Skip to main content Accessibility help
×
×
Home
  • Print publication year: 2005
  • Online publication date: August 2010

41 - Pathophysiology: biochemistry of Parkinson's disease

from Part VII - Parkinson's and related movement disorders

Summary

Although the primary pathology and key defects of neurotransmission leading to the clinical picture of Parkinson's disease (PD) are known, initiation and nature of the neurodegenerative process are still obscure. However, it is becoming increasingly evident that the underlying pathophysiology is complex and in most cases probably multifactorial, differing among the individuals affected.

Only a very small percentage of Parkinsonian cases are caused by monogenic alterations (see Chapter 40). However, since the first description of a family in which 79 of 194 members suffered from PD (Mjörnes, 1949), it has become evident that the risk of developing the clinical picture of PD is three to four times higher in individuals with relatives with PD compared to those with a negative family history. Functional neuroimaging proved to be especially valuable for the detection of affected siblings: for monozygotic twins a concordance of 75% for PD or at least a subclinical dopaminergic deficit was detected by PET-studies, the rate for dizygotic was 22% (Piccini et al., 1999). These and other findings provide strong evidence of a genetic contribution to idiopathic PD (Gasser et al., 1998, 2001). However, only about 25% of PD patients report a relative affected by the same disease. Therefore, other factors are necessary to explain the selectivity and susceptibility of the disease on the basis of a genetic predisposition. Biochemical and histological investigations of the past decades have illuminated some of these factors.

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

Neurodegenerative Diseases
  • Online ISBN: 9780511544873
  • Book DOI: https://doi.org/10.1017/CBO9780511544873
Please enter your name
Please enter a valid email address
Who would you like to send this to *
×
REFERENCES
Alam, Z. I., Jenner, A., Daniel, S. E.et al. (1997). Oxidative DNA damage in the parkinsonian brain: a selective increase in 8-hydroxyguanine in substantia nigra?J. Neurochem., 69, 1196–203
Ambani, L. M., Woert, M. H. & Murphy, S. (1975). Brain peroxidase and catalase in Parkinson's disease. Arch. Neurol., 32, 114–18
Anglade, P., Vyas, S., Hirsch, E. C.et al. (1997). Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol. Histopathol., 12, 25–31
Antunes, F., Han, D., Rettori, D. & Cadenas, E. (2002). Mitochondrial damage by nitric oxide potentiated by dopamine in PC12 cells. Biochim. Biophys. Act., 1556, 233–8
Barbeau, A., Roy, M., Cloutier, T., Plasse, L. & Paris, S. (1987). Environmental and genetic factors in the etiology of Parkinson's disease. Adv. Neurol., 45, 299–306
Beal, M. F., Hyman, B. T. & Koroshetz, W. (1993). Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases. Trends Neurosci., 16, 125–31
Beck, K. D., Knusel, B. & Hefti, F. (1993). The nature of the trophic action of brain-derived neurotrophic factor, des(T-3)-insulin-like growth factor, and basic fibroblast growth factor on mesencepahlic dopaminergic neurons developing in culture. Neuroscience, 52, 855–66
Becker, G., Seufert, J., Bogdahn, U., Reichmann, H. & Reiners, K. (1995). Degeneration of substantia nigra in chronic Parkinson's disease visualized by transcranial color-coded real-time sonography. Neurology, 45, 182–4
Beckmann, J. S. (1996). Oxidative damage and tyrosine nitration from peroxynitrite. Chem. Res. Toxicol., 9, 836–44
Beckmann, J. S., Beckmann, T. W., Chen, J., Marshall, P. A. & Freeman, P. A. (1990). Apparent hydroxyl radical production by peroxynitrite: implications for endothilial injury from nitric oxide and superoxide. Proc. Natl Acad. Sci., USA, 87, 1620–4
Ben-Shachar, D., Riederer, P . & Youdim, M. B. (1991). Iron–melanin interaction and lipid peroxidation: implications for Parkinson's disease. J. Neurochem., 57, 1609–14
Ben-Shachar, D., Zuk, R. & Glinka, Y. (1995). Dopamine neurotoxicity: inhibition of mitochondrial respiration. J. Neurochem., 64, 718–23
Berg, D., Becker, G., Zeiler, B.et al. (1999a). Vulnerability of the nigrostriatal system as detected by transcranial ultrasound. Neurology, 53, 1026–31
Berg, D., Grote, C., Rausch, W.-D., et al. (1999b). Iron accumulation of the substantia nigra in rats visualized by ultrasound. Ultrasound Med. Biol., 25, 901–4
Berg, D., Gerlach, M ., Youdim, M. B. H.et al. (2001). Brain iron pathways and their relevance to Parkinson's disease. J. Neurochem., 79, 225–36
Berg, D., Roggendorf, W., Schröder, U.et al. (2002). Echogenicity of the substantia nigra – association with increased iron content and marker for susceptibility to nigrostriatal injury. Arch. Neurol., 59, 999–1005
Berg, D., Riess, O. & Bornemann, A. (2003a). Specification of 14–3–3 proteins in Lewy bodies. Ann. Neurol., 54, 135
Berg, D., Holzmann, C. & Riess, O. (2003b). 14–3–3 proteins in the nervous system. Nat. Rev. Neurosci., 4, 1–11
Betarbet, R., Sherer, T. B., MacKenzie, G., Garcia-Osuna, M., Panov, A. V. & Greenamyre, J. Z. (2000). Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat. Neurosci., 3, 1301–6
Bharat, S., Hsu, M., Kaur, D., Rajagopalan, S. & Andersen, J. K. (2002). Glutathione, iron and Parkinson's disease. Biochem. Pharmacol., 64, 1037–48
Blum-Degen, D., Müller, T., Kuhn, W.et al. (1995). Interleukin-1-beta and interleukin 6 are elevated in the cerebrospinal fluid of Alzheimer's and de novo Parkinson's disease patients. Neurosci. Lett., 202, 17–20
Boka, G., Anglade, P., Wallach, D., Javoy-Agid, F., Agdi, Y. & Hirsch, E. C. (1994). Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson's disease. Neurosci. Lett., 172, 151–4
Borie, C., Gasparini, F., Verpillat, P.et al. (2002). Association study between iron-related genes polymorphisms and Parkinson's disease. J. Neurol., 249, 801–4
Bostantjopoulou, S., Kyriazis, G., Katsarou, Z., Kiosseoglou, G., Kazis, A. & Mentenopouplos, G. (1997). Superoxide dismutase activity in early and advanced Parkinson's disease. Funct. Neurol., 12, 63–8
Bredt, D. S. (1999). Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radic. Res., 31, 577–96
Bringmann, G., Feineis, D., Grote, C. et al. (1998). Highly halogenated tetrahydro-β-carbolines as a new class of dopaminergic neurotoxins. In Pharmacology of Endogenous Neurotoxins. A Handbook, ed. A. Moser, pp. 151–69. Boston: Birkhäuser
Burke, R. E. & Kholodilov, N. G. (1998). Programmed cell death: does it play a role in Parkinson's disease?Ann. Neurol., 44, S126–33
Castellani, R. J., Siedlak, S. L., Perry, S. & Smith, M. A. (2000). Sequestration of iron by Lewy bodies in Parkinson's disease. Acta Neuropathol., 100, 111–14
Chan-Palay, V., Zetsche, T. & Hochli, M. (1991). Parvalbumin neurons in the hippocampus in senile dementia of the Alzheimer type, Parkinson's disease and multi-infarct dementia. Dementia, 2, 297–313
Chiba-Falek, O. & Nussbaum, R. L. (2001). Effect of allelic variation at the NACP-Rep1 repeat upstream of the α-synuclein gene (SNCA) on transcription in a cell culture luciferase reporter system. Hum. Mol. Genet., 10, 3101–9
Cleeter, M. W. J., Cooper, J. M., Darley Usmar, V. M., Moncada, S. & Schapira, A. H. V. (1994). Reversible inhibition of cytochrome c oxidase, the terminal enyzme of the mitochondrial respiratory chain, by nitric oxide: implications for neurodegenerative disorders. Acta Biochem. Biophys., 288, 481–7
Czlonkowska, A., Kurkowska-Jastrzebska, I., Czlonkowski, A., Peter, D. & Stefano, G. B. (2002). Immune processes in the pathogenesis of Parkinson's disease – a potential role for microglia and nitric oxide. Med. Sci. Monit., 8, 165–77
D'Amato, R. J., Lipman, Z. P. & Snyder, S. H. (1986). Selectivity of the Parkinson neurotoxin MPTP: toxic metabolite MPP+ binds to neuromelanin. Science, 231, 987–9
Damier, P., Hirsch, E. C., Zhang, P., Agid, Y. & Javoy-Agid, F. (1993). Glutathione peroxidase, glial cells and Parkinson's disease. Neuroscience, 52, 1–6
Damier, P., Kastner, A., Agid, Y. & Hirsch, E. C. (1996). Does monoamine oxidase type B play a role in dopaminergic nerve cell death in Parkinson's disease?Neurology, 46, 1262–9
David, G. C., Williams, A. C., Markey, S. P.et al. (1979). Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiat. Res., 1, 249 – (PF Sz)
Desagher, S., Glowinski, J. & Premont, J. (1997). Pyruvate protects neurons against hydrogen peroxide-induced toxicity. J. Neurosci., 17, 9060–7
Dexter, D. T., Cater, C. J., Wells, F. R.et al. (1989). Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. J. Neurochem., 52, 381–9
Dexter, D. T., Sian, J., Jenner, P. & Marsden, C. D. (1993). Implications of alterations in trace element levels in brain in Parkinson's disease and other neurological disorders affecting the basal ganglia. Adv. Neurol., 60, 273–81
Double, K. L., Riederer, P. & Gerlach, M. (1999). Significance of neuromelanin for neurodegeneration in Parkinson's disease. Drug News Perspect., 12, 333–40
Double, K. L., Gerlach, M., Youdim, M. B. H. & Riederer, P. (2000). Impaired iron homeostasis in Parkinson's disease. J. Neural Transm., 60, 37–58
Duvoisin, R. C., Zahr, M. D., Schweitzer, M. D.et al. (1963). Parkinsonism before and since the epidemic of encephalitis lethargica. Arch. Neurol., 9, 232–6
Fahn, S. (1999). Parkinson disease, the effect of levodopa, and the ELLDOPA trial. Earlier vs later L-dopa. Arch. Neurol., 56, 529–35
Farrer, M., Maraganore, D. M., Lockhart, P.et al. (2001). α-synuclein gene haplotypes are associated with Parkinson's disease. Hum. Mol. Genet., 10, 1847–51
Ferrarese, C., Tremolizzo, L., Rigoldi, M., Sala, G. & Begni, B. (2001). Decreased platelet glutamate uptake and genetic risk factors in patients with Parkinson's disease. Neurol. Sci., 22, 65–6
Foley, P. & Riederer, P. (1999). Pathogenesis and preclinical course of Parkinson's disease. J. Neural. Transm., 56, S31–74
Friquet, B. & Szweda, L. I. (1997). Inhibition of the multicatalytic proteinase (proteasome) by the 4-hydroxy-2-nonenal cross linked protein. FEBS Lett., 405, 21–5
Galvin, J. F., Lee, V. M. Y., Schmidt, L. et al. (1999). Pathology of the Lewy body. In Advances in Neurology, Vol 80, Parkinson's Disease, ed. G. Stern, pp. 313–24. Philadelphia: Lippincott Williams & Wilkins
Gamboa, E. T., Wolf, A., Yahr, M. D.et al. (1974). Influenza virus antigen in postencephalic parkinsonism brain. Arch. Neurol., 31, 228–32
Gao, H. M., Jiang, J., Wilson, B., Zhang, W., Hong, J. S. & Liu, B. (2002). Microglia activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson's disease. J. Neurochem., 81, 1285–97
Gash, D. M., Zhang, Z., Ovadia, A.et al. (1996). Functional recovery in parkinsonian monkeys treated with GDNF. Nature, 380, 252–5
Gasser, T. (1998). Genetics of Parkinson's disease. Ann. Neurol., 44, S53–7
Gasser, T. (2001). Molecular genetics of Parkinson's disease. In Advances in Neurology, Vol 86, Parkinson's Disease, ed. D. Calne & S. Calne, pp. 23–32. Philadelphia: Lippincott Williams & Wilkins
Gerlach, M., Ben-Shachar, D., Riederer, P.et al. (1994). Altered brain metabolism of iron as a cause of neurodegenerative diseases. J. Neurochem., 63, 793–807
Gerlach, M., Riederer, P. & Youdim, M. B. H. (1996). Molecular mechanisms for neurodegeneration: synergism between reactive oxygen species, calcium and excitotoxic amino acids. In Advances in Neurology, Vol 69, Parkinson's Disease., ed. L. Battistin, G. Scarlato, T. Caraceni & S. Ruggieri, pp. 177–94. Philadelphia: Lippincott-Raven
Gerlach, M., Reichmann, H. & Riederer, P. (2001). Die Parkinsonkrankheit, Grundlagen, Klinik, Therapie. Wien, New York: Springer
Giasson, B. I., Duda, J. E., Murray, I. V.et al. (2000). Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science, 3, 985–9
Glass, J. (1983). Untersuchung zur Bedeutung chemischer Noxen in der Ätiologie des Parkinson Syndroms. In Pathophysiologie, Klinik und Therapie des Parkinsonismus, pp. 103–7. Basel: Roches
Goedert, M., Spillantini, M. G. & Davies, S. W. (1998). Filamentous nerve cell inclusions in neurodegenerative diseases. Curr. Opin. Neurobiol., 8, 619–32
Golts, N., Snyder, H., Frasier, M., Theisler, C., Choi, P. & Wolozin, B. (2002). Magnesium inhibits spontaneous and iron-induced aggregation of alpha-synuclein. J. Biol. Chem., 277, 16116–23
Good, P., Olanow, C. & Perl, D. (1992). Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminium in Parkinson's disease: a LAMMA study. Brain, 593, 343–6
Götz, M. E., Künig, G., Riederer, P. & Youdim, M. B. H. (1994). Oxidative stress. Free radical production in neural degeneration. Pharmac. Ther., 63, 37–122
Grisham, M. B., Jourd'Heul, D. & Wink, D. A. (1999). Nitric oxide I. Physiological chemistry of nitric oxide and its metabolites: implications in inflammation. Am. J. Physiol., 276, 315–21
Grune, T., Reinheckel, T., Joshi, M. & Davies, K. J. A. (1995). Proteolysis in cultured liver epithelial cells during oxidative stress. Role of multicatalytic proteinase complex proteasome. J. Biol. Chem., 270, 2344–51
Gu, M., Cooper, J. M., Taanman, J. W. & Schapira, A. H. V. (1998). Mitochondrial DNA transmission of the mitochondrial defect in Parkinson's disease. Ann. Neurol., 44, 177–86
Gu, G., Reyes, P. E., Golden, G. T.et al. (2002). Mitochondrial DNA deletions/rearrangements in Parkinson disease and related neurodegenerative disorders. J. Neuropathol. Exp. Neurol., 61, 634–9
Hallgren, B. & Sourander, P. (1958). The effect of age on non-haem iron in the human brain. J. Neurochem., 3, 41–51
Hartmann, A., Hunot, S., Michel, P. P., Muriel, M. P. & Vyas, S. (2002). Caspase-3 activation: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson's disease. Proc. Natl Acad. Sci., USA, 97, 2875–80
Hashimoto, M., Hsu, L. J., Sisk, A . et al. (1998). Human recombinant NACP/alpha-synuclein is aggregated and fibrillated in vitro: relevance for Lewy body disease. Brain. Res., 799, 301–6
Hashimoto, M., Hsu, L. J., Xia, Y.et al. (1999). Oxidative stress induces amyloid-like aggregate formation of NACP/α-synuclein in vitro. NeuroReport, 10, 717–21
Hashimoto, M., Hsu, L. J., Rockenstein, E., Takenouchi, T., Mallory, M. & Masliah, E. (2002). Alpha-synuclein protects against oxidative stress via inactivation of the c-Jun N-terminal kinase stress-signaling pathway in neuronal cells. J. Biol. Chem., 277, 11465–72
Hattori, N., Tanaka, M., Ozawa, T. & Mizuno, Y. (1991). Immunohistochemical studies on complexes I, II, III and IV of mitochondria in Parkinson's disease. Ann. Neurol., 30, 563–71
He, Y., Thong, P. S., Lee, T.et al. (1996). Increased iron in the substantia nigra of 6-OHDA induced parkinsonian rats: a nuclear microscopy study. Brain. Res., 735, 149–53
Hirsch, E. C. (2000). Glial cells and Parkinson's disease. J. Neurol., 247 (II) 58–62
Hirsch, E. C., Graybiel, A. M. & Agid, Y. A. (1988). Melanid dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature, 334, 345–8
Hirsch, E. C., Mouatt, A., Thomasser, M., Javoy-Agid, F., Agid, Y. & Graybiel, A. M. (1992). Expression of calbindin D28K-like immunoreactivity in catecholaminergic cell groups in the human midbrain. Normal distribution and distribution in Parkinson's disease. Neurodegeneration, 1, 83–93
Holzmann, C., Krüger, R., Saecker, A. M.et al. (2003). Polymorphisms of the α-synuclein promoter: expression analyses and association studies in Parkinson's disease. J. Neural. Transm., 110, 67–76
Hunot, S., Dugas, N., Faucheux, B.et al. (1999). Fc epsilon-RII/CD23 is expressed in Parkinson's disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J. Neurosci., 19, 3440–7
Ichimura, T., Isobe, T., Okuyama, T., Yamauchi, T. & Fujisawa, H. (1987). Brain 14–3–3 protein is an activator protein that activates tryptophan 5-monooxygenase and tyrosine-3-monooxygenase in the presence of Ca2+-, calmodulin-dependent protein kinase II. FEBS Lett., 219, 79–82
Iravani, M. M., Kashefi, K., Mander, P., Rose, S. & Jenner, P. (2002). Involvement of inducible nitric oxide synthase in inflammation-induced dopaminergic neurodegeneration. Neuroscience, 110, 49–58
Isgreen, W. P., Chutorian, A. M. & Fahn, S. (1976). Sequential parkinsonism and chorea following ‘mild’ influenza. Trans. Am. Neurol. Assoc., 101, 56–9
Itoh, K., Weis, S., Mehraein, P. & Muller-Hocker, J. (1997). Defects of cytochrome c oxidase in the substantia nigra of Parkinson's disease: an immunohistochemical and morphometric study. Mov. Disord., 12, 9–16
Jacobson, M. D., Weil, M. & Raff, M. C. (1997). Programmed cell death in animal development. Cell, 88, 347–54
Janetzky, B., Hauck, S., Youdim, M. B.et al. (1994). Unaltered aconitase activity, but decreased complex I activity in substantia nigra pars compacta of patients with Parkinson's disease. Neurosci. Lett., 169, 126–8
Jangen-Hodge, J., Obin, M. S., Gong, X.et al. (1997). Regulation of ubiquitin-conjugating enzymes by glutathione following oxidative stress. J. Biol. Chem., 272, 28218–26
Jellinger, K. A. (2000). Cell death mechanisms in Parkinson's disease. J. Neural Transm., 107, 1–29
Jellinger, K., Kienzel, E., Rumpelmair, G.et al. (1992). Iron–melanin complex in substantia nigra of Parkinsonian brains: an X-ray microanalysis. J. Neurochem., 59, 1168–71
Jenner, P. (2001). Parkinson's disease, pesticides and mitochondrial dysfunction. Trends Neurosci., 24, 245–6
Jenner, P. & Olanow, C. W. (1998). Understanding cell death in Parkinson's disease. Ann. Neurol., 44, S72–84
Junn, E. & Mouradian, M. M. (2002). Human alpha-synuclein over-expression increases intracellular reactive oxygen species and susceptibility to dopamine. Neurosci. Lett., 320, 146–50
Kawamato, Y., Akiguchi, S., Nakamura, Y., Honjyo, H., Shibasaki, H. & Budka, H. (2002). 14–3–3 proteins in Lewy bodies in Parkinson disease and diffuse Lewy body disease brain. J. Neuropathol. Exp. Neurol., 61, 245–53
Kish, S. J., Morito, C. H. & Hornykiewics, (1985). Glutathione peroxidase activity in Parkinson's disease brain. Neurosci. Lett., 58, 343–6
Kitazawa, M., Anantharam, V. & Kanthasamy, A. G. (2001). Dieldrin-induced oxidative stress and neurochemical changes contribute to apoptotic cell death in dopaminergic cells. Free Radic. Biol. Med., 31, 1473–85
Koutsilieri, E., Scheller, C., Tribl, F. & Riederer, P. (2002). Degeneration of neuronal cells due to oxidative stress – microglial contribution. Parkinsonism Relat. Disord., 8, 401–6
Kramer, B. C., Yabut, J. A., Cheong, J.et al. (2002). Lipopolysaccharide prevents cell death caused by glutathione depletion: possible mechanism of protection. Neuroscience, 114, 361–72
Krüger, R., Vieira-Saecker, A. M. M., Kuhn, W.et al. (1999). Ann Neurol., 45, 611–17
Krüger, R., Eberhardt, O., Riess, O. & Schulz, J. B. (2002). Parkinson's disease: one biochemical pathway to fit all genes?Trends Mol. Med., 8, 236–40
Lan, J. & Jiang, D. H. (1997). Excessive iron accumulation in the brain: a possible potential risk of neurodegeneration in Parkinson's disease. J. Neural. Transm., 104, 649–60
Landfield, P. W., Applegate, M. D., Schwitzer-Osborne, S. E. & Naylor, C. E. (1991). Phosphate/calcium alterations in the first stages of Alzheimer's disease: implications for etiology and pathogenesis. J. Neurol. Sci., 106, 221–9
Langston, J. W., Ballard, P., Tetrud, J. W. & Irwin, I. (1983). Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 219, 989–90
LeCouteur, D. G., Muller, M., Yang, M. C., Mellick, G. D. & McLean, A. J. (2002). Age–environment and gene–environment interactions in the pathogenesis of Parkinson's disease. Rev. Environm. Hlth., 17, 51–64
Lin, L. F., Doherty, D. H., Lile, J. D., Bektesh, S. & Collins, F. (1993). GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science, 260, 1130–2
Liu, B., Gao, H., Wang, J., Jeohn, G., Cooper, C. & Hong, J. (2002). Role of nitric oxide in inflammation-mediated neurodegeneration. Ann. NY Acad. Sci. 962, 318–31
Liu, Y., Fiskum, G. & Schubert, D. (2002). Generation of reactive oxygen species by the mitochondrial electron transport chain. J. Neurochem., 80, 780–7
Lopiano, L., Chiesa, M., Digilio, G.et al. (2000). Q-band EPR investigations of neuromelanin in control and Parkinson's disease patients. Biochim. Biophys., 17, 306–12
Lotharius, J. & Brundin, P. (2002). Impaired dopamine storage resulting from alpha-synuclein mutations may contribute to the pathogenesis of Parkinson's disease. Hum. Mol. Genet., 11, 2395–405
Lowe, J., Lennox, G. & Leigh, P. N. (1997). Disorders of movement and system degenerations. In Greenfield's Neuropathology, 6th edn. ed. D. Graham & P. L. Lantos, pp. 280–366. London: Edward Arnold
Martilla, R. J., Lorentz, H. & Rinne, U. K. (1988). Oxygen toxicity protecting enzymes in Parkinson's disease: increase of superoxide-dismutase-like activity in the substantia nigra and basal nucleus. J. Neurol. Sci., 86, 321–31
Maruyama, W. & Naoi, M. (2002). Cell death in Parkinson's disease. J. Neurol., 249 (11), 6–10
McNaught, K. S. P. & Jenner, P. (2000). Extracellular accumulation of nitric oxide, hydrogen peroxide and glutamate in astrocytic cultures following glutathione depletion, complex I inhibition and/or lipopolysaccharide-induced activation. Biochem. Pharmacol., 60, 979–88
Migliore, L., Petrozzi, L., Lucetti, C.et al. (2002). Oxidative damage and cytogenetic analysis in leukocytes of Parkinson's disease patients. Neurology, 58, 1809–15
Minghetti, L. & Levi, G. (1998). Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog. Neurobiol., 54, 99–125
Mizuno, Y., Ohta, S., Tanaka, M.et al. (1989). Deficiencies in complex I subunits of the respiratory chain in Parkinson's disease. Biochem. Biophys. Res. Commun., 163, 1450–5
Mjörnes, H. (1949). Paralysis agitans: a clinical and genetic study. Acta Psychiatr. Neurol., 54, 1–95
Mochizuki, H., Imai, H., Endo, K.et al. (1994). Iron accumulation in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced hemiparkinsonian monkeys. Neurosci. Lett., 168, 251–3
Mochizuki, H., Goto, K., Mori, H.et al. (1996). Histochemical detection of apoptosis in Parkinson's disease. J. Neurol. Sci., 137, 120–3
Mogi, M., Harada, M., Kondo, T.et al. (1994). Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci. Lett., 180, 147–50
Mogi, M., Harada, M., Narabayashi, H., Inagaki, H., Minami, M. & Nagatsu, T. (1996). Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson's disease. Neurosci. Lett., 211, 13–16
Muchowski, P. J. (2002). Protein misfolding, amyloid formation, and neurodegeneration: a critical role for molecular chaperones?Neuron, 35, 9–12
Münch, G., Lüth, H. J., Wong, A.et al. (2000). Crosslinking of α-synuclein by advanced glycation endproducts – an early pathophysiological step in Lewy body formation. J. Clin. Neuroanatom., 20, 253–7
Münch, G., Gerlach, M., Sian, J., Wong, A. & Riederer, P. (1998). Advanced glycation end products in neurodegeneration: more than early markers of oxidative stress?Ann. Neurol., 44 (Suppl 1), S85–8
Muslin, A. J. & Xing, H. (2000). 14–3–3 proteins: regulation of subcellular localization by molecular interference. Cell. Signallin., 12, 703–9
Mytilineou, C., Kramer, B. C. & Yabut, J. A. (2002). Glutathione depletion and oxidative stress. Parkinsonism Relat Disord., 8, 385–7
Nagatsu, T. (2002). Parkinson's disease: changes in apoptosis-related factors suggesting possible gene therapy. J. Neural Transm., 109, 731–45
Nagatsu, T., Mogi, M., Ichinose, H., Togari, A. & Riederer, P. (1999). Cytokines in Parkinson's disease. NeuroSci. New., 2, 88–90
Naoi, M., Maruyama, W., Akao, Y., Zhang, J. & Parvez, H. (2000). Apoptosis induced by an endogenous neurotoxin, N-methyl(R)salsolinol, in dopamine neurons. Toxicology, 153, 123–41
Naoi, M., Maruyama, W., Akao, Y. & Yi, H. (2002). Mitochondria determine the survival and death in apoptosis by an endogenous neurotoxin, N-methyl(R)salsolinol, and neuroprotection by propargylamines. J. Neural Transm., 109, 607–21
Nielsen, M. S., Vorum, H., Lindersson, E. & Jensen, P. H. (2001). Ca2+ binding to alpha-synuclein regulates ligand binding and oligomerization. J. Biol. Chem., 276, 22680–4
Osterova-Golts, N., Petrucelli, L., Hardz, J., Lee, J. M., Farer, M. & Wolozin, B. (2000). The A53T α-Synuclein mutation increases iron-dependent aggregation and toxicity. J. Neurosci., 20, 6048–54
Osterova, N., Petrucelli, L., Farrer, M.et al. (1999). α-synuclein shares physical and functional homology with 14–3–3 proteins. J. Neurosci., 19, 5782–91
Paik, S., Shin, H., Lee, J., Chang, C. & Kim, J. (1999). Copper(II)-induced self oligomerization of α-synuclein. Biochem. J., 340, 821–8
Parent, A. & Cicchetti, F. (1998). The current model of basal ganglia organisation under scrutiny. Mov. Disord., 13, 199–202
Perry, T. L., Young, V. W., Ito, M., et al. (1984). Nigrostriatal dopaminergic neurons remain undamaged in rats given high doses of L-Dopa and carbidopa chronically. J. Neurochem., 43, 990–3
Piccini, P., Burn, D. J., Ceravolo, R., Maraganore, D. & Brooks, D. J. (1999). The role of inheritance in sporadic Parkinson's disease: evidence from a longitudinal study of dopaminergic function in twins. Ann. Neurol., 45, 577–82
Plaitakis, A. & Shashidharan, P. (2000). Glutamate transport and metabolism in dopaminergic neurons of substantia nigra: implications for the pathogenesis of Parkinson's disease. J. Neurol., 247, S25–35
Pollanen, M. S., Dickson, D. W. & Bergeron, C. (1993). Pathology and biology of the Lewy Body. J. Neuropathol. Exp. Neurol., 52, 183–91
Poskanzer, D. C. & Schwab, R. S. (1963). Cohort analysis of Parkinson's syndrome: evidence for a single etiology related to subclinical infection about 1920. J. Chron. Dis., 16, 961–73
Power, J. H., Shannon, J. M., Blumbergs, P. C. & Gai, W. P. (2002). Nonselenium glutathione peroxidase in human brain: elevated levels in Parkinson's disease and dementia with Lewy bodies. Am. J. Pathol., 161, 885–94
Rajput, A. H., Uitti, R. J., Stern, W. & Laverty, W. (1986). Early onset Parkinson's disease and childhood environment. Adv. Neurol., 45, 295–7
Rajput, A. H., Ryan, J., Uitti, W.et al. (1987). Geography, drinking water chemistry, pesticides and herbicides and the etiology of Parkinson's disease. Can. J. Neurol. Sci., 14, 414–18
Reichmann, H. & Janetzky, B. (2000). Mitochondrial dysfunction – a pathogenetic factor in Parkinson's disease. J. Neurol., 247, S63–7
Reichmann, H. & Riederer, P. (1989). Biochemical analyses of respiratory chain enzymes in different brain regions of patients with Parkinson's disease. BMFT Symposium ‘Morbus Parkinson und andere Basalganglienerkrankungen’, Bad Kissingen (Abstract S 44)
Reichmann, H., Lestienne, P., Jellinger, K. & Riederer, P. (1993). Parkinson's disease and the electron transport chain in post mortem brain. In Advances in Neurology, Vol 60, Parkinson's Disease: From Basic Research to Treatment, ed. H. Narabayashi, T. Nagatsu, N. Yanagisawa & Y. Mizuno, pp. 297–9. New York: Raven
Reif, D. W. & Simmons, R. D. (1990). Nitric oxide mediates iron release from ferritin. Arch. Biochem. Biophys., 283, 537–41
Riederer, P. & Foley, P. (2002). Mini-review: multiple developmental forms of parkinsonism. The basis for further research as to the pathogenesis of parkinsonism. J. Neural Transm., 109, 1469–75
Riederer, P. & Youdim, M. B. H. (eds.) (1993). Iron in Central Nervous System Disorders. Vienna: Springer
Riederer, P., Rausch, W. D., Schmidt, B.et al. (1988). Biochemical fundamentals of Parkinson's disease. Mt. Sinai J. Med., 55, 21–8
Riederer, P., Sofic, E., Rausch, W. D.et al. (1989). Transition metals, ferritin, glutathione and ascorbic acid in Parkinsonian brains. J. Neurochem., 52, 515–20
Ross, B. M., Moszczynska, A., Ehrlich, J. & Kish, S. J. (1998). Low activity of key phospholipid catabolic and anabolic enzymes in human substantia nigra: possible implications for Parkinson's disease. Neuroscience, 83, 791–8
Rubanyi, G. M., Ho, E. H., Cantor, E. H., Lumma, W. C. & Botelho, L. H. (1991). Cytoprotective function of nitric oxide: inactivation of superoxide radicals produced by human leukocytes. Biochem. Biophys. Res. Commun., 181, 1392–7
Sanchez-Ramos, J. R., Hefti, F. & Weiner, W. J. (1987). Paraquat and Parkinson's disease. Neurology, 37, 728
Sanchez-Ramos, J. R., Övervik, E. & Ames, B. N. (1994). A marker of oxyradical-mediated DNA damage (8-hydroxy-2′-deoxyguanosine) is increased in nigro-striatum of Parkinson's disease brain. Neurodegeneration, 3, 197–204
Scherman, D., Desnos, C., Darchen, F., Javoy-Agid, F. & Agid, Y. (1989). Striatal dopamine deficiency in Parkinson's disease: role of aging. Ann. Neurol., 26, 551–7
Secchi, G. P., Angetti, V., Piredda, M.et al. (1992). Acute and persistent parkinsonism after use of diquat. Neurology, 42, 261–3
Serra, J. A., Domiguez, R. O., Lustig, E. S.et al. (2001). Parkinson's disease is associated with oxidative stress: comparison of peripheral antioxidant profiles in living Parkinson's, Alzheimer's and vascular dementia patients. J. Neural Transm., 108, 1135–48
Shaw, C. A. & Bains, J. S. (2002). Synergistic versus antagonistic actions of glutamate and glutathione: the role of excitotoxicity and oxidative stress in neuronal disease. Cell Mol. Biol., 48, 127–36
Sherer, T. B., Betarbet, R. & Greenamyre, J. T. (2001). The rotenone model of Parkinson's disease in vivo: selective striatal oxidative damage and caspase-3 activation in nigrostriatal neurons. Soc. Neurosci. Abstr., 27, 653–2
Sherer, T. B., Betarbet, R. & Greenamyre, J. T. (2002a). Environment, mitochondria, and Parkinson's disease. Neuroscientist, 8, 192–7
Sherer, T. B., Betarbet, R., Stout, A. K., Lund, S. & Baptista, M. (2002b). An in vitro model of Parkinson's disease: linking mitochondrial impairment to altered α-synuclein metabolism and oxidative damage. J. Neurosci., 22, 7006–15
Shima, T., Sarna, T., Swartz, H., Stroppolo, A., Gerbasi, R. & Zecca, L. (1997). Binding of iron to neuromelanin of human substantia nigra and synthetic neuromelanin: an electron paramagnetic resonance spectroscopy study. Free Radic. Biol. Med., 23, 110–19
Sian, J., Dexter, D. T., Lees, A. J., Daniel, S., Jenner, P. & Marsden, C. D. (1994). Glutathione-related enzymes in brain in Parkinson's disease. Ann. Neurol., 36, 356–61
Singleton, A., Farrer, M., Johnson, J.et al. (2003). Triplication of the normal α-synuclein gene is a cause of hereditary Parkinson's disease. Science, 302, 841
Sofic, E., Riederer, P., Heinsen, H.et al. (1988). Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J. Neural. Transm., 74, 199–205
Sofic, E., Lange, K. W., Jellinger, K. & Riederer, P. (1992). Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson's disease. Neurosci. Lett., 142, 128–130
Solbrig, M. V. (1993). Acute parkinsonism in suspected herpes simplex encephalitis. Mov. Disord., 8, 233–4
Souza, J. M., Giasson, B. I., Chen, Q., Lee, V. M. & Ischiropoulos, H. (2000). Dityrosine cross-linking promotes formation of stable α-synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J. Biol. Chem., 275, 18344–9
Spencer, J. P. E., Jenner, A., Aruoma, O. I.et al. (1994). Intense oxidative DNA damage promoted by L-Dopa and its metabolites: implications for neurodegenerative disease(S?). FEBS Lett., 353, 246–50
Spencer, P. S., Nunn, P. B., Hugon, J.et al. (1987). Guam amyotrophic lateral sclerosis-parkinsonism-dementia linked to a plant excitant neurotoxin. Science, 237, 517–22
Starkov, A. A., Polster, B. M. & Fiskum, G. (2002). Regulation of hydrogen peroxide production by brain mitochondria by calcium and Bax. J. Neurochem., 83, 220–8
Tanaka, M. (2002). Mitochondrial genotypes and cytochrome b variants associated with longevity or Parkinson's disease. J. Neurol., 249 (III), 1–8
Tatton, N. A. (2000). Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson's disease. Exp. Neurol., 166, 29–43
Tatton, N. A., Mallean-Fraser, A., Tatton, W. G.et al. (1998). A fluorescent double labeling method to detect and confirm apoptotic nuclei in Parkinson's disease. Ann. Neurol., 44, S142–8
Thompson, C. B. (1995). Apoptosis in the pathogenesis of disease. Science, 267, 1456–62
Tompkins, M. M. & Hill, W. D. (1997). Contribution of somal Lewy bodies to neuronal death. Brain Res., 775, 24–9
Trojanowski, J. Q. & Lee, V. M.-Y. (2001). Parkinson's disease and related neurodegenerative synucleinopathies linked to progressive accumulation of synuclein aggregates in brain. Parkinsonism Rel. Disord., 7, 247–51
Tu, P. H., Robinson, K. A., Snoo, F.et al. (1997). Selective degeneration of Purkinje cells with Lewy body-like inclusions in aged NFHLACZ transgenic mice. J. Neurosci., 17, 1064–74
Turmel, H., Hartmann, A., Parain, K. (2001). Caspase-3 activation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. Mov. Disord., 16, 185–9
Turnbull, S., Tabner, B. J., El-Agnaf, O. M. A., Moore, S., Davies, Y. & Allsop, D. (2001). α-synuclein implicated in Parkinson's disease catalyses the formation of hydrogen peroxide in vitro. Free Radic. Biol. Med., 30, 1163–70
Tzivion, G., Shen, Y. H. & Zhu, J. (2001). 14–3–3 proteins; bringing new definitions to scaffolding. Oncogene, 20, 6331–8
Ubl, A., Berg, D., Holzmann, C.et al. (2002). 14–3–3 protein is a component of Lewy bodies in Parkinson's disease – mutation analysis and association studies of 14–3–3 eta. Mol. Brain. Res., 108, 33–9
Walinshaw, G. & Waters, C. M. (1995). Induction of apoptosis in catecholaminergic PC12 cells by L-Dopa: implications for the treatment of Parkinson's disease. J. Clin. Invest., 95, 2458–64
Walters, J. H. (1960). Postencephalitic Parkinson syndrome after meningoencephalitis due to Coxsacki virus group B, type 2. N. Engl. J. Med., 263, 744–7
Welch, K. & Yuan, J. (2002). Releasing the nerve cell killers. Nat. Med. 8, 564–5
Wüllner, U., Kornhuber, J. & Weller, M. (1999). Cell death and apoptosis regulating proteins in Parkinson's disease – a cautionary note. Acta Neuropathol., 97, 408–12
Xu, J., Kao, S. Y., Lee, F. J. S., Song, W., Jin, L. W. & Yankner, B. A. (2002). Dopamine-dependent neurotoxicity of α-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat. Med., 8, 600–6
Yamada, T., McGeer, P. L., Baimbridge, K. G. & McGeer, E. G.(1990). Relative sparing in Parkinson's disease of substantia nigra neurons containing calbindin D28K. Brain Res., 526, 303–7
Yoshida, E., Mokuno, K., Aoki, S. I.et al. (1994). Cerebrospinal fluid levels of superoxide dismutase. Neurol. Sci., 124, 25–31
Youdim, M. B., Ben-Shachar, D. & Riederer, P. (1994). The enigma of neuromelanin in Parkinson's disease substantia nigra. J. Neural Transm., 43, S113–22
Youdim, M. B., Grunblatt, E. & Mandel, S. (1999). The pivotal role of iron in NF-kappa B activation and nigrostriatal dopaminergic neurodegeneration. Prospects for neuroprotection in Parkinson's disease with iron chelators. Ann. NY Acad. Sci., 890, 7–25
Zareba, M., Bober, A., Korytowski, W., Zecca, L. & Sarna, T. (1995). The effect of a synthetic neuromelanin on yield of free hydroxyl radicals generated in model systems. Biochim. Biophys. Acta., 1271, 343–8
Zayed, J., Ducic, S., Campanella, G.et al. (1990). Facteurs environnementeaux dans la maladie de Parkinson. Can. J. Neurol. Sci., 17, 286–91
Zecca, L. & Swartz, H. M. (1993). Total and paramagnetic metals in human substantia nigra and its neuromelanin. J. Neural Transm., 5, 203–13
Zecca, L., Mecacci, O., Seraglia, R. & Parati, E. (1992). The chemical characterization of melanin contained in substantia nigra of human brain. Biochim. Biophys. Act., 1138, 6–10
Zecca, L., Shima, T., Stroppolo, A.et al. (1996). Interaction of neuromelanin and iron in the substantia nigra and other areas of human brain. Neuroscience, 73, 407–15
Zecca, L., Gallorini, M., Schünemann, V.et al. (2001). Iron, neuromelanin and ferritin in substantia nigra of normal subjects at different ages. Consequences for iron storage and neurodegenerative processes. J. Neurochem., 76, 1766–73
Zecca, L.Fariello, R., Riederer, P., Sulzer, D., Gatti, A. & Tampellini, D. (2002). The absolute concentration of nigral dopamine, assayed by a new sensitive method, increases throughout the life and is dramatically decreased in Parkinson's disease. FEBS Lett., 510, 216–20