Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T08:14:01.556Z Has data issue: false hasContentIssue false

1 - Endogenous free radicals and antioxidants in the brain

from Part I - Basic aspects of neurodegeneration

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Stefan L. Marklund
Affiliation:
Department of Medical Biosciences, Clinical Chemistry, Umeå University Hospital, Sweden
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 3 - 17
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agbas, A., Chen, X., Hong, O., Kumar, K. N. & Michaelis, E. K. (2002). Superoxide modification and inactivation of a neuronal receptor-like complex. Free Radic. Biol. Med., 32 (6), 512–24CrossRefGoogle ScholarPubMed
Andersen, P. M., Sims, K. B., Xin, W. W.et al. (2003). Sixteen novel mutations in the Cu/Zn superoxide dismutase gene in amyotrophic lateral sclerosis: a decade of discoveries, defects and disputes. Amyotroph. Lateral. Scler. Other Motor Neuron Disord., 4 (2), 62–73CrossRefGoogle ScholarPubMed
Andreassen, O. A., Ferrante, R. J., Klivenyi, P.et al. (2000). Partial deficiency of manganese superoxide dismutase exacerbates a transgenic mouse model of amyotrophic lateral sclerosis. Ann. Neurol., 47 (4), 447–553.0.CO;2-R>CrossRefGoogle ScholarPubMed
Andreassen, O. A., Ferrante, R. J., Dedeoglu, A.et al. (2001). Mice with a partial deficiency of manganese superoxide dismutase show increased vulnerability to the mitochondrial toxins malonate, 3-nitropropionic acid, and MPTP. Exp. Neurol., 167 (1), 189–95CrossRefGoogle ScholarPubMed
Arrigoni, O. & Tullio, M. C. (2002). Ascorbic acid: much more than just an antioxidant. Biochim. Biophys. Act., 1569 (1–3), 1–9CrossRefGoogle ScholarPubMed
Babior, B. M., Lambeth, J. D. & Nauseef, W. (2002). The neutrophil NADPH oxidase. Arch. Biochem. Biophys., 397 (2), 342–4CrossRefGoogle ScholarPubMed
Becker, B. F., Reinholz, N., Leipert, B., Raschke, P., Permanetter, B. & Gerlach, E. (1991). Role of uric acid as an endogenous radical scavenger and antioxidant. Chest, 100 (3), Suppl, 176S–81SCrossRefGoogle ScholarPubMed
Berlett, B. S. & Stadtman, E. R. (1997). Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem., 272 (33), 20313–16CrossRefGoogle Scholar
Biaglow, J. E., Varnes, M. E., Epp, E. R., Clark, E. P., Tuttle, S. W. & Held, K. D. (1989). Role of glutathione in the aerobic radiation response. Int. J. Radiat. Oncol. Biol. Phys., 16 (5), pp. 1311–14CrossRefGoogle ScholarPubMed
Bielski, B. H., Arudi, R. L. & Sutherland, M. W. (1983). A study of the reactivity of HO2/O2- with unsaturated fatty acids. J. Biol. Chem., 258 (8), 4759–61Google ScholarPubMed
Biemond, P., Swaak, A. J., Eijk, H. G. & Koster, J. F. (1988). Superoxide dependent iron release from ferritin in inflammatory diseases. Free Radic. Biol. Med., 4 (3), 185–98CrossRefGoogle ScholarPubMed
Blum, J. & Fridovich, I. (1985). Inactivation of glutathione peroxidase by superoxide radical. Arch. Biochem. Biophys., 240 (2), 500–8CrossRefGoogle ScholarPubMed
Bogdanov, M., Brown, R. H., Matson, W.et al. (2000). Increased oxidative damage to DNA in ALS patients. Free Radic. Biol. Med., 29 (7), pp. 652–8CrossRefGoogle ScholarPubMed
Bokoch, G. M. & Knaus, U. G. (2003). NADPH oxidases: not just for leukocytes anymore!Trends Biochem. Sci., 28 (9), 502–8CrossRefGoogle ScholarPubMed
Borgstahl, G. E., Parge, H. E., Hickey, M. J., Beyer, W. F. Jr., Hallewell, R. A. & Tainer, J. A. (1992). The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles. Cell, 71 (1), 107–18CrossRefGoogle ScholarPubMed
Brennan, M., Gaur, A., Pahuja, A., Lusis, A. J. & Reynolds, W. F. (2001a). Mice lacking myeloperoxidase are more susceptible to experimental autoimmune encephalomyelitis. J. Neuroimmunol., 112 (1–2), 97–105CrossRefGoogle Scholar
Brennan, M. L., Anderson, M. M., Shih, D. M.et al. (2001b). Increased atherosclerosis in myeloperoxidase-deficient mice. J. Clin. Invest., 107 (4), 419–30CrossRefGoogle Scholar
Brigelius-Flohe, R. (1999). Tissue-specific functions of individual glutathione peroxidases. Free Radic. Biol. Med., 27 (9–10), 951–65CrossRefGoogle ScholarPubMed
Brodie, A. E. & Reed, D. J. (1987). Reversible oxidation of glyceraldehyde 3-phosphate dehydrogenase thiols in human lung carcinoma cells by hydrogen peroxide. Biochem. Biophys. Res. Commun., 148 (1), 120–5CrossRefGoogle ScholarPubMed
Bryk, R., Griffin, P. & Nathan, C. (2000). Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature, 407 (6801), 211–15Google ScholarPubMed
Buettner, G. R. & Jurkiewicz, B. A. (1996). Catalytic metals, ascorbate and free radicals: combinations to avoid. Radiat. Res., 145 (5), 532–41CrossRefGoogle Scholar
Candeias, L. P., Patel, K. B., Stratford, M. R. & Wardman, P. (1993). Free hydroxyl radicals are formed on reaction between the neutrophil derived species superoxide anion and hypochlorous acid. FEBS Lett., 333 (1–2), 151–3CrossRefGoogle ScholarPubMed
Carlsson, L. M., Jonsson, J.Edlund, T. & Marklund, S. L. (1995). Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc. Natl. Acad. Sci. USA, 92 (14), 6264–8CrossRefGoogle ScholarPubMed
Cederbaum, A. I., Wu, D., Mari, M. & Bai, J. (2001). CYP2E1-dependent toxicity and oxidative stress in HepG2 cells. Free Radic. Biol. Med., 31 (12), 1539–43CrossRefGoogle ScholarPubMed
Chan, A. C. (1993). Partners in defense, vitamin E and vitamin C. Can. J. Physiol Pharmacol., 71 (9), 725–31CrossRefGoogle ScholarPubMed
Chang, L. Y., Slot, J. W., Geuze, H. J. & Crapo, J. D. (1988). Molecular immunocytochemistry of the CuZn superoxide dismutase in rat hepatocytes. J. Cell Biol., 107 (6 Pt 1), 2169–79CrossRefGoogle ScholarPubMed
Chang, T. S., Jeong, W., Choi, S. Y., Yu, S., Kang, S. W. & Rhee, S. G. (2002). Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation. J. Biol. Chem., 277 (28), 25370–6CrossRefGoogle ScholarPubMed
Cheng, G., Cao, Z., Xu, X., Meir, E. G. & Lambeth, J. D. (2001). Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene, 269 (1–2), 131–40CrossRefGoogle ScholarPubMed
Ciriolo, M. R., Marasco, M. R., Iannone, M., Nistico, G. & Rotilio, G. (1997). Decrease of immunoreactive catalase protein in specific areas of ageing rat brain. Neurosci. Lett., 228 (1), 21–4CrossRefGoogle ScholarPubMed
Copin, J. C., Gasche, Y. & Chan, P. H. (2000). Overexpression of copper/zinc superoxide dismutase does not prevent neonatal lethality in mutant mice that lack manganese superoxide dismutase. Free Radic. Biol. Med., 28 (10), 1571–6CrossRefGoogle Scholar
Cotgreave, I. A. & Gerdes, R. G. (1998). Recent trends in glutathione biochemistry – glutathione–protein interactions: a molecular link between oxidative stress and cell proliferation?. Biochem. Biophys. Res. Commun., 242 (1), 1–9CrossRefGoogle ScholarPubMed
Crack, P. J., Taylor, J. M., Flentjar, N. J.et al. (2001). Increased infarct size and exacerbated apoptosis in the glutathione peroxidase-1 (Gpx-1) knockout mouse brain in response to ischemia/reperfusion injury. J. Neurochem., 78 (6), 1389–99CrossRefGoogle ScholarPubMed
Damier, P., Hirsch, E. C., Zhang, P., Agid, Y. & Javoy-Agid, F. (1993). Glutathione peroxidase, glial cells and Parkinson's disease. Neuroscience, 52 (1), 1–6CrossRefGoogle ScholarPubMed
Dizdaroglu, M., Jaruga, P., Birincioglu, M. & Rodriguez, H. (2002). Free radical-induced damage to DNA: mechanisms and measurement(1,2). Free Radic. Biol. Med., 32 (11), 1102–15CrossRefGoogle Scholar
Dore, S., Takahashi, M., Ferris, C. D.et al. (1999). Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. Proc. Natl. Acad. Sci. USA, 96 (5), 2445–50CrossRefGoogle ScholarPubMed
Dringen, R., Gutterer, J. M. & Hirrlinger, J. (2000). Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur. J. Biochem., 267 (16), 4912–16CrossRefGoogle ScholarPubMed
Du, X. L., Edelstein, D., Rossetti, L.et al. (2000). Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc. Natl. Acad. Sci. USA, 97 (22), 12222–6CrossRefGoogle ScholarPubMed
Echtay, K. S., Roussel, D., St Pierre, J.et al. (2002). Superoxide activates mitochondrial uncoupling proteins. Nature, 415 (6867), 96–9CrossRefGoogle ScholarPubMed
Esworthy, R. S., Ho, Y. S. & Chu, F. F. (1997). The Gpx1 gene encodes mitochondrial glutathione peroxidase in the mouse liver. Arch. Biochem. Biophys., 340 (1), 59–63CrossRefGoogle ScholarPubMed
Floyd, R. A. (1999). Antioxidants, oxidative stress, and degenerative neurological disorders. Proc. Soc. Exp. Biol. Med., 222 (3), 236–45CrossRefGoogle ScholarPubMed
Fornai, F., Saviozzi, M., Piaggi, S.et al. (1999). Localization of a glutathione-dependent dehydroascorbate reductase within the central nervous system of the rat. Neuroscience, 94 (3), 937–48CrossRefGoogle ScholarPubMed
Fujii, J. & Ikeda, Y. (2002). Advances in our understanding of peroxiredoxin, a multifunctional, mammalian redox protein. Redox. Rep., 7 (3), 123–30CrossRefGoogle ScholarPubMed
Gabbita, S. P., Lovell, M. A. & Markesbery, W. R. (1998). Increased nuclear DNA oxidation in the brain in Alzheimer's disease. J. Neurochem., 71 (5), 2034–40CrossRefGoogle ScholarPubMed
Galli, R. L., Shukitt-Hale, B., Youdim, K. A. & Joseph, J. A. (2002). Fruit polyphenolics and brain aging: nutritional interventions targeting age-related neuronal and behavioral deficits. Ann. NY Acad. Sci., 959, 128–32CrossRefGoogle ScholarPubMed
Gao, H. M., Jiang, J., Wilson, B., Zhang, W., Hong, J. S. & Liu, B. (2002). Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson's disease. J. Neurochem., 81 (6), 1285–97CrossRefGoogle ScholarPubMed
Gardner, P. R. & Fridovich, I. (1991). Superoxide sensitivity of the Escherichia coli aconitase. J. Biol. Chem., 266 (29), 19328–33Google ScholarPubMed
Gardner, R., Salvador, A. & Moradas-Ferreira, P. (2002). Why does SOD overexpression sometimes enhance, sometimes decrease, hydrogen peroxide production? a minimalist explanation. Free Radic. Biol. Med., 32 (12), 1351–7CrossRefGoogle ScholarPubMed
Gluck, M., Ehrhart, J., Jayatilleke, E. & Zeevalk, G. D. (2002). Inhibition of brain mitochondrial respiration by dopamine: involvement of H(2)O(2) and hydroxyl radicals but not glutathione-protein-mixed disulfides. J. Neurochem., 82 (1), 66–74CrossRefGoogle Scholar
Gotoda, T., Arita, M., Arai, H.et al. (1995). Adult-onset spinocerebellar dysfunction caused by a mutation in the gene for the alpha-tocopherol-transfer protein. N. Engl. J. Med., 333 (20), 1313–18CrossRefGoogle ScholarPubMed
Greco, A., Minghetti, L. & Levi, G. (2000). Isoprostanes, novel markers of oxidative injury, help understanding the pathogenesis of neurodegenerative diseases. Neurochem. Res., 25 (9–10), 1357–64CrossRefGoogle ScholarPubMed
Gutteridge, J. M. & Smith, A. (1988). Antioxidant protection by haemopexin of haem-stimulated lipid peroxidation. Biochem. J., 256 (3), 861–5CrossRefGoogle ScholarPubMed
Gwilt, P. R., Radick, L. E., Li, X. Y., Whalen, J. J. & Leaf, C. D. (1998). Pharmacokinetics of 2-oxothiazolidine-4-carboxylate, a cysteine prodrug, and cysteine. J. Clin. Pharmacol., 38 (10), 945–50CrossRefGoogle ScholarPubMed
Halliwell, B. (1978). Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Its role in degradation of hyaluronic acid by a superoxide-generating system. FEBS Lett., 96 (2), 238–42CrossRefGoogle ScholarPubMed
Halliwell, B., Zhao, K. & Whiteman, M. (1999). Nitric oxide and peroxynitrite. The ugly, the uglier and the not so good: a personal view of recent controversies. Free Radic. Res., 31 (6), 651–69CrossRefGoogle Scholar
Hampton, M. B., Kettle, A. J. & Winterbourn, C. C. (1996). Involvement of superoxide and myeloperoxidase in oxygen-dependent killing of Staphylococcus aureus by neutrophils. Infect. Immun., 64 (9), 3512–17Google ScholarPubMed
Han, D., Antunes, F., Canali, R., Rettori, D. & Cadenas, E. (2003). Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J. Biol. Chem., 278 (8), 5557–63CrossRefGoogle Scholar
Hennet, T., Richter, C. & Peterhans, E. (1993). Tumour necrosis factor-alpha induces superoxide anion generation in mitochondria of L929 cells. Biochem. J., 289 (2), 587–92CrossRefGoogle ScholarPubMed
Hidalgo, J., Aschner, M., Zatta, P. & Vasak, M. (2001). Roles of the metallothionein family of proteins in the central nervous system. Brain Res. Bull., 55 (2), 133–45CrossRefGoogle ScholarPubMed
Hillered, L. & Persson, L. (1995). Parabanic acid for monitoring of oxygen radical activity in the injured human brain. Neuroreport, 6 (13), 1816–20CrossRefGoogle ScholarPubMed
Hink, H. U., Santanam, N., Dikalov, S.et al. (2002). Peroxidase properties of extracellular superoxide dismutase: role of uric acid in modulating in vivo activity. Arterioscler. Thromb. Vasc. Biol., 22 (9), 1402–8CrossRefGoogle ScholarPubMed
Hjalmarsson, K., Marklund, S. L., Engstrom, A. & Edlund, T. (1987). Isolation and sequence of complementary DNA encoding human extracellular superoxide dismutase. Proc. Natl. Acad. Sci. USA, 84 (18), 6340–4CrossRefGoogle ScholarPubMed
Huang, T. T., Raineri, I., Eggerding, F. & Epstein, C. J. (2002). Transgenic and mutant mice for oxygen free radical studies. Methods Enzymol., 349, 191–213CrossRefGoogle ScholarPubMed
Huffman, D. L. & O'Halloran, T. V. (2001). Function, structure, and mechanism of intracellular copper trafficking proteins. Annu. Rev. Biochem., 70, 677–701CrossRefGoogle ScholarPubMed
Iadecola, C., Zhang, F., Niwa, K.et al. (1999). SOD1 rescues cerebral endothelial dysfunction in mice overexpressing amyloid precursor protein. Nat. Neurosci., 2 (2), 157–61CrossRefGoogle ScholarPubMed
Janssen, L. J. (2001). Isoprostanes: an overview and putative roles in pulmonary pathophysiology. Am. J. Physiol. Lung Cell Mol. Physiol., 280 (6), p. L1067–82CrossRefGoogle ScholarPubMed
Jenner, P. & Olanow, C. W. (1996). Oxidative stress and the pathogenesis of Parkinson's disease. Neurology, 47 (6, Suppl 3), S161–S70CrossRefGoogle ScholarPubMed
Jo, S. H., Son, M. K., Koh, H. J.et al. (2001). Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dep endent isocitrate dehydrogenase. J. Biol. Chem., 276 (19), 16168–76CrossRefGoogle ScholarPubMed
Jo, S. H., Lee, S. H., Chun, H. S.et al. (2002). Cellular defense against UVB-induced phototoxicity by cytosolic NADP(+)-d ependent isocitrate dehydrogenase. Biochem. Biophys. Res. Commun., 292 (2), 542–9CrossRefGoogle Scholar
Karlsson, K., Sandstrom, J., Edlund, A. & Marklund, S. L. (1994). Turnover of extracellular-superoxide dismutase in tissues. Laborat. Invest., 70 (5), 705–10Google ScholarPubMed
Karnovsky, M. J. (1994). Robert Feulgen Lecture 1994. Cytochemistry and reactive oxygen species: a retrospective. Histochemistry, 102 (1), 15–27CrossRefGoogle ScholarPubMed
Kastenbauer, S., Koedel, U., Becker, B. F. & Pfister, H. W. (2001). Experimental meningitis in the rat: protection by uric acid at human physiological blood concentrations. Eur. J. Pharmacol., 425 (2), 149–52CrossRefGoogle ScholarPubMed
Kastenbauer, S., Koedel, U., Becker, B. F. & Pfister, H. W. (2002). Oxidative stress in bacterial meningitis in humans. Neurology, 58 (2), 186–91CrossRefGoogle ScholarPubMed
Keller, G. A., Warner, T. G., Steimer, K. S. & Hallewell, R. A. (1991). Cu, Zn superoxide dismutase is a peroxisomal enzyme in human fibroblasts and hepatoma cells. Proc. Natl. Acad. Sci. USA, 88 (16), 7381–5CrossRefGoogle ScholarPubMed
Kenchappa, R. S., Diwakar, L., Boyd, M. R. & Ravindranath, V. (2002). Thioltransferase (glutaredoxin) mediates recovery of motor neurons from excitotoxic mitochondrial injury. J. Neurosci., 22 (19), 8402–10CrossRefGoogle ScholarPubMed
Kim, Y. S. & Han, S. (2000). Superoxide reactivates nitric oxide-inhibited catalase. Biol. Chem., 381 (12), 1269–71CrossRefGoogle ScholarPubMed
Klivenyi, P., Andreassen, O. A., Ferrante, R. J.et al. (2000). Mice deficient in cellular glutathione peroxidase show increased vulnerability to malonate, 3-nitropropionic acid, and 1-methyl-4-phenyl 1,2,5,6-tetrahydropyridine. J. Neurosci., 20 (1), 1–7CrossRefGoogle ScholarPubMed
Knapp, L. T. & Klann, E. (2002). Potentiation of hippocampal synaptic transmission by superoxide requires the oxidative activation of protein kinase C. J. Neurosci., 22 (3), 674–83CrossRefGoogle ScholarPubMed
Kondo, T., Reaume, A. G., Huang, T. T.et al. (1997). Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia. J. Neurosci., 17 (11), 4180–9CrossRefGoogle ScholarPubMed
Konijn, A. M., Glickstein, H., Vaisman, B., Meyron-Holtz, E. G., Slotki, I. N. & Cabantchik, Z. I. (1999). The cellular labile iron pool and intracellular ferritin in K562 cells. Blood, 94 (6), 2128–34Google ScholarPubMed
Kono, Y. & Fridovich, I. (1982). Superoxide radical inhibits catalase. J. Biol. Chem., 257 (10), 5751–4Google ScholarPubMed
Kontos, H. A., Wei, E. P., Dietrich, W. D.et al. (1981). Mechanism of cerebral arteriolar abnormalities after acute hypertension. Am. J. Physio., 240 (4), H511–27Google ScholarPubMed
Kukreja, R. C., Kontos, H. A., Hess, M. L. & Ellis, E. F. (1986). PGH synthase and lipoxygenase generate superoxide in the presence of NADH or NADPH. Circ. Res., 59 (6), 612–19CrossRefGoogle ScholarPubMed
Lebovitz, R. M., Zhang, H., Vogel, H.et al. (1996). Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc. Natl. Acad. Sci. USA, 93 (18), 9782–7CrossRefGoogle ScholarPubMed
Levin, E. D., Brady, T. C., Hochrein, E. C.et al. (1998). Molecular manipulations of extracellular superoxide dismutase: functional importance for learning. Behav. Genet., 28 (5), 381–90CrossRefGoogle ScholarPubMed
Li, C. & Jackson, R. M. (2002). Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am. J. Physiol Cell Physiol., 282 (2), C227–41CrossRefGoogle ScholarPubMed
Li, Y., Huang, T. T., Carlson, E. J.et al. (1995). Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat. Genet., 11 (4), 376–81CrossRefGoogle ScholarPubMed
Liou, W., Chang, L. Y., Geuze, H. J.et al. (1993). Distribution of CuZn superoxide dismutase in rat liver. Free Radic. Biol. Med., 14 (2), 201–7CrossRefGoogle ScholarPubMed
Lippoldt, A., Padilla, C. A., Gerst, H.et al. (1995). Localization of thioredoxin in the rat brain and functional implications. J. Neurosci., 15 (10), 6747–56CrossRefGoogle ScholarPubMed
Lue, L. F., Walker, D. G., Brachova, L.et al. (2001). Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer's disease: identification of a cellular activation mechanism. Exp. Neurol., 171 (1), 29–45CrossRefGoogle ScholarPubMed
Luk, E., Carroll, M., Baker, M. & Culotta, V. C. (2003). Manganese activation of superoxide dismutase 2 in Saccharomyces cerevisiae requires MTM1, a member of the mitochondrial carrier family. Proc. Natl. Acad. Sci. USA, 100 (18), 10353–7CrossRefGoogle ScholarPubMed
Marklund, N., Ostman, B., Nalmo, L., Persson, L. & Hillered, L. (2000). Hypoxanthine, uric acid and allantoin as indicators of in vivo free radical reactions. Description of a HPLC method and human brain microdialysis data. Acta Neurochir. (Wien.), 142 (10), 1135–41CrossRefGoogle ScholarPubMed
Marklund, S. L. (1982). Human copper-containing superoxide dismutase of high molecular weight. Proc. Natl. Acad. Sci. USA, 79 (24), 7634–8CrossRefGoogle ScholarPubMed
Marklund, S. L. (1984). Extracellular superoxide dismutase in human tissues and human cell lines. J. Clin. Invest., 74 (4), 1398–403CrossRefGoogle ScholarPubMed
Marklund, S. L. (1990). Expression of extracellular superoxide dismutase by human cell lines. Biochem. J., 266 (1), 213–19CrossRefGoogle ScholarPubMed
Marklund, S. L. (1992). Regulation by cytokines of extracellular superoxide dismutase and other superoxide dismutase isoenzymes in fibroblasts. J. Biol. Chem., 267 (10), 6696–701Google ScholarPubMed
Marklund, S. L., Westman, N. G., Lundgren, E. & Roos, G. (1982). Copper- and zinc-containing superoxide dismutase, manganese-containing superoxide dismutase, catalase, and glutathione peroxidase in normal and neoplastic human cell lines and normal human tissues. Cancer Res., 42 (5), 1955–61Google Scholar
Maser, R. L., Magenheimer, B. S. & Calvet, J. P. (1994). Mouse plasma glutathione peroxidase. cDNA sequence analysis and renal proximal tubular expression and secretion. J. Biol. Chem., 269 (43), 27066–73Google ScholarPubMed
McCord, J. M. & Day, E. D. Jr. (1978). Superoxide-dependent production of hydroxyl radical catalyzed by iron-EDTA complex. FEBS Lett., 86 (1), 139–42CrossRefGoogle ScholarPubMed
McCord, J. M. & Fridovich, I. (1969). Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem., 244 (22), 6049–55Google Scholar
McEachern, G., Kassovska-Bratinova, S.et al. (2000). Manganese superoxide dismutase levels are elevated in a proportion of amyotrophic lateral sclerosis patient cell lines. Biochem. Biophys. Res. Commun., 273 (1), 359–63CrossRefGoogle Scholar
Meng, T. C., Fukada, T. & Tonks, N. K. (2002). Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol. Cel., 9 (2), 387–99CrossRefGoogle ScholarPubMed
Moore, K. & Roberts, L. J. (1998). Measurement of lipid peroxidation. Free Radic. Res., 28 (6), 659–71CrossRefGoogle ScholarPubMed
Moreno, S., Mugnaini, E. & Ceru, M. P. (1995). Immunocytochemical localization of catalase in the central nervous system of the rat. J. Histochem. Cytochem., 43 (12), 1253–67CrossRefGoogle ScholarPubMed
Nakashima, M., Niwa, M., Iwai, T. & Uematsu, T. (1999). Involvement of free radicals in cerebral vascular reperfusion injury evaluated in a transient focal cerebral ischemia model of rat. Free Radic. Biol. Med., 26 (5–6), 722–9CrossRefGoogle Scholar
Nelson, S. K., Bose, S. K. & McCord, J. M. (1994). The toxicity of high-dose superoxide dismutase suggests that superoxide can both initiate and terminate lipid peroxidation in the reperfused heart. Free Radic. Biol. Med., 16 (2), 195–200CrossRefGoogle ScholarPubMed
Nicholls, D. G., Budd, S. L., Ward, M. W. & Castilho, R. F. (1999). Excitotoxicity and mitochondria. Biochem. Soc. Symp., 66, 55–67CrossRefGoogle ScholarPubMed
Nishikimi, M. (1975). Oxidation of ascorbic acid with superoxide anion generated by the xanthine-xanthine oxidase system. Biochem. Biophys. Res. Commun., 63 (2), 463–8CrossRefGoogle ScholarPubMed
Noh, K. M. & Koh, J. Y. (2000). Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J. Neurosci., 20 (23), RC111CrossRefGoogle ScholarPubMed
Nordberg, J. & Arner, E. S. (2001). Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med., 31 (11), 1287–312CrossRefGoogle ScholarPubMed
Nualart, F. J., Rivas, C. I. & Montecinos, V. P. (2003). Recycling of vitamin C by a bystander effect. J. Biol. Chem., 278 (12), 10128–33CrossRefGoogle ScholarPubMed
Oury, T. D., Card, J. P. & Klann, E. (1999). Localization of extracellular superoxide dismutase in adult mouse brain. Brain Res., 850 (1–2), 96–103CrossRefGoogle ScholarPubMed
Palmer, C., Towfighi, J., Roberts, R. L. & Heitjan, D. F. (1993). Allopurinol administered after inducing hypoxia–ischemia reduces brain injury in 7-day-old rats. Pediatr. Res., 33 (4 Pt 1), 405–11Google ScholarPubMed
Patt, A., Harken, A. H., Burton, L. K.et al. (1988). Xanthine oxidase-derived hydrogen peroxide contributes to ischemia reperfusion-induced edema in gerbil brains. J. Clin. Invest., 81 (5), 1556–62CrossRefGoogle ScholarPubMed
Pfeiffer, S., Lass, A., Schmidt, K. & Mayer, B. (2001). Protein tyrosine nitration in cytokine-activated murine macrophages. Involvement of a peroxidase/nitrite pathway rather than peroxynitrite. J. Biol. Chem., 276 (36), 34051–8CrossRefGoogle ScholarPubMed
Pou, S., Pou, W. S., Bredt, D. S., Snyder, S. H. & Rosen, G. M. (1992). Generation of superoxide by purified brain nitric oxide synthase. J. Biol. Chem., 267 (34), 24173–6Google ScholarPubMed
Rae, T. D., Schmidt, P. J., Pufahl, R. A., Culotta, V. C. & O'Halloran, T. V. (1999). Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science, 284 (5415), 805–8CrossRefGoogle ScholarPubMed
Raha, S., McEachern, G. E., Myint, A. T. & Robinson, B. H. (2000). Superoxides from mitochondrial complex III: the role of manganese superoxide dismutase. Free Radic. Biol. Med., 29 (2), 170–80CrossRefGoogle ScholarPubMed
Reaume, A. G., Elliott, J. L., Hoffman, E. K.et al. (1996). Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat. Genet., 13 (1), 43–7CrossRefGoogle ScholarPubMed
Reynolds, W. F., Rhees, J., Maciejewski, D.et al. (1999). Myeloperoxidase polymorphism is associated with gender specific risk for Alzheimer's disease. Exp. Neurol., 155 (1), 31–41CrossRefGoogle ScholarPubMed
Rhee, S. G., Kang, S. W., Chang, T. S., Jeong, W. & Kim, K. (2001). Peroxiredoxin, a novel family of peroxidases. IUBMB.Life, 52 (1–2), 35–41CrossRefGoogle ScholarPubMed
Rice, M. E. (2000). Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci., 23 (5), 209–16CrossRefGoogle Scholar
Rosen, D. R., Siddique, T., Patterson, D.et al. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 362 (6415), 59–62CrossRefGoogle ScholarPubMed
Rosen, G. M., Tsai, P., Weaver, J. M.et al. (2002). Tetrahydrobiopterin: its role in the regulation of neuronal nitric oxide synthase-generated superoxide. J. Biol. Chem.CrossRefGoogle ScholarPubMed
Rota, C., Chignell, C. F. & Mason, R. P. (1999). Evidence for free radical formation during the oxidation of 2′-7′-dichlorofluorescin to the fluorescent dye 2′-7′-dichlorofluorescein by horseradish peroxidase: possible implications for oxidative stress measurements. Free Radic. Biol. Med., 27 (7–8), 873–81CrossRefGoogle ScholarPubMed
Ruan, H., Tang, X. D., Chen, M. L.et al. (2002). High-quality life extension by the enzyme peptide methionine sulfoxide reductase. Proc. Natl. Acad. Sci. USA, 99 (5), 2748–53CrossRefGoogle ScholarPubMed
Rybnikova, E., Damdimopoulos, A. E., Gustafsson, J. A., Spyrou, G. & Pelto-Huikko, M. (2000). Expression of novel antioxidant thioredoxin-2 in the rat brain. Eur. J. Neurosci., 12 (5), 1669–78CrossRefGoogle ScholarPubMed
Sasaki, N., Toki, S., Chowei, H.et al. (2001). Immunohistochemical distribution of the receptor for advanced glycation end products in neurons and astrocytes in Alzheimer's disease. Brain Res., 888 (2), 256–62CrossRefGoogle ScholarPubMed
Schleicher, E. D., Wagner, E. & Nerlich, A. G. (1997). Increased accumulation of the glycoxidation product N(epsilon)- (carboxymethyl)lysine in human tissues in diabetes and aging. J. Clin. Inves., 99 (3), 457–68CrossRefGoogle ScholarPubMed
Shaw, P. J., Chinnery, R. M., Thagesen, H., Borthwick, G. M. & Ince, P. G. (1997). Immunocytochemical study of the distribution of the free radical scavenging enzymes Cu/Zn superoxide dismutase (SOD1); MN superoxide dismutase (MN SOD) and catalase in the normal human spinal cord and in motor neuron disease. J. Neurol. Sci., 147 (2), 115–25CrossRefGoogle ScholarPubMed
Shefner, J. M., Reaume, A. G., Flood, D. G.et al. (1999). Mice lacking cytosolic copper/zinc superoxide dismutase display a distinctive motor axonopathy. Neurology, 53 (6), 1239–46CrossRefGoogle ScholarPubMed
Sheng, H., Brady, T. C., Pearlstein, R. D., Crapo, J. D. & Warner, D. S. (1999). Extracellular superoxide dismutase deficiency worsens outcome from focal cerebral ischemia in the mouse. Neurosci. Lett., 267 (1), 13–16CrossRefGoogle ScholarPubMed
Shibata, N., Hirano, A., Hedley-Whyte, E. T.et al. (2002). Selective formation of certain advanced glycation end products in spinal cord astrocytes of humans and mice with superoxide dismutase-1 mutation. Acta Neuropathol. (Berl.), 104 (2), 171–8CrossRefGoogle ScholarPubMed
Shih, J. C., Chen, K. & Ridd, M. J. (1999). Monoamine oxidase: from genes to behavior. Annu. Rev. Neurosci., 22, 197–217CrossRefGoogle Scholar
Sies, H. & Menck, C. F. (1992). Singlet oxygen induced DNA damage. Mutat. Res., 275 (3–6), 367–75CrossRefGoogle ScholarPubMed
Smith, M. A., Sayre, L. M., Anderson, V. E.et al. (1998). Cytochemical demonstration of oxidative damage in Alzheimer disease by immunochemical enhancement of the carbonyl reaction with 2,4 dinitrophenylhydrazine. J. Histochem. Cytochem., 46 (6), 731–5CrossRefGoogle ScholarPubMed
Sorescu, D., Weiss, D., Lassegue, B.et al. (2002). Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation, 105 (12), 1429–35CrossRefGoogle ScholarPubMed
Spencer, J. P., Jenner, P., Daniel, S. E.et al. (1998). Conjugates of catecholamines with cysteine and GSH in Parkinson's disease: possible mechanisms of formation involving reactive oxygen species. J. Neurochem., 71 (5), 2112–22CrossRefGoogle ScholarPubMed
Stralin, P. & Marklund, S. L. (1994). Effects of oxidative stress on expression of extracellular superoxide dismutase, CuZn-superoxide dismutase and Mn-superoxide dismutase in human dermal fibroblasts. Biochem. J., 298 (2), 347–52CrossRefGoogle ScholarPubMed
Stralin, P. & Marklund, S. L. (2001). Vasoactive factors and growth factors alter vascular smooth muscle cell EC-SOD expression. Am. J. Physiol. Heart Circ. Physiol., 281 (4), H1621–9CrossRefGoogle ScholarPubMed
Sugiyama, S., Okada, Y., Sukhova, G. K.et al. (2001). Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes. Am. J. Pathol., 158 (3), 879–91CrossRefGoogle ScholarPubMed
Tainer, J. A., Getzoff, E. D., Beem, K. M.et al. (1982). Determination and analysis of the 2 A-structure of copper, zinc superoxide dismutase. J. Mol. Biol., 160 (2), 181–217CrossRefGoogle ScholarPubMed
Takagi, Y., Mitsui, A., Nishiyama, A.et al. (1999). Overexpression of thioredoxin in transgenic mice attenuates focal ischemic brain damage. Proc. Natl. Acad. Sci. USA, 96 (7), 4131–6CrossRefGoogle ScholarPubMed
Takahashi, M., Dore, S., Ferris, C. D.et al. (2000). Amyloid precursor proteins inhibit heme oxygenase activity and augment neurotoxicity in Alzheimer's disease. Neuron, 28 (2), 461–73CrossRefGoogle ScholarPubMed
Tammariello, S. P., Quinn, M. T. & Estus, S. (2000). NADPH oxidase contributes directly to oxidative stress and apoptosis in nerve growth factor-deprived sympathetic neurons. J. Neurosci., 20 (1), RC53CrossRefGoogle ScholarPubMed
Tindberg, N., Baldwin, H. A., Cross, A. J. & Ingelman-Sundberg, M. (1996). Induction of cytochrome P450 2E1 expression in rat and gerbil astrocytes by inflammatory factors and ischemic injury. Mol. Pharmacol., 50 (5), 1065–72Google ScholarPubMed
Tindberg, N. & Ingelman-Sundberg, M. (1996). Expression, catalytic activity, and inducibility of cytochrome P450 2E1 (CYP2E1) in the rat central nervous system. J. Neurochem., 67 (5), 2066–73CrossRefGoogle ScholarPubMed
Vatassery, G. T., Brin, M. F., Fahn, S., Kayden, H. J. & Traber, M. G. (1988). Effect of high doses of dietary vitamin E on the concentrations of vitamin E in several brain regions, plasma, liver, and adipose tissue of rats. J. Neurochem., 51 (2), 621–3CrossRefGoogle ScholarPubMed
Wautier, M. P., Chappey, O., Corda, S.et al. (2001). Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am. J. Physiol. Endocrinol. Metab., 280 (5), E685–94CrossRefGoogle ScholarPubMed
Weisiger, R. A. & Fridovich, I. (1973). Mitochondrial superoxide simutase. Site of synthesis and intramitochondrial localization. J. Biol. Chem., 248 (13), 4793–6Google ScholarPubMed
Weiss, S. J., Test, S. T., Eckmann, C. M.et al. (1986). Brominating oxidants generated by human eosinophils. Science, 234 (4773), 200–3CrossRefGoogle ScholarPubMed
Weissbach, H., Etienne, F. & Hoshi, T. (2002). Peptide methionine sulfoxide reductase: structure, mechanism of action, and biological function. Arch. Biochem. Biophys., 397 (2), 172–8CrossRefGoogle ScholarPubMed
Winterbourn, C. C. (1995). Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol. Lett., 82–83, 969–74CrossRefGoogle ScholarPubMed
Winterbourn, C. C. & Metodiewa, D. (1994). The reaction of superoxide with reduced glutathione. Arch. Biochem. Biophys., 314 (2), 284–90CrossRefGoogle ScholarPubMed
Winterbourn, C. C. & Stern, A. (1987). Human red cells scavenge extracellular hydrogen peroxide and inhibit formation of hypochlorous acid and hydroxyl radical. J. Clin. Inves., 80 (5), 1486–91CrossRefGoogle ScholarPubMed
Winterbourn, C. C., Vile, G. F. & Monteiro, H. P. (1991). Ferritin, lipid peroxidation and redox-cycling xenobiotics. Free Radic. Res. Commun., 12–13 (1), 107–14CrossRefGoogle Scholar
Wong, G. H. & Goeddel, D. V. (1988). Induction of manganous superoxide dismutase by tumor necrosis factor: possible protective mechanism. Science, 242 (4880), 941–4CrossRefGoogle ScholarPubMed
Wong, P. C., Waggoner, D., Subramaniam, J. R.et al. (2000). Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA, 97 (6), 2886–91CrossRefGoogle ScholarPubMed
Yokota, T., Shiojiri, T., Gotoda, T.et al. (1997). Friedreich-like ataxia with retinitis pigmentosa caused by the His101Gln mutation of the alpha-tocopherol transfer protein gene. Ann. Neurol., 41 (6), 826–32CrossRefGoogle ScholarPubMed
Yoritaka, A., Hattori, N., Uchida, K.et al. (1996). Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc. Natl. Acad. Sci. USA, 93 (7), 2696–701CrossRefGoogle ScholarPubMed
Youdim, K. A. & Joseph, J. A. (2001). A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: a multiplicity of effects. Free Radic. Biol. Med., 30 (6), 583–94CrossRefGoogle Scholar
Youdim, K. A., Spencer, J. P., Schroeter, H. & Rice-Evans, C. (2002). Dietary flavonoids as potential neuroprotectants. Biol. Chem., 383 (3–4), 503–19CrossRefGoogle ScholarPubMed
Zhang, J., Graham, D. G., Montine, T. J. & Ho, Y. S. (2000). Enhanced N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in mice deficient in CuZn-superoxide dismutase or glutathione peroxidase. J. Neuropathol. Exp. Neurol., 59 (1), 53–61CrossRefGoogle ScholarPubMed
Zhang, J., Perry, G., Smith, M. A.et al. (1999). Parkinson's disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am. J. Pathol., 154 (5), 1423–9CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×