Skip to main content Accessibility help
×
Hostname: page-component-68945f75b7-w588h Total loading time: 0 Render date: 2024-09-02T18:01:12.112Z Has data issue: false hasContentIssue false

21 - Communication for Computing

from Part IV - Extensions

Published online by Cambridge University Press:  05 June 2012

Abbas El Gamal
Affiliation:
Stanford University
Young-Han Kim
Affiliation:
University of California, San Diego
Get access

Summary

In the first three parts of the book we investigated the limits on information flow in networks whose task is to communicate (or store) distributed information. In many real world distributed systems, such as multiprocessors, peer-to-peer networks, networked mobile agents, and sensor networks, the task of the network is to compute a function, make a decision, or coordinate an action based on distributed information. Can the communication rate needed to perform such a task at some node be reduced relative to communicating all the sources to this node?

This question has been formulated and studied in computer science under communication complexity and gossip algorithms, in control and optimization under distributed consensus, and in information theory under coding for computing and the μ -sum problem, among other topics. In this chapter, we study information theoretic models for distributed computing over networks. In some cases, we find that the total communication rate can be significantly reduced when the task of the network is to compute a function of the sources rather than to communicate the sources themselves, while in other cases, no such reduction is possible.

We first show that the Wyner–Ziv theorem in Chapter 11 extends naturally to the case when the decoder wishes to compute a function of the source and the side information. We provide a refined characterization of the lossless special case of this result in terms of conditional graph entropy. We then discuss distributed coding for computing. Although the rate–distortion region for this case is not known in general (even when the goal is to reconstruct the sources themselves), we show through examples that the total communication rate needed for computing can be significantly lower than for communicating the sources themselves. The first example we discuss is the μ -sum problem, where the decoder wishes to reconstruct a weighted sum of two separately encoded Gaussian sources with a prescribed quadratic distortion. We establish the rate–distortion region for this setting by reducing the problem to the CEO problem discussed in Chapter 12. The second example is lossless computing of the modulo-2 sum of a DSBS. Surprisingly, we find that using the same linear code at both encoders can outperform Slepian–Wolf coding.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×