Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T21:02:31.432Z Has data issue: false hasContentIssue false

18 - Neurophysiology of Parkinson's disease, levodopa-induced dyskinesias, dystonia, Huntington's disease and myoclonus

from Part I - Basic aspects of neurodegeneration

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Antonio Currà
Affiliation:
Department of Neurological Sciences and I.N.M. Neuromed IRCCS, University of Rome “La Sapienza”, Italy
Rocco Agostino
Affiliation:
Department of Neurological Sciences and I.N.M. Neuromed IRCCS, University of Rome “La Sapienza”, Italy
Alfredo Berardelli
Affiliation:
Department of Neurological Sciences and I.N.M. Neuromed IRCCS, University of Rome “La Sapienza”, Italy
Get access

Summary

Introduction

Movement disorders are a disease group related to functional or structural abnormalities of the basal ganglia.

The term “basal ganglia” refers to the following structures: the striatum (caudate and putamen), globus pallidus (internal and external segments, GPi and GPe), subthalamic nucleus, and substantia nigra (SN) (SN pars compacta, SNpc, and SN pars reticulata, SNpr). The striatum receives connections from specific cortical areas and from the SNpc; the basal ganglia output nuclei, the GPi and SNpr, exert an inhibitory effect on the thalamus. Diminished phasic activity in the GPi/SNpr disinhibits the thalamus thus facilitating cortical motor areas, whereas increased phasic activity in the GPi/SNpr causes the opposite effect. The GPi–SNpr inhibition of the thalamus is modulated through two parallel pathways. According to the classical model of basal ganglia functioning (Albin et al., 1989; Alexander & Crutcher, 1990; Alexander et al., 1990; De Long, 1990; Parent & Hazarati, 1995; Wichmann & De Long, 1996) the first is an inhibitory “direct” pathway that originates in the striatum and projects directly onto the GPi/SNr; the second is an “indirect” inhibitory pathway that crosses the GPe and subthalamic nucleus to project indirectly onto the GPi/SNpr. Activation of the direct pathway tends to disinhibit the thalamus. Activation of the indirect pathway disinhibits the subthalamic nucleus thereby increasing GPi/SNpr excitation thus resulting in increased thalamic inhibition: the two parallel circuits have an opposing action on the GPi/SNr and hence on the thalamus.

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 227 - 250
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbruzzese, G. & Berardelli, A. (2003). Sensorimotor integration in movement disorders.Mov. Disord., 18, 231–40CrossRefGoogle ScholarPubMed
Abbruzzese, G., Dall'Agata, D., Morena, M., Reni, L. & Favale, E. (1990). Abnormalities of parietal and prerolandic somatosensory evoked potentials in Huntington's disease.Electroencephalogr. Clin. Neurophysiol., 77, 340–6CrossRefGoogle ScholarPubMed
Abbruzzese, G., Buccolieri, A., Marchese, R., Trompetto, C., Mandich, P. & Schieppati, M. (1997). Intracortical inhibition and facilitation are abnormal in Huntington's disease: a paired magnetic stimulation study.Neurosci. Lett., 228, 87–90CrossRefGoogle ScholarPubMed
Abbruzzese, G., Marchese, R., Buccolieri, A., Gasparetto, B. & Trompetto, C. (2001). Abnormalities of sensorimotor integration in focal distonia. A transcranial magnetic stimulation study.Brain, 124, 537–45CrossRefGoogle Scholar
Aglioti, S. M., Fiori, M., Forster, B. & Tinazzi, M. (2003). Temporal discrimination of cross-modal and unimodal stimuli in generalized dystonia. Neurology, 60, 782–5CrossRefGoogle ScholarPubMed
Agostino, R., Berardelli, A., Cruccu, G.et al. (1987). Corneal and blink reflexes in Parkinson's disease with ‘on–off’ fluctuations.Mov. Disord., 2, 227–35CrossRefGoogle ScholarPubMed
Agostino, R., Berardelli, A., Cruccu, G., Pauletti, G., Stocchi, F. & Manfredi, M. (1988). Correlation between facial involuntary movements and abnormalities of blink and corneal reflexes in Huntington's chorea.Mov. Disord., 3, 281–9CrossRefGoogle ScholarPubMed
Agostino, R., Berardelli, A., Formica, A., Accornero, N. & Manfredi, M. (1992). Sequential arm movements in patients with Parkinson's disease, Huntington's disease and dystonia.Brain, 115, 1481–95CrossRefGoogle ScholarPubMed
Agostino, R., Berardelli, A., Currà, A., , Accornero, N. & Manfredi, M. (1998). Clinical impairment of sequential finger movements in Parkinson's disease.Mov. Disord., 13, 418–21CrossRefGoogle ScholarPubMed
Agostino, R., Berardelli, A., Formica, A., Stocchi, F., Accornero, N. & Manfredi, M. (1994). Analysis of repetitive and non repetitive sequential arm movements in patients with Parkinson's disease.Mov. Disord., 57, 368–70Google Scholar
Agostino, R., Currà, A., , Giovannelli, M., Modugno, N., Manfredi, M. & Berardelli, A, . (2003). Impairment of individual finger movements in Parkinson's disease.Mov. Disord., 18, 560–5CrossRefGoogle ScholarPubMed
Albin, R. L., Young, A. B. & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. [Review].Trends. Neurosci., 12, 366–75CrossRefGoogle ScholarPubMed
Albin, R. L., Reiner, A., Anderson, K. D., et al. (1992). Preferential loss of striato-external pallidal projection neurons in presymptomatic Huntington's disease.Ann. Neurol., 31, 425–30CrossRefGoogle ScholarPubMed
Alexander, G. E. & Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits. Neural substrates of parallel processing.Trends Neurosci., 13, 266–71CrossRefGoogle ScholarPubMed
Alexander, G. E., Crutcher, M. D. & Delong, M. R. (1990). Basal ganglia-thalamocortical circuits – parallel substrates for motor, oculomotor, prefrontal and limbic functions.Progr. Brain. Res., 85, 119–46CrossRefGoogle ScholarPubMed
Assal, F., Magistris, M. R. & Vingerhoets, F. J. (1998). Post-traumatic stimulus suppressible myoclonus of peripheral origin. J. Neurol. Neurosurg. Psychiatr., 64(5), 673–5CrossRefGoogle ScholarPubMed
Bara-J imenez, W., Shelton, P., Sanger, T. D. & Hallett, M. (2000). Sensory discrimination capabilities in patients with focal hand dystonia.Ann. Neurol., 47, 377–803.0.CO;2-2>CrossRefGoogle Scholar
Benecke, R., Rothwell, J. C., Dick, J. P. R.et al. (1986). Performance of simultaneous movements in patients with Parkinson's disease.Brain, 109, 739–57CrossRefGoogle ScholarPubMed
Benecke, R., Rothwell, J. C., Dick, J. P. R.et al. (1987). Disturbance of sequential movements in patients with Parkinson's disease.Brain, 110, 361–79CrossRefGoogle ScholarPubMed
Bennett, K. M., Marchetti, M., Iovine, R. & Castiello, U. (1995). The drinking action of Parkinson's disease subjects.Brain, 118, 959–70CrossRefGoogle ScholarPubMed
Berardelli, A. & Currà, A. (2002). Voluntary movement disorders. In Clinical Neurophysiology and Neuromuscular Diseases, ed. W. F. Brown, Ch. F. Bolton & M. Aminoff, pp. 1727–48. Philadelphia: W. B. Saunders
Berardelli, A. & Hallett, M. (1984). Shortening reaction of human tibialis anterior. Neurology, 34, 242–5CrossRefGoogle ScholarPubMed
Berardelli, A., Sabra, A. F. & Hallett, M. (1983). Physiological mechanisms of rigidity in Parkinson's disease.J. Neurol. Neurosurg. Psychiatr., 46, 45–53CrossRefGoogle ScholarPubMed
Berardelli, A., Rothwell, J. C., Day, B. L. & Marsden, C. D. (1985). Pathophysiology of blepharospasm and oromandibular dystonia.Brain, 108, 593–608CrossRefGoogle ScholarPubMed
Berardelli, A., Accornero, N., Argenta, M.et al. (1986a). Fast complex arm movements in Parkinson's disease.J. Neurol. Neurosurg. Psychiatr., 49, 1146–9CrossRefGoogle Scholar
Berardelli, A., Dick, J. P. R., Rothwell, J. C., Day, B. L. & Marsden, C. D. (1986b). Scaling of the size of the first agonist EMG burst during rapid wrist movements in patients with Parkinson's disease.J. Neurol. Neurosurg. Psychiatr., 49, 1273–9CrossRefGoogle Scholar
Berardelli, A., Rona, S., Inghilleri, M. & Manfredi, M. (1996b). Cortical inhibition in Parkinson's disease. A study with paired magnetic stimuli.Brain, 119, 71–7CrossRefGoogle Scholar
Berardelli, A., Rothwell, J. C., Hallett, M., Thompson, P. D., Manfredi, M. & Marsden, C. D. (1998). The pathophysiology of primary dystonia.Brain, 121, 1195–212CrossRefGoogle ScholarPubMed
Berardelli, A., Noth, J., Thompson, P. D.et al. (1999). Pathophysiology of chorea and bradykinesia in Huntington's disease.Mov. Disord., 14, 398–4033.0.CO;2-F>CrossRefGoogle ScholarPubMed
Berardelli, A., Rothwell, J. C., Thompson, P. D. & Hallett, M. (2001). Pathophysiology of bradykinesia in Parkinson's disease.Brain, 124, 2131–46CrossRefGoogle ScholarPubMed
Berardelli, A., Thompson, P. D. & Priori, A. (1998). Myoclonus. In Tolosa, E., Koller. W. C., Gershanik, O. S. (Eds). Differential diagnosis and treatment of movement disorders. Butterworth-Heinemann, Boston, 89–97
Blanchet, P. J., Boucher, R. & Bédard, P. J. (1994). Excitotoxic lateral pallidotomy does not relieve L-dopa-induced dyskinesia in MPTP parkinsonian monkeys.Brain Res., 650, 32–9CrossRefGoogle Scholar
Bradshaw, J. L., Phillips, J. G., Dennis, C., et al. (1992). Initiation and execution of movement sequences in those suffering from and at-risk of developing Huntington's disease.J. Clin. Exp. Neuropsychol., 14, 179–92CrossRefGoogle ScholarPubMed
Britton, T. C., Thompson, P. D., Day, B. L., Rothwell, J. C., Findley, L. J. & Marsden, C. D. (1992). ‘Resetting’ of postural tremors at the wrist with mechanical stretches in Parkinson's disease, essential tremor, and normal subjects mimicking tremor.Ann. Neurol., 31, 507–14CrossRefGoogle ScholarPubMed
Brown, P., Thompson, P. D., Rothwell, J. C., Day, B. L. & Marsden, C. D. (1991). Axial myoclonus of propriospinal origin. Brain, 114, 197–214Google ScholarPubMed
Byl, N., Wilson, F., Merzenich, M.et al. (1996a). Sensory dysfunction associated with repetitive strain injuries of tendonitis and focal hand dystonia: a comparative study.J. Orthop. Sports Phys. Ther., 23, 234–44CrossRefGoogle Scholar
Byl, N. N., Merzenich, M. M. & Jenkins, W. M. (1996b). A primate genesis model of focal dystonia and repetitive strain injury: I. Learning-induced dedifferentiation of the representation of the hand in the primary somatosensory cortex in adult monkeys.Neurology, 47, 508–20CrossRefGoogle Scholar
Byrnes, M. L., Thickbroom, G. W., Wilson, S. A.et al (1998). The corticomotor representation of upper limb muscles in writer's cramp and changes following botulinum toxin injection.Brain, 121, 977–88CrossRefGoogle ScholarPubMed
Cantello, R., Gianelli., M., , Bettucci, D., Civardi, C., Angelis, M. S. & Mutani, R. (1991). Parkinson's disease rigidity: magnetic motor evoked potentials in a small hand muscle.Neurology, 41, 1449–56CrossRefGoogle Scholar
Caraceni, T., Avanzini, G., Spreafico, R., Negri, S., Broggi, G. & Girotti, F. (1976). Study of the excitability of the blink reflex in Huntington's chorea.Eur. Neurol., 14, 465–72CrossRefGoogle ScholarPubMed
Caviness, J. N. (2003). Myoclonus and neurodegenerative disease – what's in a name?Parkinsonism and Related Disorders, 9, 185–92CrossRefGoogle Scholar
Chen, R., Ashby, P. & Lang, A. E. (1992). Stimulus-sensitive myoclonus in akinetic-rigid syndromes. Brain, 115, 1875–88CrossRefGoogle ScholarPubMed
Chen, R., Wassermann, E. M., Canos, M., & Hallett, M. (1997). Impaired inhibition in writer's cramp during voluntary muscle activation.Neurology, 49, 1054–9CrossRefGoogle ScholarPubMed
Chen, R., Garg, R. R., Lozano, A. M. & Lang, A. E. (2001a). Effects of internal globus pallidus stimulation on motor cortex excitability.Neurology, 56, 716–23CrossRefGoogle Scholar
Chen, R., Kumar, S., Garg, R. R. & Lang, A. E. (2001b). Impairment of motor cortex activation and deactivation in Parkinson's Disease. Clin. Neurophysiol., 112, 600–7CrossRefGoogle Scholar
Churchyard, A. J., Morris, M. E., Georgiou, N., Chiu, E., Cooper, R. & Iansek, R. (2001). Gait dysfunction in Huntington's disease: parkinsonism and a disorder of timing. Implications for movement rehabilitation.Adv. Neurol., 87, 375–85Google Scholar
Cohen, L. G. & Hallett, M. (1988). Hand cramps: clinical features and electromyographic patterns in a focal dystonia.Neurology, 38, 1005–12CrossRefGoogle Scholar
Crossman, A. R., Mitchell, I. J., Sambrook, M. A. & Jackson, A. (1988). Chorea and myoclonus in the monkey induced by gamma-aminobutyric acid antagonism in the lentiform complex.Brain, 111, 1211–33CrossRefGoogle ScholarPubMed
Cruccu, G., Pauletti, G., Agostino, R., Berardelli, A. & Manfredi, M. (1991). Masseter inhibitory reflex in movement disorders, Huntington's chorea, Parkinson's disease, dystonia, and unilateral masticatory spasm.Electroencephalogr. Clin. Neurophysiol., 81, 24–30CrossRefGoogle ScholarPubMed
Cunic, D., Roshan, L., Khan, F. I., Lozano, A. M., Lang, A. E. & Chen, R. (2002). Effects of subthalamic nucleus stimulation on motor cortex excitability in Parkinson's disease.Neurology, 58, 1665–72CrossRefGoogle ScholarPubMed
Cunnington, R., Iansek, R., Bradshaw, J. L. & Philips, J. G. (1995). Movement related potentials in Parkinson's disease: presence and predictability of temporal and spatial cues.Brain, 118, 935–50CrossRefGoogle ScholarPubMed
Currà, A., , Berardelli, A., Agostino, R., et al. (1997). Performance of sequential arm movement with and without advance knowledge of motor pathways in Parkinson's disease.Mov. Disord., 12, 646–54CrossRefGoogle Scholar
Currà, A., , Agostino, R., Galizia, P., Fittipaldi, F., Manfredi, M. & Berardelli, A. (2000a). Sub-movement cueing and motor sequence execution in patients with Huntington's disease.Clin. Neurophysiol., 111, 1184–90CrossRefGoogle Scholar
Currà, A., , Berardelli, A., Agostino, R., Giovannelli, M., Koch, G. & Manfredi, M. (2000b). Movement cueing and motor execution in dystonia.Mov. Disord., 15, 103–123.0.CO;2-3>CrossRefGoogle Scholar
Currà, A., Romaniello, A., Berardelli, A., Cruccu, G. & Manfredi, M. (2000c). Shortened cortical silent period in facial muscles of patients with cranial dystonia.Neurology, 54, 130–5CrossRefGoogle Scholar
Long, M. R. (1990). Primate models of movement disorders of basal ganglia origin.Trends Neurosci., 13, 281–5Google Scholar
Defazio, G., Berardelli, A., Abbruzzese, G.et al. (1998). Possible risk factors for primary adult onset dystonia: a case control investigation by the Italian Movement Disorders Study Group.J. Neurol. Neurosurg. Psychiatr., 64, 25–32CrossRefGoogle ScholarPubMed
Deiber, M. P., Pollak, P., Passingham, R.et al. (1993). Thalamic stimulation and suppression of parkinsonian tremor. Evidence of a cerebellar deactivation using positron emission tomography, Brain, 116, 267–79CrossRefGoogle ScholarPubMed
Delwaide, P. J., Pepin, J. L. & Maertens de Noordhout, A. (1991). Short-latency autogenic inhibition in patients with Parkinsonian rigidity.Ann. Neurol., 30, 83–9CrossRefGoogle ScholarPubMed
Demirci, M., Grill, S., McShane, L.et al. (1997). A mismatch between kinesthetic and visual perception in Parkinson's disease.Ann. Neurol., 41, 781–8CrossRefGoogle ScholarPubMed
Deuschl, G., Toro, C., Matsumoto, J. & Hallett, M. (1995). Movement related cortical potential in writer's cramp.Ann. Neurol., 38, 862–8CrossRefGoogle ScholarPubMed
Dick, J. P. R., Cowan, J. M. A., Day, B. L.et al. (1984). Corticomotoneurone connection is normal in Parkinson's disease.Nature, 310, 407–9CrossRefGoogle ScholarPubMed
Dick, J. P. R., Rothwell, J. C., Day, B. L.et al. (1989). The Bereitschaftspotential is abnormal in Parkinson's disease.Brain, 112, 233–44CrossRefGoogle ScholarPubMed
Evarts, E. V., Teravainem, H. & Calne, D. B. (1981). Reaction time in Parkinson's disease.Brain, 104, 167–86CrossRefGoogle ScholarPubMed
Evidente, V. G. & Caviness, J. N. (1999). Myoclonus of peripheral origin. J. Neurol. Neurosurg. Psychiatr., 66(1), h123–4CrossRefGoogle ScholarPubMed
Fahn, S. (2000). The spectrum of levodopa-induced dyskinesias.Ann. Neurol., 47, suppl.1, S2–S11Google ScholarPubMed
Fellows, S. J., Noth, J. & Schartz, M. (1998). Precision grip and Parkinson's disease. Brain, 12, 1771–84CrossRefGoogle Scholar
Féve, A., Bathien, N. & Rondot, P. (1984). Abnormal movements related potentials in patients with lesions of the basal ganglia and anterior thalamus.J. Neurol. Neurosurg. Psychiatr., 57, 100–4CrossRefGoogle Scholar
Filipovic, S. R ., Ljubisavljevic, M., Svetel, M., Milanovic, S., Kacar, A. & Kostic, V. S. (1997). Impairment of cortical inhibition in writer's cramp as revealed by changes in electromyographic silent period after transcranial magnetic stimulation.Neurosci. Lett., 222, 167–70CrossRefGoogle ScholarPubMed
Georgiou, N., Iansek, R., Bradshaw, J. L.et al. (1993). An evaluation of the role of internal cues in the pathogenesis of parkinsonian hypokinesia.Brain, 116, 1575–87CrossRefGoogle ScholarPubMed
Georgiou, N., Bradshaw, J. L., Iansek, R.et al. (1994). Reduction in external cues and movement sequencing in Parkinson's disease.J. Neurol. Neurosurg. Psychiatr., 57, 368–70CrossRefGoogle ScholarPubMed
Georgiou, N., Bradshaw, J. L., Philips, J. G., Chiou, E. & Bradshaw, J. A. (1995). Reliance on advance information and movement sequencing in Huntington's disease.Mov. Disord., 10, 477–81CrossRefGoogle ScholarPubMed
Georgiou, N., Phillips, J. G., Bradshaw, J. L.et al. (1997). Impairments of movement kinematics in patients with Huntington's disease: a comparison with and without a concurrent task.Mov. Disord., 12, 386–96CrossRefGoogle ScholarPubMed
Gilad, R., Giladi, N., Korczyn, A. D., Gurevich, T. & Sadeh, M. (2001). Quantitative anal sphincter EMG in multisystem atrophy and 100 controls.J. Neurol. Neurosurg. Psychiatr., 71(5), 596–9CrossRefGoogle ScholarPubMed
Gilio, F., Currà, A., Lorenzano, C., Modugno, N., Manfredi, M. & Berardelli, A. (2000). Effects of botulinum toxin type A on intracortical inhibition in patients with dystonia.Ann. Neurol., 48, 20–63.0.CO;2-U>CrossRefGoogle ScholarPubMed
Gilio, F., Currà, A., Inghilleri, M., Lorenzo, C., Manfredi, M. & Berardelli, A. (2002). Repetitive magnetic stimulation of cortical motor areas in Parkinson's disease: implications for the pathophysiology of cortical function. Mov. Disord., 17, 467–73CrossRefGoogle ScholarPubMed
Gilio, F., Currà, A., Inghilleri, M., Lorenzano, C., Suppa, A., Manfredi, M. & Berardelli, A. (2003). Abnormalities of motor cortex excitability preceding movement in patients with distonia. Brain, in press
Gomez-Wong, E., Marti, M. J., Tolosa, E. & Valls-Sole, J. (1998). Sensory modulation of the blink reflex in patients with blepharospasm.Arch. Neurol., 55, 1233–7CrossRefGoogle ScholarPubMed
Grissom, J. R ., Lackland, A. F. B., Toro, C., Trerrau, J. & Hallett, M. (1995). The N30 and N140–P190 median somatosensory evoked potential waveforms in dystonia involving the upper extremity.Neurology, 45(Suppl 4), A458Google Scholar
Grunewald, R. A., Yoneda, Y., Shipman, J. M. & Sagar, H. J. (1997). Idiopathic focal dystonia: a disorder of muscle spindle afferent processing?Brain, 120, 2179–85CrossRefGoogle ScholarPubMed
Hallett, M. (1995). Is dystonia a sensory disorder? [editorial]Ann. Neurol., 38, 139–40CrossRefGoogle Scholar
Hallett, M. (2000a). Clinical physiology of dopa-induced dyskinesia.Ann. Neurol., 47, S147–53Google Scholar
Hallett, M. (2000b). Transcranial magnetic stimulation and the human brain.Nature, 406, 147–50CrossRefGoogle Scholar
Hallett, M. & Khoshbin, S. (1980). Physiological mechanisms of bradykinesia.Brain, 103, 301–14CrossRefGoogle Scholar
Hanajima, R., Ugawa, Y., Terao, Y., Ugata, K. & Kanazawa, I. (1996). Ipsilateral cortico-cortical inhibition of the motor cortex in various neurological disorders.J. Neurol. Sci., 140, 109–16CrossRefGoogle ScholarPubMed
Hefter, H., Homberg, V., Lange, H. W. & Freund, H. J. (1987). Impairment of rapid movement in Huntington's disease.Brain, 110, 585–612CrossRefGoogle ScholarPubMed
Hutchison, W. D., Levy, R., Dostrovsky, J. O., Lozano, A. M. & Lang, A. E. (1997). Effects of apomorphine on globus pallidus neurons in parkinsonian patients.Ann. Neurol., 42, 767–75CrossRefGoogle Scholar
Hutchison, W. D., Allan, R. I., , Opitz, H.et al. (1998). Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson's disease.Ann. Neurol., 44, 622–8CrossRefGoogle Scholar
Hutchison, W. D., Lang, A. E., Dostrovsky, J. O. & Lozano, A. M. (2003). Pallidal neuronal activity: implications for models of dystonia. Ann. Neurol., 53(4), 480–8CrossRefGoogle ScholarPubMed
Ikeda, A., Luders, H. O., Burgess, R. C. & Shibasaki, H. (1992). Movement-related potentials recorded from supplementary motor area and primary motor area: role of supplementary motor area in voluntary movements.Brain, 115, 1017–43CrossRefGoogle ScholarPubMed
Ikeda, A., Shibasaki, H., Kaji, R.et al. (1996b). Abnormal sensorimotor integration in writer's cramp: study of contingent negative variation.Mov. Disord., 11, 638–90CrossRefGoogle Scholar
Ikoma, K., Samii, A., Mercuri, B., Wassermann, E. M. & Hallett, M. (1996a). Abnormal cortical motor excitability in dystonia.Neurology, 46, 1371–6CrossRefGoogle Scholar
Inzelberg, R., Flash, T., Schechtman, E.et al. (1995). Kinematic properties of upper limb trajectories in idiopathic torsion dystonia.J. Neurol. Neurosurg. Psychiatr., 58, 312–19CrossRefGoogle ScholarPubMed
Iriarte, L. M., Chacon, J., Madrazo, J.et al. (1989). Blink reflex in dyskinetic and nondyskinetic patients with Parkinson's disease. Eur. Neurol., 29, 67–70CrossRefGoogle ScholarPubMed
Jahanshahi, M., Brown, R. G. & Marsden, C. D. (1992). Simple and choice reaction time and the use of advance information for motor preparation in Parkinson's disease.Brain, 115, 539–64CrossRefGoogle ScholarPubMed
Jahanshahi, M., Brown, R. G. & Marsden, C. D. (1993). A comparative study of simple and choice reaction time in Parkinson's, Huntington's and cerebellar disease.J. Neurol. Neurosurg. Psychiatr., 56, 1169–77CrossRefGoogle ScholarPubMed
Jahanshahi, M., Jenkins, I. H., Brown, R. G., Marsden, C. D., Passingham, R. E. & Brooks, D. J. (1995). Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson's disease subjects.Brain, 118, 913–33CrossRefGoogle ScholarPubMed
Johnson, K. A., Bennett, J. E., Georgiou, N.et al. (2000). Bimanual co-ordination in Huntington's disease.Exp. Brain Res., 134, 483–9CrossRefGoogle ScholarPubMed
Johnson, K. A., Cunnington, R., Iansek, R., Bradshaw, J. L., Georgiou, N. & Chiu, E. (2001). Movement-related potentials in Huntington's disease: movement preparation and execution.Exp. Brain Res., 138, 492–9CrossRefGoogle ScholarPubMed
Johnson, K. A., Cunnington, R., Bradshaw, J. L., Chiu, E. & Iansek, R. (2002). Effect of an attentional strategy on movement-related potentials recorded from subjects with Huntington's disease.Mov. Disord., 17, 998–1003CrossRefGoogle ScholarPubMed
Kaji, R., Ikeda, A., Ikeda, T.et al. (1995a). Physiological study of cervical dystonia. Task-specific abnormality in contingent negative variation.Brain, 118, 511–22CrossRefGoogle Scholar
Kaji, R., Murase, N. (2001). Sensory function of basal ganglia.Mov. Disord., 16, 593–4CrossRefGoogle ScholarPubMed
Kaji, R., Rothwell, J. C., Katayama, M.et al. (1995b). Tonic vibration reflex and muscle afferent block in writer's cramp.Ann. Neurol., 38, 155–62CrossRefGoogle Scholar
Kanovsky, P., Streitova, H., Dufek, J.et al. (1998). Change in lateralization of the P22/N30 cortical component of median nerve somatosensory evoked potentials in patients with cervical dystonia after successful treatment with botulinum toxin A.Mov. Disord., 13, 108–17CrossRefGoogle Scholar
Karson, C. N. (1983). Spontaneous eye blink rates and dopaminergic systems.Brain, 106, 643–53CrossRefGoogle ScholarPubMed
Katayama, M., Kohara, N., Kaji, R., Kojima, Y., Shibasaki, H. & Kimura, J. (1996). Effect of photic conditioning on blink reflex recovery function in blepharospasm.Electroencephalogr. Clin. Neurophysiol., 101, 446–52CrossRefGoogle ScholarPubMed
Klockgether, T., Borutta, M., Spieker, S. & Dichgans, J. (1995). A defect of kinestesia in parkinson's disease.Mov. Disord., 10, 460–5CrossRefGoogle ScholarPubMed
Krack, P., Pollak, P., Limousin, P., Benazzouz, A., Deuschl, G. & Benabid, A. L. (1999). From off-period dystonia to chorea: the clinical spectrum of varying subthalamic nucleus activity.Brain, 122, 1133–46CrossRefGoogle ScholarPubMed
Lee, E. A., Kim, B. J. & Lee, W. Y. (2002). Diagnosing multiple system atrophy with greater accuracy: combined analysis of the clonidine-growth hormone test and external anal sphincter electromyography.Mov. Disord., 17(6), 1242–7CrossRefGoogle ScholarPubMed
Lenz, F. A., Suarez, J. I., Verhagen Metman, L.et al. (1998). Pallidal activity during dystonia: somatosensory reorganisation and changes with severity.J. Neurol. Neurosurg. Psychiatr., 65, 767–70CrossRefGoogle ScholarPubMed
Lorenzano, C., Priori, A., Currà, A., et al. (2000). Impaired EMG inhibition elicited by tendon stimulation in dystonia.Neurology, 26, 1789–93CrossRefGoogle Scholar
Lozano, A. M., Kumar, R., Gross, R. E.et al. (1999). Globus pallidus internus pallidotomy for generalized dystonia.Mov. Disord., 14, 481–3Google Scholar
Luquin, M. R., Scipioni, O., Vaamonde, J.et al. (1992) Levodopa-induced dyskinesias in Parkinson's disease: clinical and pharmacological classification.Mov. Disord., 7, 117–24CrossRefGoogle ScholarPubMed
Marsden, C. D. & Obeso, O. (1994). The functions of the basal ganglia and the paradox of stereotactic surgery in Parkinson's disease.Brain, 117, 856–76CrossRefGoogle Scholar
Marsden, C. D., Hallett, M. & Fahn, S. (1981). The nosology and pathophysiology of myoclonus. In Marsden, C. D., Fahn, S. (Eds). Movement Disorders 2. Butterworth, London, 196CrossRef
Martinez, M. S., Fontoira, M., Celester, G., Castro del Rio, M., Permuy, J. & Iglesias, A. (2001). Myoclonus of peripheral origin: case secondary to a digital nerve lesion. Mov. Disord., 16, 970–4CrossRefGoogle ScholarPubMed
Masuhr, F., Wissel, J., Muller, J., Scholz, U. & Poewe, W. (2000). Quantification of sensory trick impact on tremor amplitude and frequency in 60 patients with head tremor.Mov. Disord., 15, 960–43.0.CO;2-G>CrossRefGoogle ScholarPubMed
Mavroudakis, N., Caroyer, J. M., Brunko, E. & Zegers de Beyl, D. (1995). Abnormal motor evoked responses to transcranial magnetic stimulation in focal dystonia.Neurology, 45, 1671–7CrossRefGoogle ScholarPubMed
Mazzini, L., Zaccala, M. & Balzarini, C. (1994). Abnormalities of somatosensory evoked potentials in spasmodic torticollis.Mov. Disord., 9, 426–30CrossRefGoogle ScholarPubMed
Merello, M., Lees, A. J., Balej, J., Cammarota, A. & Leiguarda, R. (1999). GPi firing rate modification during beginning-of-dose motor deterioration following acute administration of apomorphine.Mov. Disord., 14, 481–33.0.CO;2-H>CrossRefGoogle ScholarPubMed
Meunier, S., Pol, S., Houeto, J. L. & Vidailhet, M. (2000). Abnormal reciprocal inhibition between antagonist muscles in Parkinson's disease.Brain, 123 (5), 1017–26CrossRefGoogle ScholarPubMed
Mitchell, J., Jackson, A., Sambrook, M. A. & Crossman, A. R. (1989). The role of the subthalamic nucleus in experimental chorea. Evidence from 2-deoxyglucose metabolic mapping and horseradish peroxidase tracing studies.Brain, 112, 1533–48CrossRefGoogle ScholarPubMed
Modugno, N., Currà, A., , Giovannelli, M.et al. (2001). The prolonged cortical silent period in patients with Huntington's disease.Clin. Neurophysiol., 112, 1470–4CrossRefGoogle ScholarPubMed
Murase, N., Kaji, R., Shimazu, H.et al. (2000). Abnormal premovement gating of somatosensory input in writer's cramp.Brain, 123, 1813–29CrossRefGoogle ScholarPubMed
Nakashima, K., Rothwell, J. C., Day, B. L., Thompson, P. D. & Marsden, C. D. (1989). Reciprocal inhibition between forearm muscles in patients with writer's cramp and other occupational cramps, symptomatic hemidystonia and hemiparesis due to stroke.Brain, 112, 681–97CrossRefGoogle Scholar
Nardone, A., Mazzini, L. & Zaccala, M. (1992). Changes in EMG response to perturbations and SEPs in a group of patients with idiopathic spasmodic torticollis.Mov. Disord., 7(Suppl 1), 25Google Scholar
Naumann, M. & Reiners, K. (1997). Long-latency reflexes of hand muscles in idiopathic focal dystonia and their modification by botulinum toxin.Brain, 120, 409–16CrossRefGoogle ScholarPubMed
Naumann, M., Magyar-Lehmann, S., Reiners, K., Erbguth, F. & Leenders, K. L. (2000). Sensory tricks in cervical dystonia: perceptual dysbalance of parietal cortex modulates frontal motor programming.Ann. Neurol., 47, 322–83.0.CO;2-E>CrossRefGoogle ScholarPubMed
Noth, J., Engel, L., Friedemann, H. H. & Lange, H. W. (1984). Evoked potentials in patients with Huntington's disease and their offspring.Electroencephalogr. Clin. Neurophysiol., 32, 134–41CrossRefGoogle Scholar
Noth, J., Podoll, K. & Friedemann, H. H. (1985). Long loop reflexes in small hand muscles studied in normal subjects and in patients with Huntington's disease.Brain, 108, 65–80CrossRefGoogle ScholarPubMed
Parent, A. & Hazrati, L. N. (1995). Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop.Brain Res. Rev., 20, 91–127CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Valls-Solé, J., Brasil-Neto, J. P., Cohen, L. G. & Hallett, M. (1994). Akinesia in Parkinson's disease. I. Shortening of simple reaction time with focal, single-pulse transcranial magnetic stimulation.Neurology, 44, 884–91CrossRefGoogle ScholarPubMed
Pauletti, G., Berardelli, A., Cruccu, G., Agostino, R. & Manfredi, M. (1993). Blink reflex and the masseter inhibitory reflex in patients with dystonia.Mov. Disord., 8, 495–500CrossRefGoogle ScholarPubMed
Pramstaller, P. P., Wenning, G. K., Smith, S. J., Beck, R. O., Quinn, N. P. & Fowler, C. J. (1995). Nerve conduction studies, skeletal muscle EMG, and sphincter EMG in multiple system atrophy.J. Neurol. Neurosurg. Psychiatr., 58, 618–21CrossRefGoogle ScholarPubMed
Priori, A., Berardelli, A., Inghilleri, I., Accornero, N. & Manfredi, M. (1994a). Motor cortical inhibition and the dopaminergic system.Brain, 117, 317–23CrossRefGoogle Scholar
Priori, A., Berardelli, A., Inghilleri, M., Polidori, L. & Manfredi, M. (1994b). Electromyographic silent period after transcranial brain stimulation in Huntington's disease.Mov. Disord., 9, 178–82CrossRefGoogle Scholar
Priori, A., Berardelli, A., Mercuri, B. & Manfredi, M. (1995). Physiological effects produced by BoNT treatment of upper limb dystonia. Changes in reciprocal inhibition between forearm muscles.Brain, 118, 801–7CrossRefGoogle Scholar
Priori, A., Berardelli, A., Inghilleri, M., Pedace, F., Giovannelli, M. & Manfredi, M. (1998). Electrical stimulation over muscle tendons in humans. Evidence favouring presynaptic inhibition of Ia fibres due to the activation of group III tendon afferents.Brain, 121, 373–80CrossRefGoogle ScholarPubMed
Priori, A., Polidori, L., Rona, S., Manfredi, M. & Berardelli, A. (2000). Spinal and cortical inhibition in Huntington's disease.Mov. Disord., 15, 938–463.0.CO;2-Q>CrossRefGoogle Scholar
Raethjen, J., Lindemann, M., Schmaljohann, H., Wenzelburger, R., Pfister, G. & Deuschl, G. (2000). Multiple oscillators are causing parkinsonian and essential tremor. Mov. Disord., 15, 84–943.0.CO;2-K>CrossRefGoogle ScholarPubMed
Reilly, J. A., Hallett, M., Cohen, L. G., Tarkka, I. M. & Dang, N. (1992). The N30 component of somatosensory evoked potentials in patients with dystonia.Electroencephalogr. Clin. Neurophysiol., 84, 243–7CrossRefGoogle ScholarPubMed
Ridding, M. C., Inzelberg, R. & Rothwell, J. C. (1995a). Changes in excitability of motor circuitry in patients with Parkinson's disease.Ann. Neurol., 37, 181–8CrossRefGoogle Scholar
Ridding, M. C., Sheean, G., Rothwell, J. C., Inzelberg, R. & Kujirai, T. (1995b). Changes in the balance between motor cortical excitation and inhibition in focal, task specific dystonia.J. Neurol. Neurosurg. Psychiatr., 53, 493–8CrossRefGoogle Scholar
Rona, S., Berardelli, A., Vacca, L., Inghilleri, M. & Manfredi, M. (1998). Alterations of motor cortical inhibition in patients with dystonia.Mov. Disord., 13, 118–24CrossRefGoogle ScholarPubMed
Rothwell, J. C., Obeso, J. A., Traub, M. M. & Marsden, C. D. (1983). The behaviour of the long-latency stretch reflex in patients with Parkinson's disease.J. Neurol. Neurosurg. Psychiatr., 46, 35–44CrossRefGoogle ScholarPubMed
Sanger, T. D., Pascual-Leone, A., Tarsy, D. & Schlaug, G. (2002). Nonlinear sensory cortex response to simultaneous tactile stimuli in writer's cramp.Mov. Disord., 17, 105–11CrossRefGoogle ScholarPubMed
Shibasaki, H., Yamashita, Y. & Kuroiwa, Y. (1978). Electroencephalographic studies myoclonus.Brain, 101, 447–60CrossRefGoogle ScholarPubMed
Simonetta Moreau, M., Meunier, S., Vidailhet, M., Pol, S., Galitzky, M. & Rascol, O. (2002). Transmission of group II heteronymous pathways is enhanced in rigid lower limb of de novo patients with Parkinson's disease.Brain, 125, 2125–33CrossRefGoogle ScholarPubMed
Stefani, A., Stanzione, P., Bassi, A., Mazzone, P., Vangelista, T. & Bernardi, G. (1997). Effects of increasing doses of apomorphine during stereotaxic neurosurgery in Parkinson's disease: clinical score and internal globus pallidus activity.J. Neural. Transm., 104, 895–904CrossRefGoogle ScholarPubMed
Stocchi, F., Carbone, A., Inghilleri, M., Monge, A., Ruggieri, S., Berardelli, A. & Manfredi, M. (1997). Urodynamic and neurophysiological evaluation in Parkinson's disease and multiple system atrophy.J. Neurol. Neurosurg. Psychiatry., 62, 507–11CrossRefGoogle ScholarPubMed
Storey, E. & Beal, M. F. (1993). Neurochemical substrates of rigidity and chorea in Huntington's disease.Brain, 116, 1201–22CrossRefGoogle ScholarPubMed
Strafella, A., Ashby, P., Lozano, A. & Lang, A. E. (1997). Pallidotomy increases cortical inhibition in Parkinson's disease.Can. J. Neurol. Sci., 24, 133–6CrossRefGoogle ScholarPubMed
Tamburin, S., Manganotti, P., Marzi, C. A., Fiaschi, A. & Zanette, G. (2002). Abnormal somatotopic arrangement of sensorimotor interactions in dystonic patients.Brain, 125, 2719–30CrossRefGoogle ScholarPubMed
Tatton, W. G. & Lee, R. G. (1975). Evidence for abnormal long-loop reflexes in rigid parkinsonian patients.Brain Res., 100, 671–6CrossRefGoogle ScholarPubMed
Tegenthoff, M., Vorgerd, M., Juskowiak, F., Roos, V. & Malin, J. P. (1996). Postexcitatory inhibition after transcranial magnetic single and double brain stimulation in Huntington's disease.Electroencephalogr. Clin. Neurophysio.. 101, 298–303CrossRefGoogle ScholarPubMed
Thickbroom, G. W., Byrnes, M. L., Stell, R. & Mastaglia, F. L. (2003). Reversible reorganisation of the motor cortical representation of the hand in cervical dystonia. Mov. Disord., 18, 395–402CrossRefGoogle ScholarPubMed
Thompson, P. D., Dick, J. P., Day, B. L.et al. (1986). Electrophysiology of the corticomotoneurone pathways in patients with movement disorders.Mov. Disord., 1, 113–17CrossRefGoogle ScholarPubMed
Thompson, P. D., Berardelli, A., Rothwell, J. C.et al. (1988). The coexistence of bradykinesia and chorea in Huntington's disease and its implications for theories of basal ganglia control of movement.Brain, 111, 223–44CrossRefGoogle ScholarPubMed
Thompson, P. D., Day, B. L., Rothwell, J. C., Brown, P., Britton, T. C. & Marsden, C. D. (1994). The myoclonus in corticobasal degeneration. Evidence for two forms of cortical reflex myoclonus.Brain, 117, 1197–207CrossRefGoogle ScholarPubMed
Tinazzi, M., Priori, A., Bertolasi, L., Frasson, E., Mauguiere, F. & Fiaschi, A. (2000). Abnormal central integration of a dual somatosensory input in dystonia. Evidence for sensory overflow.Brain, 123, 42–50CrossRefGoogle ScholarPubMed
Valls-Solè, J., Pascual-Leone, A., Brasil-Neto, J. P., Cammarota, A., McShane, L. & Hallett, M. (1994). Abnormal facilitation of the response to transcranial magnetic stimulation in patients with Parkinson's disease.Neurology, 44, 735–41CrossRefGoogle ScholarPubMed
Kamp, W., Berardelli, A., Rothwell, J. C., Thompson, P. D., Day, B. L. & Marsden, C. D. (1989). Rapid elbow movements in patients with torsion dystonia.J. Neurol. Neurosurg. Psychiatr., 52, 1043–9CrossRefGoogle ScholarPubMed
Kamp, W., Rothwell, J. C., Thompson, P. D., Day, B. L. & Marsden, C. D. (1995). The movement related cortical potential is abnormal in patients with idiopathic torsion dystonia.Mov. Disord., 5, 630–3CrossRefGoogle Scholar
Vitek, J. L., Zhang, J., Evatt, M.et al. (1998). GPi pallidotomy for dystonia: clinical outcome and neuronal activity.Adv. Neurol., 78, 211–19Google ScholarPubMed
Vitek, J. L., Chockkan, V., Zhang, J.et al. (1999). Neuronal activity in the basal ganglia in patients with generalized dystonia and hemiballism.Ann. Neurol., 46, 22–353.0.CO;2-Z>CrossRefGoogle Scholar
Vodusek, D. B. (2001). Sphincter EMG and differential diagnosis of multiple system atrophy.Mov. Disord., 16, 600–7CrossRefGoogle ScholarPubMed
Weeks, R. A., Ceballos-Baumann, A., Piccini, P., Boecker, H., Harding, A. E. & Brooks, D. J. (1997). Cortical control of movement in Huntington's disease. A PET activation study.Brain, 120, 1569–78CrossRefGoogle ScholarPubMed
Wichmann, T. & Long, R. R. (1996). Functional and pathophysiological models of basal ganglia.Curr. Opin. Neurobiol., 6, 751–8CrossRefGoogle ScholarPubMed
Wissel, J., Muller, J., Ebersbach, G. & Poewe, W. (1999). Trick maneuvers in cervical dystonia: investigation of movement-and touch-related changes in polymyographic activity.Mov. Disord., 14, 994–93.0.CO;2-K>CrossRefGoogle ScholarPubMed
Wu, Y. R., Levy, R., Ashby, P., Tasker, R. R. & Dostrovsky, J. O. (2001). Does stimulation of the GPi control dyskinesia by activating inhibitory axons?Mov. Disord., 16, 208–16CrossRefGoogle ScholarPubMed
Yanagisawa, N. & Nezu, A. (1987). Pathophysiology of involuntary movements in Parkinson's disease.Eur. Neurol., 26, 30–40CrossRefGoogle ScholarPubMed
Young, M. S., Triggs, W. J., Bowers, D., Greer, M. & Friedman, W. A. (1997). Stereotactic pallidotomy lengthens the transcranial magnetic cortical stimulation silent period in Parkinson's disease.Neurology, 49, 1278–83CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×