie-associated fibrils, and protease-resistant proteins. J. Infect. Dis., 164, 29–35CrossRefGoogle ScholarPubMed
Safar, J., Wille, H., Itri, V.et al. (1998). Eight prion strains have PrP(Sc) molecules with different conformations [see comments]. Nat. Med., 4, 1157–65CrossRefGoogle Scholar
Safar, J., Cohen, F. E. & Prusiner, S. B. (2000). Quantitative traits of prion strains are enciphered in the conformation of the prion protein. Arch. Virol. Supp., 16, 227–35Google Scholar
Sailer, A., Büeler, H., Fischer, M., Aguzzi, A. & Weissmann, C. (1994). No propagation of prions in mice devoid of PrP. Cell, 77, 967–8CrossRefGoogle ScholarPubMed
Sakaguchi, S., Katamine, S., Nishida, N.et al. (1996). Loss of cerebellar Purkinje cells in aged mice homozygous for a disrupted prp gene. Nature, 380, 528–31CrossRefGoogle ScholarPubMed
Scott, J. R., Foster, J. D. & Fraser, H. (1993). Conjunctival instillation of scrapie in mice can produce disease. Vet. Microbiol., 34, 305–9CrossRefGoogle ScholarPubMed
Sethi, S., Lipford, G., Wagner, H. & Kretzschmar, H. (2002). Postexposure prophylaxis against prion disease with a stimulator of innate immunity. Lancet, 360, 229–30CrossRefGoogle ScholarPubMed
Shaked, Y., Rosenmann, H., Talmor, G. & Gabizon, R. (1999). A C-terminal-truncated PrP isoform is present in mature sperm. J. Biol. Chem., 274, 32153–8CrossRefGoogle ScholarPubMed
Shaked, Y., Engelstein, R. & Gabizon, R. (2002). The binding of prion proteins to serum components is affected by detergent extraction conditions. J. Neurochem., 82, 1–5CrossRefGoogle ScholarPubMed
Shlomchik, M. J., Radebold, K., Duclos, N. & Manuelidis, L. (2001). Neuroinvasion by a Creutzfeldt–Jakob disease agent in the absence of B cells and follicular dendritic cells. Proc. Natl Acad. Sci. USA, 98, 9289–94CrossRefGoogle ScholarPubMed
Shmerling, D., Hegyi, I., Fischer, M.et al. (1998). Expression of amino-terminally truncated PrP in the mouse leading to ataxia and specific cerebellar lesions. Cell, 93, 203–14CrossRefGoogle ScholarPubMed
Sigurdsson, E. M., Brown, D. R., Daniels, M.et al. (2002). Immunization delays the onset of prion disease in mice. Am. J. Pathol., 161, 13–17CrossRefGoogle ScholarPubMed
Silverman, G. L., Qin, K., Moore, R. C.et al. (2000). Doppel is an N-glycosylated, glycosylphosphatidylinositol-anchored protein. Expression in testis and ectopic production in the brains of Prnp(0/0) mice predisposed to Purkinje cell loss. J. Biol. Chem., 275, 26834–41Google ScholarPubMed
Soto, C., Kascsak, R. J., Saborio, G. P.et al. (2000). Reversion of prion protein conformational changes by synthetic beta-sheet breaker peptides. Lancet, 355, 192–7CrossRefGoogle ScholarPubMed
Supattapone, S., Bosque, P., Muramoto, T.et al. (1999). Prion protein of 106 residues creates an artifical transmission barrier for prion replication in transgenic mice. Cell, 96, 869–78CrossRefGoogle ScholarPubMed
Supattapone, S., Wille, H., Uyechi, L.et al. (2001). Branched polyamines cure prion-infected neuroblastoma cells. J. Virol., 75, 3453–61CrossRefGoogle ScholarPubMed
Szakal, A. K. & Hanna, M. G. Jr. (1968). The ultrastructure of antigen localization and viruslike particles in mouse spleen germinal centers. Exp. Mol. Pathol., 8, 75–89CrossRefGoogle ScholarPubMed
Szakal, A. K., Kapasi, Z. F., Haley, S. T. & Tew, J. G. (1995). Multiple lines of evidence favoring a bone marrow derivation of follicular dendritic cells (FDCs). Adv. Exp. Med. Biol., 378, 267–72CrossRefGoogle Scholar
Tagliavini, F., McArthur, R. A., Canciani, B.et al. (1997). Effectiveness of anthracycline against experimental prion disease in Syrian hamsters. Science, 276, 1119–22CrossRefGoogle ScholarPubMed
Takai, T., Li, M., Sylvestre, D., Clynes, R. & Ravetch, J. V. (1994). FcR gamma chain deletion results in pleiotrophic effector cell defects. Cell, 76, 519–29CrossRefGoogle ScholarPubMed
Takai, T., Ono, M., Hikida, M., Ohmori, H. & Ravetch, J. V. (1996). Augmented humoral and anaphylactic responses in Fc gamma RII-deficient mice. Nature, 379, 346–9CrossRefGoogle ScholarPubMed
Taylor, D. M. (2000). Inactivation of transmissible degenerative encephalopathy agents: a review [see comments]. Vet. J., 159, 10–7CrossRefGoogle Scholar
Taylor, D. M., McConnell, I. & Fraser, H. (1996). Scrapie infection can be established readily through skin scarification in immunocompetent but not immunodeficient mice. J. Gen. Virol., 77, 1595–9CrossRefGoogle Scholar
Tobler, I., Gaus, S. E., Deboer, T.et al. (1996). Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature, 380, 639–42CrossRefGoogle ScholarPubMed
Vankeulen, L. J. M., Schreuder, B. E. C., Meloen, R. H., , M. E. W. & Langeveld, J. P. M. (1996). Immunohistochemical detection of prion protein in lymphoid tissues of sheep with natural scrapie. J. Clin. Microbiol., 34, 1228–31Google Scholar
Wadsworth, J. D., Hill, A. F., Joiner, S., Jackson, G. S., Clarke, A. R. & Collinge, J. (1999). Strain-specific prion–protein conformation determined by metal ions [see comments]. Nat. Cell. Biol., 1, 55–9CrossRefGoogle Scholar
Waggoner, D. J., Drisaldi, B., Bartnikas, T. B.et al. (2000). Brain copper content and cuproenzyme activity do not vary with prion protein expression level. J. Biol. Chem., 275, 7455–8CrossRefGoogle Scholar
Wagner, N., Lohler, J., Kunkel, E. J.et al. (1996). Critical role for beta7 integrins in formation of the gut-associated lymphoid tissue. Nature, 382, 366–70CrossRefGoogle ScholarPubMed
Ware, C. F., VanArsdale, T. L., Crowe, P. D. & Browning, J. L. (1995). The ligands and receptors of the lymphotoxin system. Curr. Top. Microbiol. Immunol., 198, 175–218Google ScholarPubMed
Wassarman, P. M., Jovine, L. & Litscher, E. S. (2001). A profile of fertilization in mammals. Nat. Cell. Biol., 3, E59–64CrossRefGoogle ScholarPubMed
Weissmann, C. (1991). Spongiform encephalopathies. The prion's progress. Nature, 349, 569–71CrossRefGoogle ScholarPubMed
Weissmann, C. & Aguzzi, A. (1997). Bovine spongiform encephalopathy and early onset variant Creutzfeldt–Jakob disease. Curr. Opin. Neurobiol., 7, 695–700CrossRefGoogle ScholarPubMed
Weissmann, C. & Aguzzi, A. (1999). Perspectives: neurobiology. PrP's double causes trouble. Science, 286, 914–15CrossRefGoogle ScholarPubMed
Wells, G. A., Scott, A. C., Johnson, C. T.et al. (1987). A novel progressive spongiform encephalopathy in cattle. Vet. Rec., 121, 419–20CrossRefGoogle ScholarPubMed
Wells, G. A., Dawson, M., Hawkins, S. A.et al. (1994). Infectivity in the ileum of cattle challenged orally with bovine spongiform encephalopathy. Vet. Rec., 135, 40–1CrossRefGoogle ScholarPubMed
Wells, G. A., Hawkins, S. A., Green, R. B.et al. (1998). Preliminary observations on the pathogenesis of experimental bovine spongiform encephalopathy (BSE): an update. Vet. Rec., 142, 103–6CrossRefGoogle ScholarPubMed
Westaway, D. & Carlson, G. A. (2002). Mammalian prion proteins: enigma, variation and vaccination. Trends Biochem. Sci., 27, 301–7CrossRefGoogle ScholarPubMed
Whittington, M. A., Sidle, K. C., Gowland, I.et al. (1995). Rescue of neurophysiological phenotype seen in PrP null mice by transgene encoding human prion protein. Nat. Gene., 9, 197–201CrossRefGoogle ScholarPubMed
Will, R. G., Ironside, J. W., Zeidler, M.et al. (1996). A new variant of Creutzfeldt–Jakob disease in the UK. Lancet, 347, 921–5CrossRefGoogle ScholarPubMed
Wu, X., Jiang, N., Fang, Y. F.et al. (2000). Impaired affinity maturation in Cr2-/- mice is rescued by adjuvants without improvement in germinal center development. J. Immunol., 165, 3119–27CrossRefGoogle Scholar
Yehiely, F., Bamborough, P., Costa, M. D.et al. (2002). Identification of candidate proteins binding to prion protein.Neurobiol. Dis., 10, 67–8CrossRefGoogle Scholar
Zanata, S. M., Lopes, M. H., Mercadante, A. F.et al. (2002). Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO J., 21, 3307–16CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×