Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2005
  • Online publication date: August 2010

6 - Calcium binding proteins in selective vulnerability of motor neurons

from Part I - Basic aspects of neurodegeneration



Since the mid-1990s, the specific etiologies and mechanisms leading to dysfunction and loss of motor neurons in ALS have been under intensive investigation. No single mechanism appears to explain the devastating and inexorable injury to motor neurons. What appears far more likely is a convergence of a number of different mechanisms that collectively or sequentially impair motor neuron structure and function. Among the various proposals implicated, increased free radicals and oxidative stress, increased glutamate excitotoxicity, increased cellular aggregates and increased intracellular calcium have received the most attention (Rothstein, 1995; Cleveland, 1999; Shaw & Eggett, 2000; Rowland, 2000; Julien, 2001; Rowland & Shneider, 2001; Cleveland & Rothstein, 2001). None of these mechanisms is mutually exclusive and altered calcium homeostasis, free radicals, and glutamate excitotoxicity may all participate in the cell injury cascade leading to motor neuron death. Alterations in one parameter can lead to alterations in other parameters, and each can enhance and propagate the injury cascade. Such perturbations could critically impair motor neuron mitochondria and neurofilaments, compromise energy production and axoplasmic flow, and impair synaptic function. However, these alterations would be expected to adversely affect most neurons, and the critical question is why motor neurons are uniquely sensitive to injury in ALS, and why some motor neurons are relatively resistant to injury. Our own hypothesis focuses on the critical role of intracellular calcium and the inability of vulnerable motor neurons to handle an increased intracellular calcium load, possibly related to the relative paucity of the calcium binding proteins, calbindin D28k and parvalbumin.

Related content

Powered by UNSILO
Adalbert, R. J., Engelhardt, J. I. & Siklós, L. (2002). DL-homocysteic acid application disrupts calcium homeostasis and induces degeneration of spinal motoneurons in vivo. Acta Neuropathol., 103, 428–36
Alexianu, M. E., Ho, B. K., Mohamed, H., , Bella, V., , Smith, R. G. &Appel, S. H. (1994). The role of calcium-binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis. Ann. Neurol., 36, 846–58
Amenta, F., , Cavalotta, D., , Del Valle, M. al. (1994). Calbindin D-28k immunoreactivity in the rat cerebellar cortex: age-related changes. Neurosci. Lett., 178, 131–4
Appel, S. H., Beers, D., , Siklós, L., , Engelhardt, J. I. &Mosier, D. R. (2001). Calcium: the Darth Vader of ALS. ALS Other Motor Neuron Disord., 2, S47–54
Baimbridge, K. G., Celio, M. R. & Rogers, J. H. (1992). Calcium-binding proteins in the nervous system. Trends Neurosci., 15, 303–8
Beck, K. D., Hefti, F., & Widmer, H. R. (1994). Deafferentation removes calretinin immunopositive terminals, but does not induce degeneration of calbindin D-28k and parvalbumin expressing neurons in the hippocampus of adult rats. J. Neurosci. Res., 39, 298–304
Beers, D. R., Ho, B. K., Siklós, al. (2001). Parvalbumin overexpression alters immune-mediated increases in intracellular calcium, and delays disease onset in a transgenic model of familial amyotrophic lateral sclerosis. J. Neurochem., 79, 499–509
Bergmann, M., , Volpel, M., & Kuchelmeister, K. (1995). Onuf's nucleus is frequently involved in motor neuron disease/amyotrophic lateral sclerosis. J. Neurol. Sci., 129, 141–6
Bernardi, P. (1999). Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol. Rev., 79, 1127–55
Berridge, M. J. (1998). Neuronal calcium signaling. Neuron, 21, 13–26
Berridge, M. J., Bootman, M. D. & Lipp, P. (1998). Calcium – a life and death signal. Nature, 395, 645–8
Berridge, M. J., Lipp, P., & Bootman, M. D. (2000). The versatility and universality of calcium signalling. Nat. Rev., 1, 11–21
Brini, M. & Carafoli, E. (2000). Calcium signalling: a historical account, recent developments and future perspectives. Cell Mol. Life. Sci., 57, 354–70
Brini, M., Bano, D., Manni, S., Rizzuto, R. & Carafoli, E. (2000). Effects of PMCA and SERCA pump overexpression on the kinetics of cell Ca2+ signalling. EMBO J., 19, 4926–35
Brodin, L., Löw, P., Gad, H., Gustaffson, J., Pieribone, V. A. & Shupliakov, O. (1997). Sustained neurotransmitter release: new molecular clues. Eur. J. Neurosci., 9, 2503–11
Brustovetsky, N., Brustovetsky, T., Jemmerson, R. & Dubinsky, J. M. (2002). Calcium-induced cytochrome C release from CNS mitochondria is associated with the permeability transition and rupture of the outer membrane. J. Neurochem., 80, 207–18
Burrone, J., Guilherme, N., Gomis, A., Cooke, A. & Lagnado, L. (2002). Endogenous calcium buffers regulate fast exocytosis in the synaptic terminal of retinal bipolar cells. Neuron., 33, 101–12
Carafoli, E. & Stauffer, T. (1994). The plasma membrane calcium pump: functional domains, regulation of the activity, and tissue specificity of isoform expression. J. Neurobiol., 25, 312–24
Cassina, P., Peluffo, H., Pehar, al. (2002). Peroxynitrite triggers a phenotypic transformation in spinal cord astrocytes that induces motor neuron apoptosis. J. Neurosci. Res., 67, 21–9
Celio, M. (1990). Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience, 35, 375–475
Cheung, W. Y. (1980). Calmodulin plays a pivotal role in cellular regulation. Science, 207, 19–27
Choi, D. W., Maulucci-Gedde, M. & Kriegstein, A. R. (1987). Glutamate neurotoxicity in cortical cell ulture. J. Neurosci., 7, 357–68
Clapham, D. E. (1995). Calcium signaling. Cell, 80, 259–68
Clement, A. M., Nguyen, M. D., Roberts, E. al. (2003). Wild-type nonneural cells extend survival of SOD1 mutant motor neurons in ALS mice. Science, 302, 113–17
Clementi, E., Racchetti, G., Melino, G. & Meldolesi, J. (1996). Cytosolic Ca2+ buffering, a cell property that in some neurons markedly decreases during aging, has a protective effect against NMDA/nitric oxide-induced excitotoxicity. Life Sci., 59, 389–97
Cleveland, D. W. (1999). From Charcot to SOD1: mechanisms of selective motor neuron death in ALS. Neuron, 24, 515–20
Cleveland, D. W. & Liu, J. (2000). Oxidation versus aggregation – how do SOD1 mutants cause ALS?Nat. Med., 6, 1320–1
Cleveland, D. W. & Rothstein, J. D. (2001). From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat. Rev. Neurosci., 2, 806–19
Colom, L. V., Alexianu, M. E., Mosier, D. R., Smith, R. G. & Appel, S. H. (1997). Amyotrophic lateral sclerosis immunoglobulins increase intracellular calcium in a motoneuron cell line. Exp. Neurol., 146, 354–60
Corvino, V., Businaro, R., Geloso, M. al. (2003). S100B protein and 4-hydroxynonenal in the spinal cord of wobbler mice. Neurochem. Res., 28, 341–5
Cox, D. A. & Matlib, M. A. (1993). Modulation of intramitochondrial free Ca2+ concentration by antagonists of Na+–Ca2+ exchange. Trends Pharm. Sci., 14, 408–13
Dassesse, D., Cuvelier, L., Krebs, al. (1998). Differential expression of calbindin and calmodulin in motoneurons after hypoglossal axotomy. Brain Res., 786, 181–8
Du, S., Rubin, A., Klepper, al. (1999). Calcium influx and activation of calpain I mediate acute reactive gliosis in injured spinal cord. Exp. Neurol., 157, 96–105
Engelhardt, J. I., Siklós, L., Kőműves, L., Smith, R. G. & Appel, S. H. (1995). Antibodies to calcium channels from ALS patients passively transferred to mice selectively increase intracellular calcium and induce ultrastructural changes in motor neurons. Synapse, 20, 185–99
Elliott, J. L. & Snider, W. D. (1995). Parvalbumin is a marker of ALS-resistant motor neurons. NeuroReport, 6, 449–52
Fallah, Z. & Clowry, G. J. (1999). The effect of a peripheral nerve lesion on calbindin D28k immunoreactivity in the cervical ventral horn of developing and adult rats. Exp. Neurol., 156, 111–20
Ferrer, I., Soriano, E., Tunon, T., Fonseca, M. & Guionnet, N. (1991). Parvalbumin immunoreactive neurons in normal human temporal neocortex and in patients with Alzheimer's disease. J. Neurol. Sci., 106, 135–41
Freund, T. F., Buzsáki, G., Leon, A., Baimbridge, K. G. & Somogyi, P. (1990). Relationship of neural vulnerability and calcium binding protein immunoreactivity in ischemia. Exp. Brain. Res., 83, 55–66
Fukuda, A., Deshpande, S. B., Shimano, Y. & Nishino, H. (1998). Astrocytes are more vulnerable than neurons to cellular Ca2+ overload induced by a mitochondrial toxin, 3-nitropropionic acid. Neuroscience, 87, 497–507
Gad, H., Löw, P., Zotova, E., Brodin, L. & Shupliakov, O. (1998). Dissociation between Ca2+-triggered synaptic vesicle exocytosis and clathrin-mediated endocytosis at a central synapse. Neuron, 21, 607–16
Gong, Y. H., Parsadanian, A. S., Andreeva, A., Snider, W. D. & Elliott, J. S. (2000). Restricted expression of G86R Cu/Zn superoxide dismutase in astrocytes results in astrocytosis but does not cause motoneuron degeneration. J. Neurosci., 20, 660–5
Gunter, T. E. & Pfeiffer, D. R. (1990). Mechanisms by which mitochondria transport calcium. Am. J. Physiol., 27, C755–86
Gunter, T. E., Buntinas, L., Sparagne, G. C. & Gunter, K. K. (1998). The Ca2+ transport mechanism of mitochondria and Ca2+ uptake from physiological-type Ca2+ transients. Biochim. Biophys. Act., 1366, 5–15
Gurney, M. E., Pu, H., Chiu, A. al. (1994). Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science, 164, 1772–5
Hartley, D. M., Neve, R. L., Bryan, al. (1996). Expression of the calcium-binding protein, parvalbumin, in cultured cortical neurons using a HSV-1 vector system enhances NMDA neurotoxicity. Brain Res. Mol. Brain Res., 40, 285–96
Ho, B. K., Alexianu, M. E., Colom, L. V., Mohamed, A. H., Serrano, F. & Appel, S. H. (1996). Expression of calbindin-D28K in motoneuron hybrid cells after retroviral infection with calbindin-D28K cDNA prevents amyotrophic lateral sclerosis IgG-mediated cytotoxicity. Proc. Natl Acad. Sci., USA, 93, 6796–801
Hof, P. R., Cox, K., Young, W. G., Celio, M. R., Rogers, J. & Morrison, J. H. (1991). Parvalbumin-immunoreactive neurons in the neocortex are resistant to degeneration in Alzheimer's disease. J. Neuropathol. Exp. Neurol., 50, 451–62
Hofer, A. M., Landolfi, B., Debellis, L., Pozzan, T. & Curci, S. (1998). Free [Ca2+] dynamics measured in agonist-sensitive strores of single living intact cells: a new look at the refilling process. EMBO J., 17, 1986–95
Howland, D. S., Liu, J., She, al. (2002). Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc. Natl Acad. Sci. USA, 99, 1604–9
Hoyaux, D., Alao, J., Fuchs, al. (2000). S100A6, a calcium- and zinc-binding protein, is overexpressed in SOD1 mutant mice, a model for amyotrophic lateral sclerosis. Biochim. Biophys. Act., 1498, 264–72
Hoyaux, D., Boom, A., Bosch, al. (2002). S100A6 overexpression within astrocytes associated with impaired axons from both ALS mouse model and human patients. J. Neuropathol. Exp. Neurol., 61, 736–44
Iacopino, A. M. & Christakos, S. (1990). Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases. Proc. Natl Acad. Sci., USA, 87, 4078–82
Ince, P., Stout, N., Shaw, al. (1993). Parvalbumin and calbindin D-28k in the human motor system and in motor neuron disease. Neuropathol. Appl. Neurobiol., 19, 291–9
Julien, J. P. (2001). Amyotrophic lateral sclerosis: unfolding the toxicity of the misfolded. Cell, 104, 581–91
Kawasaki, H., , Nakayama, S., & Kretsinger, R. H. (1998). Classification and evolution of EF-hand proteins. BioMetals, 11, 277–95
Kirischuk, S. & Verkhratsky, A. (1996). Calcium homostasis in aged neurons. Life Sci., 59, 451–9
Kishimoto, J., Tsuchiya, T., Cox, H., Emson, P. C. & Nakayama, Y. (1998). Age-related changes of calbindin-D28k, calretinin, and parvalbumin mRNAs in the hamster brain. Neurobiol. Agin., 19, 77–82
Klapstein, G. J., Vietla, S., , Lieberman, D. al. (1998). Calbindin-D28k fails to protect hippocampal neurons against ischemia in spite of its cytoplasmic calcium buffering properties: evidence from calbindin-D28k knockout mice. Neuroscience, 85, 361–73
Kocsis, J. D., Rand, M. N., Lankford, K. L. & Waxman, S. G. (1993). Intracellular calcium mobilization and neurite outgrowth in mammalian neurons. J. Neurobiol., 25, 252–64
Koliatsos, V. E. & Price, D. L. (1996). Axotomy as an experimental model of neuronal injury and cell death. Brain Pathol., 6, 447–65
Krebs, C., Neiss, W. F., Streppel, al. (1997). Axotomy induces transient calbindin D28K immunoreactivity in hypoglossal motoneurons in vivo. Cell Calcium, 22, 367–72
Kroemer, G., Dallaporta, B. & Resche-Rigon, M. (1998). The mitochondrial death/life regulator in apoptosis and necrosis. Ann. Rev. Physiol., 60, 619–42
Bella, V., Goodman, J. C. & Appel, S. H. (1997). Increased CSF glutamate following injection of ALS immunoglobulins. Neurology, 48, 1270–2
Laslo, P., Lipski, J., Nicholson, L. F. B., Miles, G. B. & Funk, G. D. (2000). Calcium binding proteins in motoneurons at low and high risk for degeneration in ALS. NeuroReport, 11, 3305–8
Laslo, P., Lipski, J., Nicholson, L. F. B., Miles, G. B. & Funk, G. D. (2001). GluR2 AMPA receptor subunit expression in motoneurons at low and high risk for degeneration in amyotrophic lateral sclerosis. Exp. Neurol., 169, 461–71
Leenders, A. G. M., Scholten, G., Lange, R. P. J., Lopes da Silva, F. H. & Ghijsen, W. E. J. M. (2002). Sequential changes in synaptic vesicle pools and endosome-like organelles during depolarization near the active zone of central nerve terminals. Neuroscience, 109, 195–206
Lewit-Bentley, A. & Réty, S. (2000). EF-hand calcium-binding proteins. Curr. Opin. Struct. Biol., 10, 637–43
Lino, M. M., Schneider, C. & Caroni, P. (2002). Accumulation of SOD1 mutants in postnatal motoneurons does not cause motoneuron pathology or motoneuron disease. J. Neurosci., 22, 4825–32
Lledo, P. M., Somasundaram, B., Morton, A. J., Emson, P. C. & Mason, W. T. (1992). Stable transfection of calbindin-D28k into the GH3 cell line alters calcium currents and intracellular calcium homeostasis. Neuron, 9, 943–54
Marsden, B. J., Shaw, G. S. & Sykes, B. D. (1990). Calcium binding proteins. Elucidating the contributions to calcium affinity from an analysis of species variants and peptide fragments. Biochem. Cell. Biol., 68, 587–601
Mattson, M. P. (1998). Free radicals, calcium, and the synaptic plasticity – cell death continuum: emerging role of the transcription factor NFκB. Int. Rev. Neurobiol., 49, 103–68
Mattson, M. P. & Kater, S. B. (1987). Calcium regulation of neurite elongation and growth cone mobility. J. Neurosci., 7, 4034–43
Mattson, M. P., Rychlik, B., Chu, C. & Christakos, S. (1991). Evidence for calcium-reducing and excito-protective roles for the calcium-binding protein calbindin-D28k in cultured hippocampal neurons. Neuron, 6, 41–51
McMahon, A., , Wong, B. S., Iacopino, A. M., Ng, M. C., Chi, S. & German, D. C. (1998). Calbindin-D28k buffers intracellular calcium and promotes resistance to degeneration in PC12 cells. Mol. Brain Res., 54, 56–63
McRitchie, D. A. & Halliday, G. M. (1995). Calbindin D28k-containing neurons are restricted to the medial substantia nigra in humans. Neuroscience, 65, 87–91
Means, A. R., Tash, J. S. & Chafouleas, J. G. (1982). Physiological implications of the presence, distribution and regulation of calmodulin in eukaryotic cells. Physiol. Rev., 62, 1–39
Meldolesi, J. (2001). Rapidly exchanging Ca2+ stores in neurons: molecular, structural and functional properties. Prog. Neurobiol., 65, 309–38
Michaelson, D. M., Ophir, I. & Angel, I. (1980). ATP-stimulated Ca2+ transport into cholinergic Torpedo synaptic vesicles. J. Neurochem., 35, 116–24
Migheli, A., Cordera, S., Bendotti, C., Atzori, C., Piva, R. & Schiffer, D. (1999). S-100Β protein is upregulated in astrocytes and motor neurons in the spinal cord of patients with amyotrophic lateral sclerosis. Neurosci. Lett., 261, 25–8
Miller, R. J. (1995). Regulation of calcium homeostasis in neurons: the role of calcium-binding proteins. Biochem. Soc. Trans., 23, 629–32
Miller, R. J. (1998). Mitochondria – the Kraken wakes!Trends Neurosci., 21, 95–7
Mogami, H., Nakano, K., Tepikin, A. V. & Petersen, O. H. (1997). Ca2+ flow via tunnels in polarized cells: recharging of apical Ca2+ stores by focal Ca2+ entry through basal membrane patch. Cell, 88, 49–55
Morrison, B. M., Janssen, W. G., Gordon, J. W. & Morrison, J. H. (1998). Light and electron microscopic distribution of the AMPA receptor subunit GluR2 in the spinal cord of control and G86R mutant superoxide dismutase transgenic mice. J. Comp. Neurol., 395, 523–34
Mosier, D. R., Baldelli, P., Delbono, al. (1995). Amyotrophic lateral sclerosis immunoglobulins increase Ca2+ currents in a motoneuron cell line. Ann. Neurol., 37, 102–9
Mosier, D. R., Siklós, L. & Appel, S. H. (2000). Resistance of extraocular motoneuron terminals to effects of amyotrophic lateral sclerosis sera. Neurology, 54, 252–5
Murphy, A. N., Fiskum, G. & Beal, M. F. (1999). Mitochondria in neurodegeneration: Bioenergetic function in cell life and death. J. Cereb. Blood Flow Metab., 19, 231–45
Neher, E., & Augustine, G. J. (1992). Calcium gradients and buffers in bovine chromaffin cells. J. Physiol., 450, 273–301
Nicotera, P. & Orrenius, S. (1998). The role of calcium in apoptosis. Cell Calcium, 23, 173–80
Obál, I. (2002). Immune-mediated damages and the role of intracellular calcium homeostasis in the degeneration of neurons. PhD Thesis, University of Szeged, Hungary
Parvizi, J. & Damasio, A. R. (2003). Differential distribution of calbindin D28k and parvalbumin among functionally distinctive sets of structures in the macaque brainstem. J. Comp. Neurol., 462, 153–67
Paschen, W. & Doutheil, J. (1999). Disturbances of the functioning of endoplasmic reticulum: a key mechanism underlying neuronal cell injury?J. Cereb. B F Metab., 19, 1–18
Potier, B., Krzywkowski, P., Lamour, Y. & Dutar, P. (1994). Loss of calbindin-immunoreactivity in CA1 hippocampal stratum radiatum and lacunosum-moleculare interneurons in the aged rat. Brain Res., 661, 181–8
Pozzan, T., Rizzuto, R., Volpe, P. & Meldolesi, J. (1994). Molecular and cellular physiology of intracellular calcium stores. Physiol. Rev., 74, 595–636
Pramatarova, A., Laganiere, J., Roussel, J., Brisebois, K. & Rouleau, G. A. (2001). Neuron-specific expression of mutant superoxide dismutase 1 in transgenic mice does not lead to motor impairment. J. Neurosci., 21, 3369–74
Puchalski, R. B., Louis, J. C., Brose, al. (1994). Selective RNA editing and subunit assembly of native glutamate receptor. Neuron, 13, 131–47
Pullen, A. H., Demestre, M., Howard, R. S. & Orrell, R. W. (2004). Passive transfer of purified IgG from patients with amyotrophic lateral sclerosis to mice results in degeneration of motor neurons accompamied by Ca2+ enhancement. Acta Neuropathol., 107, 35–46
Pullen, A. H. & Humphreys, P. (2000). Ultrastructural analysis of spinal motoneurons from mice treated with IgG from ALS patients, healthy individuals, or disease controls. J. Neurol. Sci., 180, 35–45
Rami, A., Rabié, A., Thomasset, M. & Krieglstein, J. (1992). Calbindin-D28K and ischemic damage of pyramidal cells in rat hippocampus. J. Neurosci. Res., 31, 89–95
Reaume, A. G., Elliott, J. L., Hoffman, E. K., et al. (1996). Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat. Genet., 13, 43–7
Reiner, A., Medina, L., Figueredo-Cardenas, G. & Anfinson, S. (1995). Brainstem motoneuron pools that are selectively resistant in amyotrophic lateral sclerosis are preferentially enriched in parvalbumin: Evidence from monkey brainstem for a calcium-mediated mechanism in sporadic ALS. Exp. Neurol., 131, 239–50
Ren, K. & Ruda, M. A. (1994). A comparative study of the calcium-binding proteins calbindin-D28K, calretinin, calmodulin and parvalbumin in the rat spinal cord. Brain Res. Rev., 19, 163–79
Robb-Gaspers, L. D., Rutter, G. A., Burnett, P., Hajnóczky, G., Denton, R. M. & Thomas, A. P. (1998). Coupling between cytosolic and mitochondrial calcium oscillations: role in the regulation of hepatic metabolism. Biochim. Biophys. Act., 1366, 17–32
Rothermundt, M., Peters, M., Prehn, J. H. & Arolt, V. (2003). S100B in brain damage and neuro-degeneration. Microsc. Res. Tech., 60, 614–32
Rothstein, J. D. (1995). Excitotoxic mechanisms in the pathogenesis of amyotrophic lateral sclerosis. Adv. Neurol., 68, 7–20
Rowland, L. P. (2000). Six important themes in amyotrophic lateral sclerosis (ALS) research, 1999. J. Neurol. Sci., 180, 2–6
Rowland, L. P. & Shneider, N. A. (2001). Amyotrophic lateral sclerosis. N. Engl. J. Med., 344, 1688–700
Roy, J., Minotti, S., Dong, L., Figlewicz, D. A. & Durham, H. D. (1998). Glutamate potentiates the toxicity of mutant Cu/Zn-superoxide dismutase in motor neurons by post-synaptic calcium-dependent mechanisms. J. Neurosci., 18, 9673–84
Sattler, R. & Tymianski, M. (2000). Molecular mechanisms of calcium-dependent excitotoxicity. J. Mol. Med., 78, 3–13
Schapira, A. H. V. (1998). Mitochondrial dysfunction in neurodegenerative disorders. Biochim. Biophys. Act., 1366, 225–33
Schubert, P., Ogata, T., Marchini, C. & Ferroni, S. (2001). Glia-related pathomechanisms in Alzheimer's disease: a therapeutic target?Mech. Ageing Dev., 123, 47–57
Shaw, P. J. & Eggett, C. J. (2000). Molecular factors underlying selective vulnerability of motor neurons to degeneration in amyotrophic lateral sclerosis. J. Neurol., 247(suppl 1), 17–27
Siesjö, B. K., Hu, B. & Kristián, T. (1999). Is the cell death pathway triggered by the mitochondrion or the endoplasmic reticulum?J. Cereb. Blood Flow Metab., 19, 19–26
Siklós, L., Engelhardt, J., Harati, Y., Smith, R. G., Joó, F. & Appel, S. H. (1996). Ultrastructural evidence for altered calcium in motor nerve terminals in amyotrophic lateral sclerosis. Ann. Neurol., 39, 203–16
Siklós, L., Engelhardt, J. I., Alexianu, M. E., Gurney, M. E., Siddique, T. & Appel, S. H. (1998). Intracellular calcium parallels motor neuron degeneration in SOD-1 mutant mice. J. Neuropathol. Exp. Neurol., 57, 571–87
Siklós, L., Engelhardt, J. I., Adalbert, R. & Appel, S. H. (1999). Calcium-containing endosomes at oculomotor terminals in animal models of ALS. NeuroReport, 10, 2539–45
Siklós, L., Engelhardt, J. I., Reaume, A. al. (2000). Altered calcium homeostasis in spinal motoneurons but not in oculomotor neurons of SOD-1 knockout mice. Acta Neuropathol., 99, 517–24
Smith, R. G., Hamilton, S., Hofmann, al. (1992). Serum antibodies to L-type calcium channels in patients with amyotrophic lateral sclerosis. N. Engl. J. Med., 327, 1721–8
Smith, R. G., Alexianu, M. E., Crawford, G., Nyormoi, O., Stefani, E. & Appel, S. H. (1994). The cytotoxicity of immunoglobulins from amyotrophic lateral sclerosis patients on an hybrid motoneuron cell line. Proc. Natl Acad. Sci., USA, 91, 3393–7
Suarez-Isla, B. A., Pelto, D. J., Thompson, J. M. & Rapoport, S. I. (1984). Blockers of calcium permeability inhibit neurite extension and formation of neuromuscular synapses in cell culture. Dev. Brain Res., 14, 263–70
Swash, M. & Schwartz, M. S. (1995). Motor neuron disease: the clinical syndrome. In Motor Neuron Disease. Biology and Management, ed. P. N. Leigh & M. Swash. London, Berlin, Heidelberg, New York, Paris, Tokyo, Hong Kong, Barcelona, Budapest: Springer-Verlag. pp. 1–17
Takei, K., Mundigl, O., Daniell, L. & Camilli, P. (1996). The synaptic vesicle cycle: A single vesicle budding step involving clathrin and dynamin. J. Cell. Biol., 133, 1237–50
Takuma, H., Kwak, S., Yoshizawa, T. & Kanazawa, I. (1999). Reduction of GluR2 RNA editing, a molecular change that increases calcium influx through AMPA receptors, selective in the spinal ventral gray of patients with amyotrophic lateral sclerosis. Ann. Neurol., 46, 806–15
Trotti, D., Rolfs, A., Danbolt, N. C., Brown, R. H. Jr & Hediger, M. A. (1999). SOD1 mutant linked amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter. Nat. Neurosci., 2, 427–33
Tortosa, A. & Ferrer, I. (1993). Parvalbumin immunoreactivity in the hippocampus of the gerbil after transient forebrain ischaemia: a qualitative and quantitative sequential study. Neuroscience, 55, 33–43
Tsuboi, K., Kimber, T. A. & Shults, C. W. (2000). Calretinin-containing axons and neurons are resistant to an intrastriatal 6-hydroxydopamine lesion. Brain Res., 866, 55–64
Tymianski, M., Charlton, M. P., Carlen, P. L. & Tator, C. H. (1993). Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J. Neurosci., 13, 2085–114
Vandenberghe, W., Robberecht, W. & Brorson, J. R. (2000). AMPA receptor calcium permeability, GluR2 expression, and selective motoneuron vulnerability. J. Neurosci., 20, 123–32
Vandenberghe, W., Bindokas, V. P., Miller, R. al. (2001). Subcellular localization of calcium permeable AMPA receptors in spinal motor neurons. Eur. J. Neurosci., 14, 305–14
Bosch, L., Vandenberghe, W., Klaassen, al. (2000). Ca2+-permeable AMPA receptors and selective vulnerability of motor neurons. J. Neurol. Sci., 180, 29–34
Bosch, L., Schwaller, B., Vleminckx, al. (2002). Protective effect of parvalbumin on excitotoxic motor neuron death. Exp. Neurol., 174, 150–61
Vanselow, B. K. & Keller, B. U. (2000). Calcium dynamics and buffering in oculomotor neurones from mouse that are particularly resistant during amyotrophic lateral sclerosis (ALS)-related motoneurone disease. J. Physiol., 525, 433–45
Verkhratsky, A. & Toescu, E. C. (1998). Calcium and neuronal ageing. Trends Neurosci., 21, 2–7
Vig, P. J. S., Subramony, S. H., Burright, E. al. (1998). Reduced immunoreactivity to calcium binding proteins in Purkinje cells precedes onset of ataxia in spinocerebellar ataxia-1 transgenic mice. Neurology, 50, 106–13
Villa, A., Podini, P., Panzeri, M. C., Racchetti, G. & Meldolesi, J. (1994). Cytosolic Ca2+ binding proteins during rat brain ageing: Loss of calbindin and calretinin in the hippocampus, with no change in the cerebellum. Eur. J. Neurosci., 6, 1491–9
Gersdorff, H. & Matthews, G. (1994). Inhibition of endocytosis by elevated internal calcium in synaptic terminal. Nature, 370, 652–5
Waisman, D. M., Smallwood, J. I., Lafreniere, D., & Rasmussen, H., (1983). Identification of novel calcium-binding proteins of heart and brain 1000,000 x G supernatant. Biochem. Biophys. Res. Commun., 116, 435–41
Werth, J. L. & Thayer, S. A. (1994). Mitochondria buffer physiological calcium loads in cultured rat dorsal root ganglion neurons. J. Neurosci., 14, 348–56
Williams, T. L., Day, N. C., Ince, P. al. (1997). Calcium-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid receptors: a molecular determinant of selective vulnerability in amyotrophic lateral sclerosis. Ann. Neurol., 42, 200–7
Winsky, L. & Kuznicki, J. (1996). Antibody recognition of calcium-binding proteins depends on their calcium-binding status. J. Neurochem., 66, 764–71
Yamada, T., McGeer, P. L., Baimbridge, K. G. & McGeer, E. G. (1990). Relative sparing in Parkinson's disease of substantia nigra dopamine neurons containing calbindin-D28k. Brain Res., 526, 303–7
Yap, K. L., Ames, J. B., Swindells, M. B. & Ikura, M., (1999). Diversity of conformational states and changes within the EF-hand protein superfamily. Proteins, 37, 499–507