Skip to main content Accessibility help
×
Hostname: page-component-68945f75b7-6sdl9 Total loading time: 0 Render date: 2024-09-04T17:22:39.218Z Has data issue: false hasContentIssue false

22 - Information Theoretic Secrecy

from Part IV - Extensions

Published online by Cambridge University Press:  05 June 2012

Abbas El Gamal
Affiliation:
Stanford University
Young-Han Kim
Affiliation:
University of California, San Diego
Get access

Summary

Confidentiality of information is a key consideration in many networking applications, including e-commerce, online banking, and intelligence operations. How can information be communicated reliably to the legitimate users, while keeping it secret from eavesdroppers? How does such a secrecy constraint on communication affect the limits on information flow in the network?

In this chapter, we study these questions under the information theoretic notion of secrecy, which requires each eavesdropper to obtain essentially no information about the messages sent from knowledge of its received sequence, the channel statistics, and the codebooks used. We investigate two approaches to achieve secure communication. The first is to exploit the statistics of the channel from the sender to the legitimate receivers and the eavesdroppers. We introduce the wiretap channel as a 2-receiver broadcast channel with a legitimate receiver and an eavesdropper, and establish its secrecy capacity, which is the highest achievable secret communication rate. The idea is to design the encoder so that the channel from the sender to the receiver becomes effectively stronger than the channel to the eavesdropper; hence the receiver can recover the message but the eavesdropper cannot. This wiretap coding scheme involves multicoding and randomized encoding.

If the channel from the sender to the receiver is weaker than that to the eavesdropper, however, secret communication at a positive rate is not possible. This brings us to the second approach to achieve secret communication, which is to use a secret key shared between the sender and the receiver but unknown to the eavesdropper. We show that the rate of such secret key must be at least as high as the rate of the confidential message. This raises the question of how the sender and the receiver can agree on such a long secret key in the first place. After all, if they had a confidential channel with sufficiently high capacity to communicate the key, then why not use it to communicate the message itself!

We show that if the sender and the receiver have access to correlated sources (e.g., through a satellite beaming common randomness to them), then they can still agree on a secret key even when the channel has zero secrecy capacity. We first consider the source model for key agreement, where the sender communicates with the receiver over a noiseless public broadcast channel to generate a secret key from their correlated sources.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×