Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T11:18:55.242Z Has data issue: false hasContentIssue false

41 - Pathophysiology: biochemistry of Parkinson's disease

from Part VII - Parkinson's and related movement disorders

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Daniela Berg
Affiliation:
Hertie Institute for Clinical Brain Research, Institute for Medical Genetics, Tübingen, Germany
Olaf Riess
Affiliation:
Institute for Medical Genetics, Tübingen, Germany
Peter Riederer
Affiliation:
Clinic and Policlinic of Psychiatry and Psychotherapy, University of Wurzburg, Germany
Get access

Summary

Although the primary pathology and key defects of neurotransmission leading to the clinical picture of Parkinson's disease (PD) are known, initiation and nature of the neurodegenerative process are still obscure. However, it is becoming increasingly evident that the underlying pathophysiology is complex and in most cases probably multifactorial, differing among the individuals affected.

Only a very small percentage of Parkinsonian cases are caused by monogenic alterations (see Chapter 40). However, since the first description of a family in which 79 of 194 members suffered from PD (Mjörnes, 1949), it has become evident that the risk of developing the clinical picture of PD is three to four times higher in individuals with relatives with PD compared to those with a negative family history. Functional neuroimaging proved to be especially valuable for the detection of affected siblings: for monozygotic twins a concordance of 75% for PD or at least a subclinical dopaminergic deficit was detected by PET-studies, the rate for dizygotic was 22% (Piccini et al., 1999). These and other findings provide strong evidence of a genetic contribution to idiopathic PD (Gasser et al., 1998, 2001). However, only about 25% of PD patients report a relative affected by the same disease. Therefore, other factors are necessary to explain the selectivity and susceptibility of the disease on the basis of a genetic predisposition. Biochemical and histological investigations of the past decades have illuminated some of these factors.

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 598 - 611
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alam, Z. I., Jenner, A., Daniel, S. E.et al. (1997). Oxidative DNA damage in the parkinsonian brain: a selective increase in 8-hydroxyguanine in substantia nigra?J. Neurochem., 69, 1196–203CrossRefGoogle ScholarPubMed
Ambani, L. M., Woert, M. H. & Murphy, S. (1975). Brain peroxidase and catalase in Parkinson's disease. Arch. Neurol., 32, 114–18CrossRefGoogle Scholar
Anglade, P., Vyas, S., Hirsch, E. C.et al. (1997). Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol. Histopathol., 12, 25–31Google ScholarPubMed
Antunes, F., Han, D., Rettori, D. & Cadenas, E. (2002). Mitochondrial damage by nitric oxide potentiated by dopamine in PC12 cells. Biochim. Biophys. Act., 1556, 233–8CrossRefGoogle ScholarPubMed
Barbeau, A., Roy, M., Cloutier, T., Plasse, L. & Paris, S. (1987). Environmental and genetic factors in the etiology of Parkinson's disease. Adv. Neurol., 45, 299–306Google ScholarPubMed
Beal, M. F., Hyman, B. T. & Koroshetz, W. (1993). Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases. Trends Neurosci., 16, 125–31CrossRefGoogle ScholarPubMed
Beck, K. D., Knusel, B. & Hefti, F. (1993). The nature of the trophic action of brain-derived neurotrophic factor, des(T-3)-insulin-like growth factor, and basic fibroblast growth factor on mesencepahlic dopaminergic neurons developing in culture. Neuroscience, 52, 855–66CrossRefGoogle Scholar
Becker, G., Seufert, J., Bogdahn, U., Reichmann, H. & Reiners, K. (1995). Degeneration of substantia nigra in chronic Parkinson's disease visualized by transcranial color-coded real-time sonography. Neurology, 45, 182–4CrossRefGoogle ScholarPubMed
Beckmann, J. S. (1996). Oxidative damage and tyrosine nitration from peroxynitrite. Chem. Res. Toxicol., 9, 836–44CrossRefGoogle Scholar
Beckmann, J. S., Beckmann, T. W., Chen, J., Marshall, P. A. & Freeman, P. A. (1990). Apparent hydroxyl radical production by peroxynitrite: implications for endothilial injury from nitric oxide and superoxide. Proc. Natl Acad. Sci., USA, 87, 1620–4CrossRefGoogle Scholar
Ben-Shachar, D., Riederer, P . & Youdim, M. B. (1991). Iron–melanin interaction and lipid peroxidation: implications for Parkinson's disease. J. Neurochem., 57, 1609–14CrossRefGoogle ScholarPubMed
Ben-Shachar, D., Zuk, R. & Glinka, Y. (1995). Dopamine neurotoxicity: inhibition of mitochondrial respiration. J. Neurochem., 64, 718–23CrossRefGoogle ScholarPubMed
Berg, D., Becker, G., Zeiler, B.et al. (1999a). Vulnerability of the nigrostriatal system as detected by transcranial ultrasound. Neurology, 53, 1026–31CrossRefGoogle Scholar
Berg, D., Grote, C., Rausch, W.-D., et al. (1999b). Iron accumulation of the substantia nigra in rats visualized by ultrasound. Ultrasound Med. Biol., 25, 901–4CrossRefGoogle Scholar
Berg, D., Gerlach, M ., Youdim, M. B. H.et al. (2001). Brain iron pathways and their relevance to Parkinson's disease. J. Neurochem., 79, 225–36CrossRefGoogle ScholarPubMed
Berg, D., Roggendorf, W., Schröder, U.et al. (2002). Echogenicity of the substantia nigra – association with increased iron content and marker for susceptibility to nigrostriatal injury. Arch. Neurol., 59, 999–1005CrossRefGoogle ScholarPubMed
Berg, D., Riess, O. & Bornemann, A. (2003a). Specification of 14–3–3 proteins in Lewy bodies. Ann. Neurol., 54, 135CrossRefGoogle Scholar
Berg, D., Holzmann, C. & Riess, O. (2003b). 14–3–3 proteins in the nervous system. Nat. Rev. Neurosci., 4, 1–11CrossRefGoogle Scholar
Betarbet, R., Sherer, T. B., MacKenzie, G., Garcia-Osuna, M., Panov, A. V. & Greenamyre, J. Z. (2000). Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat. Neurosci., 3, 1301–6CrossRefGoogle ScholarPubMed
Bharat, S., Hsu, M., Kaur, D., Rajagopalan, S. & Andersen, J. K. (2002). Glutathione, iron and Parkinson's disease. Biochem. Pharmacol., 64, 1037–48CrossRefGoogle Scholar
Blum-Degen, D., Müller, T., Kuhn, W.et al. (1995). Interleukin-1-beta and interleukin 6 are elevated in the cerebrospinal fluid of Alzheimer's and de novo Parkinson's disease patients. Neurosci. Lett., 202, 17–20CrossRefGoogle ScholarPubMed
Boka, G., Anglade, P., Wallach, D., Javoy-Agid, F., Agdi, Y. & Hirsch, E. C. (1994). Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson's disease. Neurosci. Lett., 172, 151–4CrossRefGoogle ScholarPubMed
Borie, C., Gasparini, F., Verpillat, P.et al. (2002). Association study between iron-related genes polymorphisms and Parkinson's disease. J. Neurol., 249, 801–4CrossRefGoogle ScholarPubMed
Bostantjopoulou, S., Kyriazis, G., Katsarou, Z., Kiosseoglou, G., Kazis, A. & Mentenopouplos, G. (1997). Superoxide dismutase activity in early and advanced Parkinson's disease. Funct. Neurol., 12, 63–8Google ScholarPubMed
Bredt, D. S. (1999). Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radic. Res., 31, 577–96CrossRefGoogle ScholarPubMed
Bringmann, G., Feineis, D., Grote, C. et al. (1998). Highly halogenated tetrahydro-β-carbolines as a new class of dopaminergic neurotoxins. In Pharmacology of Endogenous Neurotoxins. A Handbook, ed. A. Moser, pp. 151–69. Boston: BirkhäuserCrossRef
Burke, R. E. & Kholodilov, N. G. (1998). Programmed cell death: does it play a role in Parkinson's disease?Ann. Neurol., 44, S126–33CrossRefGoogle ScholarPubMed
Castellani, R. J., Siedlak, S. L., Perry, S. & Smith, M. A. (2000). Sequestration of iron by Lewy bodies in Parkinson's disease. Acta Neuropathol., 100, 111–14CrossRefGoogle ScholarPubMed
Chan-Palay, V., Zetsche, T. & Hochli, M. (1991). Parvalbumin neurons in the hippocampus in senile dementia of the Alzheimer type, Parkinson's disease and multi-infarct dementia. Dementia, 2, 297–313Google Scholar
Chiba-Falek, O. & Nussbaum, R. L. (2001). Effect of allelic variation at the NACP-Rep1 repeat upstream of the α-synuclein gene (SNCA) on transcription in a cell culture luciferase reporter system. Hum. Mol. Genet., 10, 3101–9CrossRefGoogle Scholar
Cleeter, M. W. J., Cooper, J. M., Darley Usmar, V. M., Moncada, S. & Schapira, A. H. V. (1994). Reversible inhibition of cytochrome c oxidase, the terminal enyzme of the mitochondrial respiratory chain, by nitric oxide: implications for neurodegenerative disorders. Acta Biochem. Biophys., 288, 481–7Google Scholar
Czlonkowska, A., Kurkowska-Jastrzebska, I., Czlonkowski, A., Peter, D. & Stefano, G. B. (2002). Immune processes in the pathogenesis of Parkinson's disease – a potential role for microglia and nitric oxide. Med. Sci. Monit., 8, 165–77Google ScholarPubMed
D'Amato, R. J., Lipman, Z. P. & Snyder, S. H. (1986). Selectivity of the Parkinson neurotoxin MPTP: toxic metabolite MPP+ binds to neuromelanin. Science, 231, 987–9CrossRefGoogle ScholarPubMed
Damier, P., Hirsch, E. C., Zhang, P., Agid, Y. & Javoy-Agid, F. (1993). Glutathione peroxidase, glial cells and Parkinson's disease. Neuroscience, 52, 1–6CrossRefGoogle ScholarPubMed
Damier, P., Kastner, A., Agid, Y. & Hirsch, E. C. (1996). Does monoamine oxidase type B play a role in dopaminergic nerve cell death in Parkinson's disease?Neurology, 46, 1262–9CrossRefGoogle ScholarPubMed
David, G. C., Williams, A. C., Markey, S. P.et al. (1979). Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiat. Res., 1, 249 – (PF Sz)Google Scholar
Desagher, S., Glowinski, J. & Premont, J. (1997). Pyruvate protects neurons against hydrogen peroxide-induced toxicity. J. Neurosci., 17, 9060–7CrossRefGoogle ScholarPubMed
Dexter, D. T., Cater, C. J., Wells, F. R.et al. (1989). Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. J. Neurochem., 52, 381–9CrossRefGoogle ScholarPubMed
Dexter, D. T., Sian, J., Jenner, P. & Marsden, C. D. (1993). Implications of alterations in trace element levels in brain in Parkinson's disease and other neurological disorders affecting the basal ganglia. Adv. Neurol., 60, 273–81Google ScholarPubMed
Double, K. L., Riederer, P. & Gerlach, M. (1999). Significance of neuromelanin for neurodegeneration in Parkinson's disease. Drug News Perspect., 12, 333–40Google Scholar
Double, K. L., Gerlach, M., Youdim, M. B. H. & Riederer, P. (2000). Impaired iron homeostasis in Parkinson's disease. J. Neural Transm., 60, 37–58Google Scholar
Duvoisin, R. C., Zahr, M. D., Schweitzer, M. D.et al. (1963). Parkinsonism before and since the epidemic of encephalitis lethargica. Arch. Neurol., 9, 232–6CrossRefGoogle ScholarPubMed
Fahn, S. (1999). Parkinson disease, the effect of levodopa, and the ELLDOPA trial. Earlier vs later L-dopa. Arch. Neurol., 56, 529–35CrossRefGoogle ScholarPubMed
Farrer, M., Maraganore, D. M., Lockhart, P.et al. (2001). α-synuclein gene haplotypes are associated with Parkinson's disease. Hum. Mol. Genet., 10, 1847–51CrossRefGoogle ScholarPubMed
Ferrarese, C., Tremolizzo, L., Rigoldi, M., Sala, G. & Begni, B. (2001). Decreased platelet glutamate uptake and genetic risk factors in patients with Parkinson's disease. Neurol. Sci., 22, 65–6CrossRefGoogle ScholarPubMed
Foley, P. & Riederer, P. (1999). Pathogenesis and preclinical course of Parkinson's disease. J. Neural. Transm., 56, S31–74CrossRefGoogle ScholarPubMed
Friquet, B. & Szweda, L. I. (1997). Inhibition of the multicatalytic proteinase (proteasome) by the 4-hydroxy-2-nonenal cross linked protein. FEBS Lett., 405, 21–5CrossRefGoogle Scholar
Galvin, J. F., Lee, V. M. Y., Schmidt, L. et al. (1999). Pathology of the Lewy body. In Advances in Neurology, Vol 80, Parkinson's Disease, ed. G. Stern, pp. 313–24. Philadelphia: Lippincott Williams & Wilkins
Gamboa, E. T., Wolf, A., Yahr, M. D.et al. (1974). Influenza virus antigen in postencephalic parkinsonism brain. Arch. Neurol., 31, 228–32CrossRefGoogle Scholar
Gao, H. M., Jiang, J., Wilson, B., Zhang, W., Hong, J. S. & Liu, B. (2002). Microglia activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson's disease. J. Neurochem., 81, 1285–97CrossRefGoogle ScholarPubMed
Gash, D. M., Zhang, Z., Ovadia, A.et al. (1996). Functional recovery in parkinsonian monkeys treated with GDNF. Nature, 380, 252–5CrossRefGoogle ScholarPubMed
Gasser, T. (1998). Genetics of Parkinson's disease. Ann. Neurol., 44, S53–7CrossRefGoogle ScholarPubMed
Gasser, T. (2001). Molecular genetics of Parkinson's disease. In Advances in Neurology, Vol 86, Parkinson's Disease, ed. D. Calne & S. Calne, pp. 23–32. Philadelphia: Lippincott Williams & Wilkins
Gerlach, M., Ben-Shachar, D., Riederer, P.et al. (1994). Altered brain metabolism of iron as a cause of neurodegenerative diseases. J. Neurochem., 63, 793–807CrossRefGoogle ScholarPubMed
Gerlach, M., Riederer, P. & Youdim, M. B. H. (1996). Molecular mechanisms for neurodegeneration: synergism between reactive oxygen species, calcium and excitotoxic amino acids. In Advances in Neurology, Vol 69, Parkinson's Disease., ed. L. Battistin, G. Scarlato, T. Caraceni & S. Ruggieri, pp. 177–94. Philadelphia: Lippincott-Raven
Gerlach, M., Reichmann, H. & Riederer, P. (2001). Die Parkinsonkrankheit, Grundlagen, Klinik, Therapie. Wien, New York: Springer
Giasson, B. I., Duda, J. E., Murray, I. V.et al. (2000). Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science, 3, 985–9CrossRefGoogle Scholar
Glass, J. (1983). Untersuchung zur Bedeutung chemischer Noxen in der Ätiologie des Parkinson Syndroms. In Pathophysiologie, Klinik und Therapie des Parkinsonismus, pp. 103–7. Basel: Roches
Goedert, M., Spillantini, M. G. & Davies, S. W. (1998). Filamentous nerve cell inclusions in neurodegenerative diseases. Curr. Opin. Neurobiol., 8, 619–32CrossRefGoogle ScholarPubMed
Golts, N., Snyder, H., Frasier, M., Theisler, C., Choi, P. & Wolozin, B. (2002). Magnesium inhibits spontaneous and iron-induced aggregation of alpha-synuclein. J. Biol. Chem., 277, 16116–23CrossRefGoogle ScholarPubMed
Good, P., Olanow, C. & Perl, D. (1992). Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminium in Parkinson's disease: a LAMMA study. Brain, 593, 343–6CrossRefGoogle ScholarPubMed
Götz, M. E., Künig, G., Riederer, P. & Youdim, M. B. H. (1994). Oxidative stress. Free radical production in neural degeneration. Pharmac. Ther., 63, 37–122CrossRefGoogle ScholarPubMed
Grisham, M. B., Jourd'Heul, D. & Wink, D. A. (1999). Nitric oxide I. Physiological chemistry of nitric oxide and its metabolites: implications in inflammation. Am. J. Physiol., 276, 315–21Google ScholarPubMed
Grune, T., Reinheckel, T., Joshi, M. & Davies, K. J. A. (1995). Proteolysis in cultured liver epithelial cells during oxidative stress. Role of multicatalytic proteinase complex proteasome. J. Biol. Chem., 270, 2344–51CrossRefGoogle ScholarPubMed
Gu, M., Cooper, J. M., Taanman, J. W. & Schapira, A. H. V. (1998). Mitochondrial DNA transmission of the mitochondrial defect in Parkinson's disease. Ann. Neurol., 44, 177–86CrossRefGoogle ScholarPubMed
Gu, G., Reyes, P. E., Golden, G. T.et al. (2002). Mitochondrial DNA deletions/rearrangements in Parkinson disease and related neurodegenerative disorders. J. Neuropathol. Exp. Neurol., 61, 634–9CrossRefGoogle ScholarPubMed
Hallgren, B. & Sourander, P. (1958). The effect of age on non-haem iron in the human brain. J. Neurochem., 3, 41–51CrossRefGoogle Scholar
Hartmann, A., Hunot, S., Michel, P. P., Muriel, M. P. & Vyas, S. (2002). Caspase-3 activation: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson's disease. Proc. Natl Acad. Sci., USA, 97, 2875–80CrossRefGoogle Scholar
Hashimoto, M., Hsu, L. J., Sisk, A . et al. (1998). Human recombinant NACP/alpha-synuclein is aggregated and fibrillated in vitro: relevance for Lewy body disease. Brain. Res., 799, 301–6CrossRefGoogle ScholarPubMed
Hashimoto, M., Hsu, L. J., Xia, Y.et al. (1999). Oxidative stress induces amyloid-like aggregate formation of NACP/α-synuclein in vitro. NeuroReport, 10, 717–21CrossRefGoogle ScholarPubMed
Hashimoto, M., Hsu, L. J., Rockenstein, E., Takenouchi, T., Mallory, M. & Masliah, E. (2002). Alpha-synuclein protects against oxidative stress via inactivation of the c-Jun N-terminal kinase stress-signaling pathway in neuronal cells. J. Biol. Chem., 277, 11465–72CrossRefGoogle ScholarPubMed
Hattori, N., Tanaka, M., Ozawa, T. & Mizuno, Y. (1991). Immunohistochemical studies on complexes I, II, III and IV of mitochondria in Parkinson's disease. Ann. Neurol., 30, 563–71CrossRefGoogle ScholarPubMed
He, Y., Thong, P. S., Lee, T.et al. (1996). Increased iron in the substantia nigra of 6-OHDA induced parkinsonian rats: a nuclear microscopy study. Brain. Res., 735, 149–53CrossRefGoogle ScholarPubMed
Hirsch, E. C. (2000). Glial cells and Parkinson's disease. J. Neurol., 247 (II) 58–62CrossRefGoogle ScholarPubMed
Hirsch, E. C., Graybiel, A. M. & Agid, Y. A. (1988). Melanid dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature, 334, 345–8CrossRefGoogle Scholar
Hirsch, E. C., Mouatt, A., Thomasser, M., Javoy-Agid, F., Agid, Y. & Graybiel, A. M. (1992). Expression of calbindin D28K-like immunoreactivity in catecholaminergic cell groups in the human midbrain. Normal distribution and distribution in Parkinson's disease. Neurodegeneration, 1, 83–93Google Scholar
Holzmann, C., Krüger, R., Saecker, A. M.et al. (2003). Polymorphisms of the α-synuclein promoter: expression analyses and association studies in Parkinson's disease. J. Neural. Transm., 110, 67–76Google ScholarPubMed
Hunot, S., Dugas, N., Faucheux, B.et al. (1999). Fc epsilon-RII/CD23 is expressed in Parkinson's disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J. Neurosci., 19, 3440–7CrossRefGoogle ScholarPubMed
Ichimura, T., Isobe, T., Okuyama, T., Yamauchi, T. & Fujisawa, H. (1987). Brain 14–3–3 protein is an activator protein that activates tryptophan 5-monooxygenase and tyrosine-3-monooxygenase in the presence of Ca2+-, calmodulin-dependent protein kinase II. FEBS Lett., 219, 79–82CrossRefGoogle ScholarPubMed
Iravani, M. M., Kashefi, K., Mander, P., Rose, S. & Jenner, P. (2002). Involvement of inducible nitric oxide synthase in inflammation-induced dopaminergic neurodegeneration. Neuroscience, 110, 49–58CrossRefGoogle ScholarPubMed
Isgreen, W. P., Chutorian, A. M. & Fahn, S. (1976). Sequential parkinsonism and chorea following ‘mild’ influenza. Trans. Am. Neurol. Assoc., 101, 56–9Google Scholar
Itoh, K., Weis, S., Mehraein, P. & Muller-Hocker, J. (1997). Defects of cytochrome c oxidase in the substantia nigra of Parkinson's disease: an immunohistochemical and morphometric study. Mov. Disord., 12, 9–16CrossRefGoogle ScholarPubMed
Jacobson, M. D., Weil, M. & Raff, M. C. (1997). Programmed cell death in animal development. Cell, 88, 347–54CrossRefGoogle ScholarPubMed
Janetzky, B., Hauck, S., Youdim, M. B.et al. (1994). Unaltered aconitase activity, but decreased complex I activity in substantia nigra pars compacta of patients with Parkinson's disease. Neurosci. Lett., 169, 126–8CrossRefGoogle ScholarPubMed
Jangen-Hodge, J., Obin, M. S., Gong, X.et al. (1997). Regulation of ubiquitin-conjugating enzymes by glutathione following oxidative stress. J. Biol. Chem., 272, 28218–26CrossRefGoogle Scholar
Jellinger, K. A. (2000). Cell death mechanisms in Parkinson's disease. J. Neural Transm., 107, 1–29CrossRefGoogle ScholarPubMed
Jellinger, K., Kienzel, E., Rumpelmair, G.et al. (1992). Iron–melanin complex in substantia nigra of Parkinsonian brains: an X-ray microanalysis. J. Neurochem., 59, 1168–71CrossRefGoogle ScholarPubMed
Jenner, P. (2001). Parkinson's disease, pesticides and mitochondrial dysfunction. Trends Neurosci., 24, 245–6CrossRefGoogle ScholarPubMed
Jenner, P. & Olanow, C. W. (1998). Understanding cell death in Parkinson's disease. Ann. Neurol., 44, S72–84CrossRefGoogle ScholarPubMed
Junn, E. & Mouradian, M. M. (2002). Human alpha-synuclein over-expression increases intracellular reactive oxygen species and susceptibility to dopamine. Neurosci. Lett., 320, 146–50CrossRefGoogle Scholar
Kawamato, Y., Akiguchi, S., Nakamura, Y., Honjyo, H., Shibasaki, H. & Budka, H. (2002). 14–3–3 proteins in Lewy bodies in Parkinson disease and diffuse Lewy body disease brain. J. Neuropathol. Exp. Neurol., 61, 245–53CrossRefGoogle Scholar
Kish, S. J., Morito, C. H. & Hornykiewics, (1985). Glutathione peroxidase activity in Parkinson's disease brain. Neurosci. Lett., 58, 343–6CrossRefGoogle ScholarPubMed
Kitazawa, M., Anantharam, V. & Kanthasamy, A. G. (2001). Dieldrin-induced oxidative stress and neurochemical changes contribute to apoptotic cell death in dopaminergic cells. Free Radic. Biol. Med., 31, 1473–85CrossRefGoogle ScholarPubMed
Koutsilieri, E., Scheller, C., Tribl, F. & Riederer, P. (2002). Degeneration of neuronal cells due to oxidative stress – microglial contribution. Parkinsonism Relat. Disord., 8, 401–6CrossRefGoogle ScholarPubMed
Kramer, B. C., Yabut, J. A., Cheong, J.et al. (2002). Lipopolysaccharide prevents cell death caused by glutathione depletion: possible mechanism of protection. Neuroscience, 114, 361–72CrossRefGoogle Scholar
Krüger, R., Vieira-Saecker, A. M. M., Kuhn, W.et al. (1999). Ann Neurol., 45, 611–173.0.CO;2-X>CrossRef
Krüger, R., Eberhardt, O., Riess, O. & Schulz, J. B. (2002). Parkinson's disease: one biochemical pathway to fit all genes?Trends Mol. Med., 8, 236–40CrossRefGoogle ScholarPubMed
Lan, J. & Jiang, D. H. (1997). Excessive iron accumulation in the brain: a possible potential risk of neurodegeneration in Parkinson's disease. J. Neural. Transm., 104, 649–60CrossRefGoogle ScholarPubMed
Landfield, P. W., Applegate, M. D., Schwitzer-Osborne, S. E. & Naylor, C. E. (1991). Phosphate/calcium alterations in the first stages of Alzheimer's disease: implications for etiology and pathogenesis. J. Neurol. Sci., 106, 221–9CrossRefGoogle ScholarPubMed
Langston, J. W., Ballard, P., Tetrud, J. W. & Irwin, I. (1983). Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 219, 989–90CrossRefGoogle ScholarPubMed
LeCouteur, D. G., Muller, M., Yang, M. C., Mellick, G. D. & McLean, A. J. (2002). Age–environment and gene–environment interactions in the pathogenesis of Parkinson's disease. Rev. Environm. Hlth., 17, 51–64Google Scholar
Lin, L. F., Doherty, D. H., Lile, J. D., Bektesh, S. & Collins, F. (1993). GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science, 260, 1130–2CrossRefGoogle ScholarPubMed
Liu, B., Gao, H., Wang, J., Jeohn, G., Cooper, C. & Hong, J. (2002). Role of nitric oxide in inflammation-mediated neurodegeneration. Ann. NY Acad. Sci. 962, 318–31CrossRefGoogle ScholarPubMed
Liu, Y., Fiskum, G. & Schubert, D. (2002). Generation of reactive oxygen species by the mitochondrial electron transport chain. J. Neurochem., 80, 780–7CrossRefGoogle ScholarPubMed
Lopiano, L., Chiesa, M., Digilio, G.et al. (2000). Q-band EPR investigations of neuromelanin in control and Parkinson's disease patients. Biochim. Biophys., 17, 306–12CrossRefGoogle Scholar
Lotharius, J. & Brundin, P. (2002). Impaired dopamine storage resulting from alpha-synuclein mutations may contribute to the pathogenesis of Parkinson's disease. Hum. Mol. Genet., 11, 2395–405CrossRefGoogle ScholarPubMed
Lowe, J., Lennox, G. & Leigh, P. N. (1997). Disorders of movement and system degenerations. In Greenfield's Neuropathology, 6th edn. ed. D. Graham & P. L. Lantos, pp. 280–366. London: Edward Arnold
Martilla, R. J., Lorentz, H. & Rinne, U. K. (1988). Oxygen toxicity protecting enzymes in Parkinson's disease: increase of superoxide-dismutase-like activity in the substantia nigra and basal nucleus. J. Neurol. Sci., 86, 321–31CrossRefGoogle Scholar
Maruyama, W. & Naoi, M. (2002). Cell death in Parkinson's disease. J. Neurol., 249 (11), 6–10CrossRefGoogle ScholarPubMed
McNaught, K. S. P. & Jenner, P. (2000). Extracellular accumulation of nitric oxide, hydrogen peroxide and glutamate in astrocytic cultures following glutathione depletion, complex I inhibition and/or lipopolysaccharide-induced activation. Biochem. Pharmacol., 60, 979–88CrossRefGoogle ScholarPubMed
Migliore, L., Petrozzi, L., Lucetti, C.et al. (2002). Oxidative damage and cytogenetic analysis in leukocytes of Parkinson's disease patients. Neurology, 58, 1809–15CrossRefGoogle ScholarPubMed
Minghetti, L. & Levi, G. (1998). Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog. Neurobiol., 54, 99–125CrossRefGoogle ScholarPubMed
Mizuno, Y., Ohta, S., Tanaka, M.et al. (1989). Deficiencies in complex I subunits of the respiratory chain in Parkinson's disease. Biochem. Biophys. Res. Commun., 163, 1450–5CrossRefGoogle ScholarPubMed
Mjörnes, H. (1949). Paralysis agitans: a clinical and genetic study. Acta Psychiatr. Neurol., 54, 1–95Google Scholar
Mochizuki, H., Imai, H., Endo, K.et al. (1994). Iron accumulation in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced hemiparkinsonian monkeys. Neurosci. Lett., 168, 251–3CrossRefGoogle ScholarPubMed
Mochizuki, H., Goto, K., Mori, H.et al. (1996). Histochemical detection of apoptosis in Parkinson's disease. J. Neurol. Sci., 137, 120–3CrossRefGoogle ScholarPubMed
Mogi, M., Harada, M., Kondo, T.et al. (1994). Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci. Lett., 180, 147–50CrossRefGoogle ScholarPubMed
Mogi, M., Harada, M., Narabayashi, H., Inagaki, H., Minami, M. & Nagatsu, T. (1996). Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson's disease. Neurosci. Lett., 211, 13–16CrossRefGoogle ScholarPubMed
Muchowski, P. J. (2002). Protein misfolding, amyloid formation, and neurodegeneration: a critical role for molecular chaperones?Neuron, 35, 9–12CrossRefGoogle ScholarPubMed
Münch, G., Lüth, H. J., Wong, A.et al. (2000). Crosslinking of α-synuclein by advanced glycation endproducts – an early pathophysiological step in Lewy body formation. J. Clin. Neuroanatom., 20, 253–7CrossRefGoogle ScholarPubMed
Münch, G., Gerlach, M., Sian, J., Wong, A. & Riederer, P. (1998). Advanced glycation end products in neurodegeneration: more than early markers of oxidative stress?Ann. Neurol., 44 (Suppl 1), S85–8CrossRefGoogle ScholarPubMed
Muslin, A. J. & Xing, H. (2000). 14–3–3 proteins: regulation of subcellular localization by molecular interference. Cell. Signallin., 12, 703–9CrossRefGoogle ScholarPubMed
Mytilineou, C., Kramer, B. C. & Yabut, J. A. (2002). Glutathione depletion and oxidative stress. Parkinsonism Relat Disord., 8, 385–7CrossRefGoogle ScholarPubMed
Nagatsu, T. (2002). Parkinson's disease: changes in apoptosis-related factors suggesting possible gene therapy. J. Neural Transm., 109, 731–45CrossRefGoogle ScholarPubMed
Nagatsu, T., Mogi, M., Ichinose, H., Togari, A. & Riederer, P. (1999). Cytokines in Parkinson's disease. NeuroSci. New., 2, 88–90Google Scholar
Naoi, M., Maruyama, W., Akao, Y., Zhang, J. & Parvez, H. (2000). Apoptosis induced by an endogenous neurotoxin, N-methyl(R)salsolinol, in dopamine neurons. Toxicology, 153, 123–41CrossRefGoogle ScholarPubMed
Naoi, M., Maruyama, W., Akao, Y. & Yi, H. (2002). Mitochondria determine the survival and death in apoptosis by an endogenous neurotoxin, N-methyl(R)salsolinol, and neuroprotection by propargylamines. J. Neural Transm., 109, 607–21CrossRefGoogle ScholarPubMed
Nielsen, M. S., Vorum, H., Lindersson, E. & Jensen, P. H. (2001). Ca2+ binding to alpha-synuclein regulates ligand binding and oligomerization. J. Biol. Chem., 276, 22680–4CrossRefGoogle ScholarPubMed
Osterova-Golts, N., Petrucelli, L., Hardz, J., Lee, J. M., Farer, M. & Wolozin, B. (2000). The A53T α-Synuclein mutation increases iron-dependent aggregation and toxicity. J. Neurosci., 20, 6048–54CrossRefGoogle Scholar
Osterova, N., Petrucelli, L., Farrer, M.et al. (1999). α-synuclein shares physical and functional homology with 14–3–3 proteins. J. Neurosci., 19, 5782–91CrossRefGoogle Scholar
Paik, S., Shin, H., Lee, J., Chang, C. & Kim, J. (1999). Copper(II)-induced self oligomerization of α-synuclein. Biochem. J., 340, 821–8CrossRefGoogle ScholarPubMed
Parent, A. & Cicchetti, F. (1998). The current model of basal ganglia organisation under scrutiny. Mov. Disord., 13, 199–202CrossRefGoogle ScholarPubMed
Perry, T. L., Young, V. W., Ito, M., et al. (1984). Nigrostriatal dopaminergic neurons remain undamaged in rats given high doses of L-Dopa and carbidopa chronically. J. Neurochem., 43, 990–3CrossRefGoogle ScholarPubMed
Piccini, P., Burn, D. J., Ceravolo, R., Maraganore, D. & Brooks, D. J. (1999). The role of inheritance in sporadic Parkinson's disease: evidence from a longitudinal study of dopaminergic function in twins. Ann. Neurol., 45, 577–823.0.CO;2-O>CrossRefGoogle ScholarPubMed
Plaitakis, A. & Shashidharan, P. (2000). Glutamate transport and metabolism in dopaminergic neurons of substantia nigra: implications for the pathogenesis of Parkinson's disease. J. Neurol., 247, S25–35CrossRefGoogle ScholarPubMed
Pollanen, M. S., Dickson, D. W. & Bergeron, C. (1993). Pathology and biology of the Lewy Body. J. Neuropathol. Exp. Neurol., 52, 183–91CrossRefGoogle ScholarPubMed
Poskanzer, D. C. & Schwab, R. S. (1963). Cohort analysis of Parkinson's syndrome: evidence for a single etiology related to subclinical infection about 1920. J. Chron. Dis., 16, 961–73CrossRefGoogle ScholarPubMed
Power, J. H., Shannon, J. M., Blumbergs, P. C. & Gai, W. P. (2002). Nonselenium glutathione peroxidase in human brain: elevated levels in Parkinson's disease and dementia with Lewy bodies. Am. J. Pathol., 161, 885–94CrossRefGoogle ScholarPubMed
Rajput, A. H., Uitti, R. J., Stern, W. & Laverty, W. (1986). Early onset Parkinson's disease and childhood environment. Adv. Neurol., 45, 295–7Google Scholar
Rajput, A. H., Ryan, J., Uitti, W.et al. (1987). Geography, drinking water chemistry, pesticides and herbicides and the etiology of Parkinson's disease. Can. J. Neurol. Sci., 14, 414–18CrossRefGoogle ScholarPubMed
Reichmann, H. & Janetzky, B. (2000). Mitochondrial dysfunction – a pathogenetic factor in Parkinson's disease. J. Neurol., 247, S63–7CrossRefGoogle ScholarPubMed
Reichmann, H. & Riederer, P. (1989). Biochemical analyses of respiratory chain enzymes in different brain regions of patients with Parkinson's disease. BMFT Symposium ‘Morbus Parkinson und andere Basalganglienerkrankungen’, Bad Kissingen (Abstract S 44)
Reichmann, H., Lestienne, P., Jellinger, K. & Riederer, P. (1993). Parkinson's disease and the electron transport chain in post mortem brain. In Advances in Neurology, Vol 60, Parkinson's Disease: From Basic Research to Treatment, ed. H. Narabayashi, T. Nagatsu, N. Yanagisawa & Y. Mizuno, pp. 297–9. New York: Raven
Reif, D. W. & Simmons, R. D. (1990). Nitric oxide mediates iron release from ferritin. Arch. Biochem. Biophys., 283, 537–41CrossRefGoogle ScholarPubMed
Riederer, P. & Foley, P. (2002). Mini-review: multiple developmental forms of parkinsonism. The basis for further research as to the pathogenesis of parkinsonism. J. Neural Transm., 109, 1469–75CrossRefGoogle ScholarPubMed
Riederer, P. & Youdim, M. B. H. (eds.) (1993). Iron in Central Nervous System Disorders. Vienna: Springer
Riederer, P., Rausch, W. D., Schmidt, B.et al. (1988). Biochemical fundamentals of Parkinson's disease. Mt. Sinai J. Med., 55, 21–8Google ScholarPubMed
Riederer, P., Sofic, E., Rausch, W. D.et al. (1989). Transition metals, ferritin, glutathione and ascorbic acid in Parkinsonian brains. J. Neurochem., 52, 515–20CrossRefGoogle ScholarPubMed
Ross, B. M., Moszczynska, A., Ehrlich, J. & Kish, S. J. (1998). Low activity of key phospholipid catabolic and anabolic enzymes in human substantia nigra: possible implications for Parkinson's disease. Neuroscience, 83, 791–8CrossRefGoogle ScholarPubMed
Rubanyi, G. M., Ho, E. H., Cantor, E. H., Lumma, W. C. & Botelho, L. H. (1991). Cytoprotective function of nitric oxide: inactivation of superoxide radicals produced by human leukocytes. Biochem. Biophys. Res. Commun., 181, 1392–7CrossRefGoogle ScholarPubMed
Sanchez-Ramos, J. R., Hefti, F. & Weiner, W. J. (1987). Paraquat and Parkinson's disease. Neurology, 37, 728CrossRefGoogle ScholarPubMed
Sanchez-Ramos, J. R., Övervik, E. & Ames, B. N. (1994). A marker of oxyradical-mediated DNA damage (8-hydroxy-2′-deoxyguanosine) is increased in nigro-striatum of Parkinson's disease brain. Neurodegeneration, 3, 197–204Google Scholar
Scherman, D., Desnos, C., Darchen, F., Javoy-Agid, F. & Agid, Y. (1989). Striatal dopamine deficiency in Parkinson's disease: role of aging. Ann. Neurol., 26, 551–7CrossRefGoogle Scholar
Secchi, G. P., Angetti, V., Piredda, M.et al. (1992). Acute and persistent parkinsonism after use of diquat. Neurology, 42, 261–3CrossRefGoogle Scholar
Serra, J. A., Domiguez, R. O., Lustig, E. S.et al. (2001). Parkinson's disease is associated with oxidative stress: comparison of peripheral antioxidant profiles in living Parkinson's, Alzheimer's and vascular dementia patients. J. Neural Transm., 108, 1135–48CrossRefGoogle ScholarPubMed
Shaw, C. A. & Bains, J. S. (2002). Synergistic versus antagonistic actions of glutamate and glutathione: the role of excitotoxicity and oxidative stress in neuronal disease. Cell Mol. Biol., 48, 127–36Google ScholarPubMed
Sherer, T. B., Betarbet, R. & Greenamyre, J. T. (2001). The rotenone model of Parkinson's disease in vivo: selective striatal oxidative damage and caspase-3 activation in nigrostriatal neurons. Soc. Neurosci. Abstr., 27, 653–2Google Scholar
Sherer, T. B., Betarbet, R. & Greenamyre, J. T. (2002a). Environment, mitochondria, and Parkinson's disease. Neuroscientist, 8, 192–7Google Scholar
Sherer, T. B., Betarbet, R., Stout, A. K., Lund, S. & Baptista, M. (2002b). An in vitro model of Parkinson's disease: linking mitochondrial impairment to altered α-synuclein metabolism and oxidative damage. J. Neurosci., 22, 7006–15CrossRefGoogle Scholar
Shima, T., Sarna, T., Swartz, H., Stroppolo, A., Gerbasi, R. & Zecca, L. (1997). Binding of iron to neuromelanin of human substantia nigra and synthetic neuromelanin: an electron paramagnetic resonance spectroscopy study. Free Radic. Biol. Med., 23, 110–19CrossRefGoogle Scholar
Sian, J., Dexter, D. T., Lees, A. J., Daniel, S., Jenner, P. & Marsden, C. D. (1994). Glutathione-related enzymes in brain in Parkinson's disease. Ann. Neurol., 36, 356–61CrossRefGoogle ScholarPubMed
Singleton, A., Farrer, M., Johnson, J.et al. (2003). Triplication of the normal α-synuclein gene is a cause of hereditary Parkinson's disease. Science, 302, 841CrossRefGoogle Scholar
Sofic, E., Riederer, P., Heinsen, H.et al. (1988). Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J. Neural. Transm., 74, 199–205CrossRefGoogle ScholarPubMed
Sofic, E., Lange, K. W., Jellinger, K. & Riederer, P. (1992). Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson's disease. Neurosci. Lett., 142, 128–130CrossRefGoogle ScholarPubMed
Solbrig, M. V. (1993). Acute parkinsonism in suspected herpes simplex encephalitis. Mov. Disord., 8, 233–4CrossRefGoogle ScholarPubMed
Souza, J. M., Giasson, B. I., Chen, Q., Lee, V. M. & Ischiropoulos, H. (2000). Dityrosine cross-linking promotes formation of stable α-synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J. Biol. Chem., 275, 18344–9CrossRefGoogle ScholarPubMed
Spencer, J. P. E., Jenner, A., Aruoma, O. I.et al. (1994). Intense oxidative DNA damage promoted by L-Dopa and its metabolites: implications for neurodegenerative disease(S?). FEBS Lett., 353, 246–50CrossRefGoogle Scholar
Spencer, P. S., Nunn, P. B., Hugon, J.et al. (1987). Guam amyotrophic lateral sclerosis-parkinsonism-dementia linked to a plant excitant neurotoxin. Science, 237, 517–22CrossRefGoogle ScholarPubMed
Starkov, A. A., Polster, B. M. & Fiskum, G. (2002). Regulation of hydrogen peroxide production by brain mitochondria by calcium and Bax. J. Neurochem., 83, 220–8CrossRefGoogle ScholarPubMed
Tanaka, M. (2002). Mitochondrial genotypes and cytochrome b variants associated with longevity or Parkinson's disease. J. Neurol., 249 (III), 1–8CrossRefGoogle ScholarPubMed
Tatton, N. A. (2000). Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson's disease. Exp. Neurol., 166, 29–43CrossRefGoogle ScholarPubMed
Tatton, N. A., Mallean-Fraser, A., Tatton, W. G.et al. (1998). A fluorescent double labeling method to detect and confirm apoptotic nuclei in Parkinson's disease. Ann. Neurol., 44, S142–8CrossRefGoogle ScholarPubMed
Thompson, C. B. (1995). Apoptosis in the pathogenesis of disease. Science, 267, 1456–62CrossRefGoogle Scholar
Tompkins, M. M. & Hill, W. D. (1997). Contribution of somal Lewy bodies to neuronal death. Brain Res., 775, 24–9CrossRefGoogle ScholarPubMed
Trojanowski, J. Q. & Lee, V. M.-Y. (2001). Parkinson's disease and related neurodegenerative synucleinopathies linked to progressive accumulation of synuclein aggregates in brain. Parkinsonism Rel. Disord., 7, 247–51CrossRefGoogle Scholar
Tu, P. H., Robinson, K. A., Snoo, F.et al. (1997). Selective degeneration of Purkinje cells with Lewy body-like inclusions in aged NFHLACZ transgenic mice. J. Neurosci., 17, 1064–74CrossRefGoogle ScholarPubMed
Turmel, H., Hartmann, A., Parain, K. (2001). Caspase-3 activation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. Mov. Disord., 16, 185–9CrossRefGoogle ScholarPubMed
Turnbull, S., Tabner, B. J., El-Agnaf, O. M. A., Moore, S., Davies, Y. & Allsop, D. (2001). α-synuclein implicated in Parkinson's disease catalyses the formation of hydrogen peroxide in vitro. Free Radic. Biol. Med., 30, 1163–70CrossRefGoogle ScholarPubMed
Tzivion, G., Shen, Y. H. & Zhu, J. (2001). 14–3–3 proteins; bringing new definitions to scaffolding. Oncogene, 20, 6331–8CrossRefGoogle ScholarPubMed
Ubl, A., Berg, D., Holzmann, C.et al. (2002). 14–3–3 protein is a component of Lewy bodies in Parkinson's disease – mutation analysis and association studies of 14–3–3 eta. Mol. Brain. Res., 108, 33–9CrossRefGoogle ScholarPubMed
Walinshaw, G. & Waters, C. M. (1995). Induction of apoptosis in catecholaminergic PC12 cells by L-Dopa: implications for the treatment of Parkinson's disease. J. Clin. Invest., 95, 2458–64CrossRefGoogle Scholar
Walters, J. H. (1960). Postencephalitic Parkinson syndrome after meningoencephalitis due to Coxsacki virus group B, type 2. N. Engl. J. Med., 263, 744–7CrossRefGoogle Scholar
Welch, K. & Yuan, J. (2002). Releasing the nerve cell killers. Nat. Med. 8, 564–5CrossRefGoogle ScholarPubMed
Wüllner, U., Kornhuber, J. & Weller, M. (1999). Cell death and apoptosis regulating proteins in Parkinson's disease – a cautionary note. Acta Neuropathol., 97, 408–12Google ScholarPubMed
Xu, J., Kao, S. Y., Lee, F. J. S., Song, W., Jin, L. W. & Yankner, B. A. (2002). Dopamine-dependent neurotoxicity of α-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat. Med., 8, 600–6CrossRefGoogle ScholarPubMed
Yamada, T., McGeer, P. L., Baimbridge, K. G. & McGeer, E. G.(1990). Relative sparing in Parkinson's disease of substantia nigra neurons containing calbindin D28K. Brain Res., 526, 303–7CrossRefGoogle ScholarPubMed
Yoshida, E., Mokuno, K., Aoki, S. I.et al. (1994). Cerebrospinal fluid levels of superoxide dismutase. Neurol. Sci., 124, 25–31CrossRefGoogle Scholar
Youdim, M. B., Ben-Shachar, D. & Riederer, P. (1994). The enigma of neuromelanin in Parkinson's disease substantia nigra. J. Neural Transm., 43, S113–22Google ScholarPubMed
Youdim, M. B., Grunblatt, E. & Mandel, S. (1999). The pivotal role of iron in NF-kappa B activation and nigrostriatal dopaminergic neurodegeneration. Prospects for neuroprotection in Parkinson's disease with iron chelators. Ann. NY Acad. Sci., 890, 7–25CrossRefGoogle ScholarPubMed
Zareba, M., Bober, A., Korytowski, W., Zecca, L. & Sarna, T. (1995). The effect of a synthetic neuromelanin on yield of free hydroxyl radicals generated in model systems. Biochim. Biophys. Acta., 1271, 343–8CrossRefGoogle ScholarPubMed
Zayed, J., Ducic, S., Campanella, G.et al. (1990). Facteurs environnementeaux dans la maladie de Parkinson. Can. J. Neurol. Sci., 17, 286–91CrossRefGoogle Scholar
Zecca, L. & Swartz, H. M. (1993). Total and paramagnetic metals in human substantia nigra and its neuromelanin. J. Neural Transm., 5, 203–13CrossRefGoogle ScholarPubMed
Zecca, L., Mecacci, O., Seraglia, R. & Parati, E. (1992). The chemical characterization of melanin contained in substantia nigra of human brain. Biochim. Biophys. Act., 1138, 6–10CrossRefGoogle ScholarPubMed
Zecca, L., Shima, T., Stroppolo, A.et al. (1996). Interaction of neuromelanin and iron in the substantia nigra and other areas of human brain. Neuroscience, 73, 407–15CrossRefGoogle ScholarPubMed
Zecca, L., Gallorini, M., Schünemann, V.et al. (2001). Iron, neuromelanin and ferritin in substantia nigra of normal subjects at different ages. Consequences for iron storage and neurodegenerative processes. J. Neurochem., 76, 1766–73CrossRefGoogle ScholarPubMed
Zecca, L.Fariello, R., Riederer, P., Sulzer, D., Gatti, A. & Tampellini, D. (2002). The absolute concentration of nigral dopamine, assayed by a new sensitive method, increases throughout the life and is dramatically decreased in Parkinson's disease. FEBS Lett., 510, 216–20CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×