Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T16:06:38.152Z Has data issue: false hasContentIssue false

25 - Clinical aspects of normal aging

from Normal aging

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Marilyn S. Albert
Affiliation:
Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Get access

Summary

Overview

It is now widely understood that the number of persons living into old age increased dramatically during the last century. In 1900, the average life expectancy at birth was 47 years. By 1950, this had increased to 68 years. In the year 2000, the average life expectancy for males was estimated at slightly over 74 years, and for females it was almost 80 years of age. There is thus increasing interest in understanding the normal changes that occur with age. Along with this has come an interest in developing ways to maintain function at its maximum. This chapter will describe epidemiological aspects of aging, cognitive and motor changes that are associated with aging, the underlying neurobiologic alterations that are thought to be responsible for age-related changes in cognitive and motor function, and the implications of these alterations for the clinical evaluation of an older person.

Epidemiologic aspects of aging

The numbers of persons living to an old age has risen dramatically, and this is expected to continue until at least 2050, as noted above. During the first half of the twentieth century, the increase in life expectancy was largely the result of decreased mortality early in life. The continued expansion of life expectancy during the last half of the twentieth century was largely the result of increased survival during middle and old age. At the same time, virtually all developed countries experienced decreases in the birth rate.

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 383 - 395
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, M. & Kaplan, E. (1980). Organic implications of neuropsychological deficits in the elderly. In New Directions in Memory and Aging: Proceedings of the George Talland Memorial Conference, ed. L. Poon, J. L. Fozard, L. Cermak, D. Ehrenberg & L. W. Thompson, pp. 403–3. New Jersey: L. Erlbaum Assoc
Albert, M. & Moss, B. (1999). Early features of Alzheimer's disease. In Cerebral Cortex, ed. A. Peters & J. Morrison, pp. 461–71. Vol 14, New York: PlenumCrossRef
Albert, M., Heller, H. & Milberg, W. (1987). Changes in naming ability with age. Psychol. Agin., 41, 141–57Google Scholar
Albert, M., Wolfe, J. & Lafleche, G. (1990). Differences in abstraction ability with age. Psychol. Agin., 5, 94–100CrossRefGoogle ScholarPubMed
Altman, J. & Das, G. D. (1965). Autoradiographic and histologic evidence of postnatal hippocampal neurogenesis. J. Comp. Neurol., 124, 319–36CrossRefGoogle Scholar
Amaral, D. (1993). Morphological analyses of the brains of behaviorally characterized aged nonhuman primates. Neurobiol Aging, 14, 671–2CrossRefGoogle ScholarPubMed
Anderson, J. M., Hubbard, B. M., Coghill, G. R. & Slidders, W. (1983). The effect of advanced old age on the neurone content of the cerebral cortex. Observations with an automatic image analyser point counting method. J. Neurol. Sci., 58, 233–44CrossRefGoogle ScholarPubMed
Arenberg, D. & Robertson-Tchabo, E. (1977). Learning and aging. In Handbook of the Psychology of Aging, ed. J. Birren & K. Schaie, pp. 421–49. New York: Van Nostrand Reinhold
Arnsten, A.& Goldman-Rakic, P. (1990). Analysis of alpha-2 adrenergic agonist effects on the delayed non-matching-to-sample performance of aged rhesus monkeys. Neurobiol. Agin., 11, 583–90CrossRefGoogle Scholar
Arnsten, A., Cai, J., Steere, J. & Goldman-Rakic, P. (1995). Dopamine D2 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology, 116, 143–51CrossRefGoogle Scholar
Ashton-Miller, J. & Alexander, N. (2003). Biomechanics of mobility in older adults. In Principles of Geriatric Medicine and Gerontology, ed. W. Hazzard, J. Blass, J. Halter, J. Ouslander & M. Tinetti, pp. 905–18. New York: McGraw-Hill
Bachevalier, J. (1993). Behavioral changes in aged rhesus monkeys. Neurobiol. Agin., 14, 619–21CrossRefGoogle ScholarPubMed
Bachevalier, J., Landis, L., Walker, M.et al. (1991). Aged monkeys exhibit behavioral deficits indicative of widespread cerebral dysfunction. Neurobiol. Agin., 12, 99–111CrossRefGoogle ScholarPubMed
Barnes, C. A., Suster, M. S., Shen, J. & McNaughton, B. L. (1997). Multistability of cognitive maps in the hippocampus of old rats. Nature, 388, 272–5CrossRefGoogle ScholarPubMed
Barnes, C. (2003). Long-term potentiation and the ageing brain. Phil. Trans. Roy. Soc. Lond., 358, 765–72CrossRefGoogle ScholarPubMed
Bartus, R., Dean, R. & Fleming, D. (1979). Aging in the rhesus monkey: effects on visual discrimination learning and reversal learning. J. Gerontol., 34, 209–19CrossRefGoogle ScholarPubMed
Bohannon, R. W., Larkin, P. A., Cook, A. M., Gear, J. & Singer, J. (1984). Decrease in timed balance test scores with aging. Phys. Ther., 64, 1067–70CrossRefGoogle ScholarPubMed
Brewer, J., Zhao, Z., Desmond, J., Glover, G. & Gabrieli, J. (1998). Making memories: brain activity that predicts how well visual experience will be remembered. Science, 281, 1185–7CrossRefGoogle Scholar
Brody, H. (1955). Organization of cerebral cortex III. A study of aging in the human cerebral cortex. J. Comp. Neurol., 102, 511–56CrossRefGoogle Scholar
Brody, H. (1970). Structural changes in the aging nervous system. Interdiscipl. Top. Gerontol., 7, 9–21CrossRefGoogle Scholar
Buchner, D., Larson, E., Wagner, Koepsell T., Lateur, (1996). Evidence for a non-linear relationship between leg strength and gait speed. Age Ageing, 25, 386–91CrossRefGoogle ScholarPubMed
Buckner, R., Kelley, W. & Petersen, W. (1999). Frontal cortex contributes to human memory formation. Nat. Neurosci., 2, 1–4CrossRefGoogle ScholarPubMed
Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol. Agin., 17, 85–100CrossRefGoogle ScholarPubMed
Cabeza, R., Grady, C., Nyberg, L.et al. (1997). Age-related differences in neural activity during memory encoding and retrieval: A positron emission tomography study. J. Neurosci., 17, 391–400CrossRefGoogle ScholarPubMed
Cabeza, R., Anderson, N., Houle, S., Mangels, J. & Nyberg, L. (2000). Age-related differences in neural activity during item and temporal-order memory retrieval: a positron emission tomography study. J. Cogn. Neurosci., 12, 197–206CrossRefGoogle ScholarPubMed
Cavoy, A. & Delacour, J. (1993). Spatial but not object recognition is impaired by aging in rats. Physiol. Behav., 53, 527–30CrossRefGoogle Scholar
Chan-Palay, V. & Asan, E. (1989). Quantitation of catecholamine neurons in the locus ceruleus in human brains of normal young and older adults in depression. J. Comp. Neurol., 287, 357–72CrossRefGoogle Scholar
Christiansen, P., Larsson, H. B., Thomsen, C., Wieslander, S. B. & Henriksen, O. (1994). Age dependent white matter lesions and brain volume changes in healthy volunteers. Acta Radiol., 35, 117–22CrossRefGoogle ScholarPubMed
Coffey, C. E., Wilkinson, W. E., Parashos, I. A.et al. (1992). Quantitative cerebral anatomy of the aging human brain: a cross-sectional study using magnetic resonance imaging. Neurology, 42, 527–36CrossRefGoogle ScholarPubMed
Colon, E. (1972). The elderly brain. A quantitative analysis of the cerebral cortex in two cases. Psychiatr. Neurol Neurochir., 75, 261–70Google Scholar
Craik, F. (1977). Age differences in human memory. In Handbook of the Psychology of Aging, ed. J. Birren & K. Schaie, pp. 384–420. New York: Van Nostrand Reinhold
Daselaar, S. M., Veltman, D. J., Rombouts, S. A., Raaijmakers, J. G. & Jonker, C. (2003). Neuroanatomical correlates of episodic encoding and retrieval in young and elderly subjects. Brain, 126, 43–56CrossRefGoogle Scholar
Demb, J., Desmond, J., Wagner, A., Waidya, C., Glover, G. & Gabrieli, J. (1995). Semantic encoding and retrieval in the left inferior prefrontal cortex: a functional MRI study of task difficulty and process specificity. J. Neurosci., 15, 5870–8CrossRefGoogle ScholarPubMed
D'Esposito, M., Zarahn, E., Aguirre, G. & Rypma, B. (1999). The effect of normal aging on the coupling of neural activity to the BOLD hemodynamic response. Neuroimage, 10, 6–14CrossRefGoogle ScholarPubMed
D'Esposito, M., Deouell, L. & Gazzaley, A. (2003). The impact of alterations of neurovascular coupling on BOLD fMRI signal: implications for studies of aging and disease. Nat. Rev. Neurosci., 4, 863–72CrossRefGoogle Scholar
Dunnett, S., Evenden, J. & Iversen, S. (1988). Delay-dependent short-term memory deficits in aged rats. Psychopharmacology, 96, 174–80CrossRefGoogle ScholarPubMed
Eriksson, C. A. & Barnes., C. A. (2003). The neurobiology of memory changes in normal aging. Exper. Gerontol., 38, 61–9CrossRefGoogle Scholar
Eriksson, P. S., Perfilieva, E., Bjork-Eriksson, T.et al. (1998). Nat. Med., 4, 1313–17CrossRef
Fletcher, P., Frith, C., Grasby, P., Shallice, T., Frackowiack, R. & Dolan, R. (1995). Brain systems for encoding and retrieval of auditory-verbal memory: an in vivo study in humans. Brain, 118, 401–16CrossRefGoogle Scholar
Gabrieli, J., Brewer, J., Desmond, J. & Glover, G. (1997). Separate neural bases of two fundamental memory processes in the human medial temporal lobe. Science, 276, 264–6CrossRefGoogle ScholarPubMed
Gallagher, M. & Rapp, P. (1997). The use of animal models to study the effects of aging on cognition. Annu. Rev. Psychol., 48, 339–70CrossRefGoogle Scholar
Gallagher, M., Burwell, R. & Burchinal, M. (1993). Severity of spatial learning impairment in aging: development of a learning index for performance in the Morris water maze. Behav. Neurosci., 107, 618–26CrossRefGoogle ScholarPubMed
Gazzaley, A., Siegel, R., Kordowe, J., Mufson, E. & Morrison, J. (1996). Circuit-specific alterations of N-methyl-D-asparta te receptor subunit 1 in the dentate gyrus of aged monkeys. Proc. Natl Acad. Sci., USA, 93, 3121–5CrossRefGoogle Scholar
Gomez-Isla, T., Price, J. L., McKeel, D. W., Morris, J. C., Growdon, J. H. & Hyman, B. T. (1996). Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. J. Neurosci., 16, 4491–500CrossRefGoogle ScholarPubMed
Gould, E., Reeves, A., Fallah, M., Tanapat, P., Gross, C. & Fuchs, E. (1999). Hippocampal neurgenesis in old world primatesProc. Natl Acad. Sci., USA, 27, 5263–7CrossRefGoogle Scholar
Grady, C., McIntosh, A., Rajah, N., Beig, S. & Craik, F. (1999). The effects of age on the neural correlates of episodic encoding. Cereb. Corte., 9, 805–14CrossRefGoogle ScholarPubMed
Guralnik, J. & Ferrucci, L. (2003). Demography and Epidemiology, ed. W. Hazzard, J. Blass, J. Halter, J. Ouslander & M. Tinetti, pp. 53–76. New York: McGraw-Hill
Harris, G. J., Schlaepfer, T. E., Peng, L. W., Lee, S., Federman, E. B. & Pearlson, G. (1994). Magnetic resonance imaging evaluation of the effects of ageing on grey–white ratio in the human brain. Neuropath. Appl. Neurobiol., 20, 290–3CrossRefGoogle ScholarPubMed
Haug, H. (1984). Macroscopic and microscopic morphometry of the human brain and cortex. A survey in the light of new results. Brain Pathol., 1, 123–49Google Scholar
Haxby, J., Ungerleider, L., Horwitz, B., Maisog, J., Rapaport, S. & Grady, C. (1996). Face encoding and recognition in human brain. Proc. Natl Acad. Sci., USA, 93, 922–7CrossRefGoogle ScholarPubMed
Hazlett, E., Buchsbaumm, M., Mohs, R.et al. (1998). Age-related shift in brain region activity during successful memory performance. Neurobiol. Agin., 19, 437–45CrossRefGoogle ScholarPubMed
Head, D., Buckner, R. L., Shimony, J. S.et al. (2004). Differential vulnerability of anterior white matter in nondemented aging with minimal acceleration in dementia of the Alzheimer type: evidence from diffusion tenor imaging. Cereb. Corte., 14, 410–23CrossRefGoogle Scholar
Heaton, R., Grant, I. & Matthes, C. (1986). Differences in neuropsychological function test performance associated wtih age, education, and sex. In Neuropsychological Assessment of Neuropsychiatric Disorders, ed. I. Grant & K. Adams, pp. 100–20. New York: Oxford
Hedden, T. & Gabrieli, J. (2004). Insights into the ageing mind: A view from cognitive neuroscience. Nat. Rev. Neurosci., 5, 87–95CrossRefGoogle ScholarPubMed
Henderson, G., Tomlinson, B. & Gibson, P. (1980). Cell counts in human cerebral cortex in normal aduls throughout life, using an image analyzing computer. J. Neurol. Sci., 46, 113–36CrossRefGoogle Scholar
Jernigan, T. L., Press, G. A. & Hesselink, J. R. (1990). Methods for measuring brain morphologic features on magnetic resonance images. Arch. Neurol., 47, 27–32CrossRefGoogle ScholarPubMed
Jernigan, T. L., Archibald, S., Berhow, M., Sowell, E., Foster, D. & Hesselink, J. (1991). Cerebral structure on MRI. I. Localization of age-related changes. Biol. Psychiatr., 29, 55–67CrossRefGoogle ScholarPubMed
Kapur, S., Craik, F., Tulving, E., Wilson, A., Houle, S. & Brown, G. (1994). Neuroanatomical correlates of encoding in episodic memory: levels of processing effects. Proc. Natl Acad. Sci., USA, 91, 2008–11CrossRefGoogle Scholar
Kapur, S., Tulving, E., Cabeza, R., McIntosh, A., Houle, S. & Craik, F. (1996). The neural correlates of intentional learning of verbal materials: a PET study in humans. Cogn. Brain Res., 4, 243–9CrossRefGoogle ScholarPubMed
Kemper, T. (1993). The relationship of cerebral cortical changes to nuclei in the brainstem. Neurobiol. Agin., 14, 659–60CrossRefGoogle ScholarPubMed
Kemperman, G., Praag, H. & Gage, F. (2000). Activity-dependent regulation of neuronal plasticity and self repair. Prog. Brain Res., 127, 35–48CrossRefGoogle Scholar
Kornack, D. & Rakic, P. (1999). Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc. Natl Acad. Sci., USA, 96, 5768–73CrossRefGoogle ScholarPubMed
Lachman, M. & Jelalian, E. (1984). Self-efficacy and attributions for intellectual performance in young and elderly adults. J. Gerontol., 39, 577–82CrossRefGoogle Scholar
Lai, Z., Moss, M., Killiany, R. & Rosene, D. (1995). Executive system dysfunction in the aged monkeys: spatial and object reversal learning. Neurobiol. Agin., 16, 947–54CrossRefGoogle ScholarPubMed
Leuba, G. & Garey, L. (1989). Comparison of neuronal and glial numerical density in primary and secondary visual cortex. Exp. Brain Res., 77, 31–8CrossRefGoogle ScholarPubMed
Lim, K. O., Zipursky, R. B., Watts, M. C. & Pfefferbaum, A. (1992). Decreased gray matter in normal aging: an in vivo magnetic resonance study. J. Gerontol., 47, B26–30CrossRefGoogle Scholar
Logan, J. M., Sanders, A. L., Snyder, A. Z., Morris, J. C. & Buckner, R. L. (2002). Under-recruitment and nonselective recruitment: dissociable neural mechanisms associated with aging. Neuron, 33, 827–40CrossRefGoogle ScholarPubMed
Madden, D. J., Turkington, T. G., Provenzale, J. M.et al. (1999). Adult age differences in the functional neuroanatomy of verbal recognition memory. Hum. Brain Map., 7, 115–353.0.CO;2-N>CrossRefGoogle ScholarPubMed
Martin, J., Wiggs, C. & Weisberg, J. (1997). Modulation of human medial temporal lobe activity by form, meaning and experience. Hippocampus, 7, 587–933.0.CO;2-C>CrossRefGoogle ScholarPubMed
Matsumae, M., Kikinis, R., Morocz, I. A.et al. (1996). Age-related changes in intracranial compartment volumes in normal adults assessed by magnetic resonance imaging. J. Neurosurg., 84, 982–91CrossRefGoogle ScholarPubMed
McKee, R. & Squire, L. (1993). On the development of declarative memory. J. Exp. Psychol. Learn. Mem. Cogn., 19, 397–404CrossRefGoogle ScholarPubMed
Morcom, A., Good, C., Frackowiak, R. & Rugg, M. (2003). Age effects on the neural correlates of successful memory encoding. Brain, 126, 213–29CrossRefGoogle ScholarPubMed
Moore, T., Killiany, R., Herndon, J., Rosene, D. & Moss, M. (2003). Impairment in abstraction and set shifting in aged Rhesus monkeys. Neurobiol. Agin., 24, 125–34CrossRefGoogle ScholarPubMed
Morris, R. G. M. (1981). Spatial localization does not require the presence of local cues. Learn Motiv., 12, 239–61CrossRefGoogle Scholar
Morrison, J. H. & Hof, R. P. (1997). Life and death of neurons in the aging brain. Science, 278, 412–19CrossRefGoogle ScholarPubMed
Moss, M. (1983). Assessment of memory in amnesic and dementia patients: Adaptation of behavioral tests used with non-human primates. INS Bull., 5, 15Google Scholar
Moss, M. (1993). The longitudinal assessment of recognition memory in aged rhesus monkeys. Neurobiol. Agin., 14, 635–6CrossRefGoogle ScholarPubMed
Moss, M., Rosene, D. & Peters, A. (1988). Effects of aging on visual recognition memory in the rhesus monkey. Neurobiol. Agin., 9, 495–502CrossRefGoogle ScholarPubMed
Murphy, D. G., DeCarli, C., Schapiro, M. B., Rapoport, S. I. & Horwitz, B. (1992). Age-related differences in volume of subcortical nuclei, brain matter, and cerebrospinal fluid in healthy men as measured with magnetic resonance imaging. Arch. Neurol., 49, 839–45CrossRefGoogle ScholarPubMed
Nielsen, K. & Peters, A. (2000). The effects on the frequency of nerve fibers in rhesus monkey striate cortex. Neurobiol. Agin., 21, 621–8CrossRefGoogle ScholarPubMed
Norris, C., Korol, D. & Foster, T. (1996). Increased susceptibility to induction of long-term depression and long-term potentiation reversal during aging. J. Neurosci., 16, 5382–92CrossRefGoogle ScholarPubMed
Odenheimer, G., Funkenstein, H., Beckett, L.et al. (1994). Comparison of neurologic changes in successfully aging persons vs the total aging population. Arch. Neurol., 51, 573–80CrossRefGoogle ScholarPubMed
O'Donnell,, K. A., Rapp, P. R. & Hof, P. R. (1999). Preservation of prefrontal cortical volume in behaviorally characterized aged macaque monkeys. Exp. Neurol., 160, 300–10CrossRefGoogle Scholar
Peters, A. (1996). Age-related changes in oligodendrocytes in monkey cerebral cortex. J. Comp. Neurol., 371, 153–633.0.CO;2-2>CrossRefGoogle ScholarPubMed
Peters, A., Josephson, K. & Vicent, S. (1991). Effects of aging on the neuroglial cells and pericytes within area 17 of the rhesus monkey (Macaca mulatta). Anat. Rec., 229, 384–98CrossRefGoogle Scholar
Peters, A., Leahu, D., Moss, M. & McNally, K. (1994). The effects of aging on Area 46 of the frontal cortex of the rhesus monkey. Cereb. Corte., 6, 621–35CrossRefGoogle Scholar
Petersen, R., Smith, G., Kokmen, E., Ivnik, R. & Tangalos, E. (1992). Memory function in normal aging. Neurology, 42, 396–401CrossRefGoogle ScholarPubMed
Pfefferbaum, A., Mathalon, D. H., Sullivan, E. V., Rawles, J. M., Zipursky, R. B. & Lim, K. O. (1994). A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Arch. Neurol., 51, 874–87CrossRefGoogle ScholarPubMed
Poon, L. (1985). Differences in human memory with aging. In Handbook of the Psychology of Aging, ed. J. E. Birren & K. W. Schaie, pp. 427–62. New York: Van Nostrand Reinhold
Presty, S., Bachevalier, J., Walker, L.et al. (1987). Age differences in recognition memory of the Rhesus monkey (macaca mulatta). Neurobiol. Agin., 8, 435–40CrossRefGoogle Scholar
Rapp, P. (1990). Visual discrimination and reversal learning in the aged monkey (Macaca mulatta). Behav. Neurosci., 104, 876–88CrossRefGoogle Scholar
Rapp, P. & Amaral, D. (1989). Evidence for task-dependent memory dysfunction in the aged monkey. J. Neurosci., 9, 3568–76CrossRefGoogle ScholarPubMed
Rapp, P. R. & Gallagher, M. (1996). Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. Proc. Natl Acad. Sci., USA, 93, 9926–30CrossRefGoogle ScholarPubMed
Rapp, P., Stack, E. & Gallagher, M. (1999). Morphometric studies of the aged hippocampus: I. Volumetric analysis in behaviorally characterized rats. J. Comp. Neurol., 403, 459–703.0.CO;2-9>CrossRefGoogle ScholarPubMed
Rapp, P., Deroche, P. & Burwell, R. (2000). Preserved neuron number in the entorhinal, perirhinal, and postrhinal cortices of behaviorally characterized rats. Abstr. Soc. Neurosci., 26, 470Google Scholar
Raz, N., Gunning-Dixon, F. M., Head, D., Dupuis, J. H. & Acker, J. D. (1998). Neuroanatomical correlates of cognitive aging: evidence from structural magnetic resonance imaging. Neuropsychology, 12, 95–114CrossRefGoogle ScholarPubMed
Reber, P. & Squire, L. (1994). Parallel brain systems for learning with and without awareness. Learn. Mem., 4, 217–19Google Scholar
Resnick, S. M., Pharm, D. L., Kraut, M. A., Zonderman, A. B. & Davatzikos, C. (2003). Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J. Neurosci., 23, 3295–301CrossRefGoogle ScholarPubMed
Rosen, A. C., Prull, M. W., O'Hara, R.et al. (2002). Variable effects of aging on frontal lobe contributions to memory. NeuroReport, 13, 2425–8CrossRefGoogle Scholar
Rosene, D. (1993). Comparing age-related changes in the basal forebrain and hippocampus of the rhesus monkey. Neurobiol. Agin., 14, 669–70CrossRefGoogle ScholarPubMed
Rosenzweig, E. S. & Barnes, C. A. (2003). Impact of aging on hippocampal function: plasticity, network dynamics, and cognition. Prog. Neurobiol., 69, 143–79CrossRefGoogle ScholarPubMed
Schacter, D. & Wagner, A. (1999). Medial temporal lobe activations in fMRI and PET studies of episodic encoding and retrieval. Hippocampus, 9, 7–243.0.CO;2-K>CrossRefGoogle ScholarPubMed
Schaie, K. (1983). The Seattle longitudinal study: a 21 year exploration of psychometric intelligence in adulthood. In Longitudinal Studies of Adult Psychological Development, ed. K. W. Schaie, pp. 64–135. New York: Guilford
Schultz, A. B. (1992). Mobility impairment in the elderly: challenges for biomechanics research. J. Biomech., 25, 519–28CrossRefGoogle ScholarPubMed
Shefer, V. (1973). Absolute number of neurons and thickness of the cerebral cortex during aging, senile and vascular dementia, and Pick's and Alzheimer's diseases. Neurosci. Behav. Physiol., 6, 319–24CrossRefGoogle ScholarPubMed
Smith, T., Adams, M., Gallagher, M., Morrison, J. & Rapp, P. (2000). Circuit-specific alterations in hippocampal synaptophysin immunoreactivity predict spatial learning impairment in aged rats. J. Neurosci., 20, 6587–93CrossRefGoogle ScholarPubMed
Squire, L., Zola-Morgan, S. & Chen, K. (1988). Human amnesia and animal models of amnesia: performance of amnesic patients on tests designed for the monkey. Behav. Neurosci., 11, 210–21CrossRefGoogle Scholar
Stebbins, G. T., Carrillo, M. C., Dorfman, J.et al. (2002). Aging effects on memory encoding in the frontal lobes. Psychol. Aging., 17, 44–55CrossRefGoogle ScholarPubMed
Stern, C., Corkin, S., Gonzalez, R.et al. (1996). The hippocampus participates in novel picture encoding: evidence from functional magnetic resonance imaging. Proc. Natl Acad. Sci., USA, 93, 8660–5CrossRefGoogle ScholarPubMed
Tanna, N. K., Kohn, M. I., Horwich, D. N.et al. (1991). Analysis of brain and cerebrospinal fluid volumes with MR imaging: Impact on PET data correction for atrophy. Part II. Aging and Alzheimer's dementia.Radiology, 178, 123–30Google ScholarPubMed
Terry, R., Deteresa, R. & Hansen, L. (1987). Neocortical cell counts in normal human adult aging. Ann. Neurol., 21, 530–9CrossRefGoogle ScholarPubMed
Tigges, J., Herndon, J. & Peters, A. (1992). Neuronal population of area 4 during life span of rhesus monkeys. Neurobiol. Agin., 11, 201–8CrossRefGoogle Scholar
Tinetti, M. (2003). Clinical evaluation of older persons. In Principles of Geriatric Medicine and Gerontology, ed. W. Hazzard, J. Blass, J. Halter, J. Ouslander & M. Tinetti, pp. 1028–32. New York: McGraw-Hill
Tisserand, D. J. & Jolles, J. (2003). On the involvement of prefrontal networks in cognitive ageing. Cortex, 39, 1107–28CrossRefGoogle ScholarPubMed
Tisserand, D. J., Pruessner, J. C., Sanz Argita, E. J.et al. (2002). Regional frontal cortical volumes decrease differentially in aging: an MRI study to compare volumetric approaches and voxel-based morphometry. NeuroImage, 17, 657–69CrossRefGoogle ScholarPubMed
Tulving, E. (1972). Episodic and semantic memory. In: Organization of Memory, ed. E. Tulving & W. Donaldson, pp. 381–403. New York: Academic Press
Vincent, S., Peters, A. & Tigges, J. (1989). Effects of aging on neurons within area 17 of rhesus monkey cerebral cortex. Anat Rec., 223, 329–41CrossRefGoogle ScholarPubMed
Wagner, A., Poldrack, R., Eldridge, L., Desmond, J., Glover, G. & Gabrieli, J. (1998a). Material-specific lateralization of prefrontal activation during episodic encoding and retrieval. NeuroReport, 9, 3711–17CrossRefGoogle Scholar
Wagner, A., Schacter, D., Rotte, M.et al. (1998b). Building memories: remembering and forgetting verbal experiences as predicted by brain activity. Science, 281, 1188–91CrossRefGoogle Scholar
Waugh, N. & Norman, D. (1965). Primary memory. Psychol. Rev., 72, 89–104CrossRefGoogle ScholarPubMed
West, M., Coleman, P., Flood, D. & Troncoso, J. (1994). Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer's disease. Lancet, 344, 769–72CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×