Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-25T02:36:03.974Z Has data issue: false hasContentIssue false

12 - Is there a common chemical model for life in the universe?

Published online by Cambridge University Press:  10 November 2010

Mark A. Bedau
Affiliation:
Reed College, Oregon
Carol E. Cleland
Affiliation:
University of Colorado, Boulder
Get access

Summary

INTRODUCTION

A simple “We don't know” is often the best answer for some questions, perhaps even for the title question, suggested by this issue's editors of Current Opinion in Chemical Biology. Because we have direct knowledge of life only on Earth, and as known life on Earth descended from a single ancestor, we have only one data point from which to extrapolate statements about the chemistry of life generally. Until life is encountered elsewhere, or aliens contact us, we will not have an independent second dataset. We may not even then, if the alien life itself shares an ancestor with life on Earth.

We can, of course, conceive of alternative chemical solutions to specific challenges presented to living systems. We can then test their plausibility by synthesizing, in the laboratory, unnatural organic molecules that represent the alternatives, and seeing if they behave suitably. Some of these alternatives come from simple “Why?” or “Why not?” questions. For example: why are 20 standard amino acids used in Terran proteins? Experiments with unnatural amino acids (using the natural ribosome to incorporate them into proteins) have expanded the amino acid repertoire of proteins. These experiments find no reason to exclude alternative sets of amino acids from hypothetical proteins in hypothetical alien life forms.

Similar questions can be asked about DNA. For example, why does Terran genetics use ribose and deoxyribose? Why not glycerol, a hexose or a tetrose? Again, synthetic chemists have made DNA analogs using each, and studied their behavior.

Type
Chapter
Information
The Nature of Life
Classical and Contemporary Perspectives from Philosophy and Science
, pp. 164 - 185
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bains, W. (2004). Many chemistries could be used to build living systems. Astrobiology, 4, 137–167.CrossRefGoogle ScholarPubMed
Hecht, S. M., Alford, B. L., Kuroda, Y., & Kitano, S. (1978). Chemical aminoacylation of transfer-RNAs. Journal of Biological Chemistry, 253, 4517–4520.Google Scholar
Chin, J. W., Cropp, T. A., Anderson, J. C, Mukherji, M., Shang, Z. W., & Schultz, P. G. (2003). An expanded eukaryotic genetic code. Science, 301, 964–967.CrossRefGoogle Scholar
Noren, C. J., Anthony-Cahill, S. J., Griffith, M. C, & Schultz, P. G. (1989). A general method for site-specific incorporation of unnatural amino acids into proteins. Science, 244, 182–188.CrossRefGoogle ScholarPubMed
Baldini, G., Martoglio, B., Schachenmann, A., Zugliani, C., & Brunner, J. (1988). Mischarging Escherichia coli tRNAPhe with L-4'-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenylalanine, a photoactivatable analog of phenylalanine. Biochemistry, 27, 7951–7959.CrossRefGoogle Scholar
Bain, J. D., Diala, E. S., Glabe, C. G., Dix, T. A., & Chamberlin, A. R. (1989). Biosyntheic site-specific incorporation of a non-natural amino acid into a polypeptide. Journal of American Chemical Society, 111, 8013–8014.CrossRefGoogle Scholar
Hohsaka, T. & Masahiko, S. M. (2002). Incorporation of non-natural amino acids into proteins. Current Opinion in Chemical Biology, 6, 809–815.CrossRefGoogle ScholarPubMed
Schneider, K. C & Benner, S. A. (1990). Oligonucleotides containing flexible nucleoside analogs. Journal of the American Chemical Society, 112, 453–455.CrossRefGoogle Scholar
Augustyns, K., Vanaerschot, A., & Herdewijn, P., (1992). Synthesis of l-(2,4-dideoxy-beta-D-eiythro-hexopyranosyl) thymine and its incorporation into oligonucleotides. Bioorganic and Medicinal Chemistry Letters, 2, 945–948.CrossRefGoogle Scholar
Eschenmoser, A. (1999). Chemical etiology of nucleic acid structure. Science, 284, 2118–2124.CrossRefGoogle ScholarPubMed
Benner, S. A. & Ellington, A. D. (1988). Interpreting the behavior of enzymes: Purpose or pedigree?CRC Critical Reviews in Bioengineering, 23, 369–426.Google ScholarPubMed
Geyer, C. R., Battersby, T. R., & Benner, S. A. (2003). Nucleobase pairing in expanded Watson–Crick-like genetic information systems: The nucleobases. Structure, 11, 1485–1498.CrossRefGoogle Scholar
Oró, J. (1960). Synthesis of adenine from ammonium cyanide. Biochemical and Biophysical Research Communications, 2, 407–412.CrossRefGoogle Scholar
Cleland, C. E. & Chyba, C. F. (2002). Defining ‘life.’ Origins of Life and Evolution of the Biosphere, 32, 387–393.CrossRef
Ruiz-Mirazo, K., Pereto, J., & Moreno, A. (2004). A universal definition of life: Autonomy and open-ended evolution. Origins of Life and Evolution of the Biosphere, 34, 323–346.CrossRefGoogle ScholarPubMed
Deamer, D. W. & Fleiscchaker, G. R. (Eds.) (1994). Origins of life: The central concepts. Boston: Jones & Bartlett.
Sagan, C. (1970). Life. In The encyclopedia Britannica. London: William Benton.Google Scholar
Koshland, D. E.. (2002). The seven pillars of life. Science, 295, 2215–2216.CrossRefGoogle ScholarPubMed
Schwartz, S. P. (1977). Introduction. In Schwarz, S. P. (Ed.), Naming, necessity, and natural kands. Ithaca, NY: Cornell University Press.Google Scholar
Kondepudi, D. K., Kauffinan, R. J., & Singh, N. (1990). Chiral symmetry-breaking in sodium-chlorate crystallization. Science, 250, 975–976.CrossRefGoogle Scholar
Arrhenius, G. (2003). Crystals and life. Helvetica Chimica Acta, 86, 1569–1586.CrossRefGoogle Scholar
Duve, C. (1991). Blueprint for a cell: The nature and origin of life. Burlington, NC: Neil Patterson.Google Scholar
Heinlein, R. (1983). Have space suit, will travelDel Ray, VA: Del Ray Books.Google Scholar
Kelley, D. S., Karson, J. A., Blackman, D. K., et al. (2001). AT3–60 Shipboard Party: An off-axis hydrothermal vent field near the Mid-Atlantic ridge at 30° N. Nature, 412, 145–149.CrossRefGoogle ScholarPubMed
Corliss, J. B., Dymond, J., Gordon, L. I., et al. (1979). Submarine thermal springs on the Galapagos Rift. Science, 203, 1073–1083.CrossRefGoogle ScholarPubMed
Stevenson, D. (1999). Life-sustaining planets in interstellar space?Nature, 400, 32.CrossRefGoogle ScholarPubMed
Dawkins, R. (1989). The selfish gene (2nd ed.). Oxford: Oxford University Press.Google Scholar
Chen, I. A. & Szostak, J. W. (2003). Membrane growth can generate a transmembrane pH gradient in fatty acid vesicles. Proceedings of the National Academy of Sciences, 101, 7965–7970.CrossRefGoogle Scholar
Luisi, P. L., Walde, P., & Oberholzer, T. (1999). Lipid vesicles as possible intermediates in the origin of life. Current Opinion in Colloid and Interface Science, 4, 33–39.CrossRefGoogle Scholar
Szostak, J. W., Bartel, D. P., & Luisi, P. L. (2001). Synthesizing life. Nature, 409, 387–390.CrossRefGoogle ScholarPubMed
Deamer, D., Dworkin, J. P., Stanford, S. A., Bernstein, M. P., & Allamandola, L. J. (2002). The first cell membranes. Astrobiology, 2, 371–381.CrossRefGoogle ScholarPubMed
Hanczyc, M. M L, Fujikawa, S. M., & Szostak, J. W. (2003). Experimental models of primitive cellular compartments: Encapsulation, growth, and division. Science, 302, 618–622.CrossRefGoogle ScholarPubMed
Wächtershäuser, G. (1990). Evolution of the first metabolic cycles. Proceedings of the National Academy of Sciences, 87, 200–204.CrossRefGoogle ScholarPubMed
Pace, N. (2001). The universal nature of biochemistry. Proceedings of the National Academy of Sciences, 98, 805–808.CrossRefGoogle ScholarPubMed
Miller, S. L. & Orgel, L. E. (1974). The origins of life on the Earth, Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Walsh, R. (1981). Bond dissociation energy values in silicon-containing compounds and some of their implications. Accounts of Chemical Research, 14, 246–252.CrossRefGoogle Scholar
Maxka, J., Huang, L. M., & West, R. (1991). Synthesis and NMR spectroscopy of permethylpolysilane oligomers Me(SiMe2)10Me, Me(SiMe2)16Me, and Me(SiMe2)22Me. Organometallics, 10, 656–659.CrossRefGoogle Scholar
Hayase, S., Horiguchi, R., Onishi, Y., & Ushirogouchi, T. (1989). Syntheses of polysilanes with functional groups 2: Polysilanes with carboxylic acids. Macromolecules, 22, 2933–2938.CrossRefGoogle Scholar
Hayase, S. (1995). Polysilanes with functional groups. Endeavor, 19, 125–131.CrossRefGoogle Scholar
Sanji, T., Kitayama, F., & Sakurai, H. (1999). Self-assembled micelles of amphiphilic polysilane block copolymers. Macromolecules, 32, 5718–5720.CrossRefGoogle Scholar
Cairns-Smith, A. G. (1966). The origin of life and the nature of the primitive gene. Journal of Theoretical Biology, 10, 53–88.CrossRefGoogle ScholarPubMed
Cairns-Smith, A. G. & Hartman, H. (1986). Clay minerals and the origin of life. Cambridge, UK: Cambridge University Press.Google Scholar
Voet, D. & Voet, J. (2004). Biochemistry. Hoboken, NJ: J. Wiley & Sons.Google Scholar
Huang, B. & Walsh, J. J. (1998). Solid-phase polymerization mechanism of poly(ethyleneterephthalate) affected by gas flow velocity and particle size. Polymer, 39, 6991–6999.CrossRefGoogle Scholar
Goldanskii, V. I. (1996). Nontraditional mechanisms of solid-phase astrochemical reactions. Kinetics and Catalysis, 37, 608–614.Google Scholar
Brunner, E. (1988). Fluid mixtures at high pressures VI: Phase separation and critical phenomena in 18(n-alkane + ammonia) and 4(n-alkane + methanol) mixtures. Journal of Chemical Thermodynamics, 20, 1397–1409.CrossRefGoogle Scholar
Haldane, J. B. S. (1954). The origins of life. New Biology, 16, 12–27.Google Scholar
Olah, G. A., Salem, G., Staral, J. S., & Ho, T. L. (1978). Preparative carbocation chemistry 13: Preparation of carbocations from hydrocarbons via hydrogen abstraction with nitrosonium hexafluorophosphate and sodium nitrite trifluoromethanesulfonic acid. Journal of Organic Chemistry, 43, 173–175.CrossRefGoogle Scholar
Kolodner, M. A. & Steffes, P. G, (1998). The microwave absorption and abundance of sulfuric acid vapor in the Venus atmosphere based on new laboratory measurements. Icarus, 132, 151–169.CrossRefGoogle Scholar
Schulze-Makuch, D., Grinspoon, D. H., Abbas, O., Irwin, L. N., & Bullock, M. A. (2004). A sulfur-based survival strategy for putative phototropic life in the Venusian atmosphere. Astrobiology, 4, 11–18.CrossRefGoogle Scholar
Cockell, C. S. (1999). Life on Venus. Planetary Space Science, 47, 1487–1501.CrossRefGoogle Scholar
Colin, J. & Kasting, J. F. (1992). Venus: A search for clues to early biological possibilities. In Carle, G., Schwartz, D., & Huntington, J. (Eds.), Exobiology in solar system exploration (NASA special publication 512) (pp. 45–65). Moffett Field, CA: NASA, Ames Research Center.Google Scholar
Arrhenius, S. (1918). The destinies of the stars. New York: Putnam.Google Scholar
Seckbach, J. & Libby, W. F. (1970). Vegetative life on Venus? Or investigations with alga which grow under pure CO2 in hot acid media at elevated pressures. Space Life Science, 2, 121–143.Google ScholarPubMed
Sagan, C. & Morowitz, H. (1967). Life in the clouds of Venus. Nature, 215, 1259–1260.Google Scholar
Hoar, W. S. & Randall, D. J. (1981). Fish physiology. In Webb, J. E., Wallwork, J. A., and Elgood, J. H. (Eds.), Guide to living fishes (6 vols., 1969–1971). London: Macmillan.Google Scholar
Schulze-Makuch, D., Irwin, L. N., & Irwin, T. (2002). Astrobiological relevance and feasibility of a sample collection mission to the atmosphere of Venus. In Lacoste, H. (Ed.), Proceedings of the first European workshop on exo-astrobiology (pp. 247–250). Noordwijk, Netherlands: ESA Publication Division.Google Scholar
Kreuzweiser, J., Schnitzler, J. P., & Steinbrecher, R. (1999). Biosynthesis of organic compounds emitted by plants. Plant Biology, 1, 149–159.CrossRefGoogle Scholar
Weyerstah, P. (2000). Synthesis of compounds isolated from essential oils. In Lanzotti, V. and Taglialatela-Scafati, O. (Eds.), Flavour and fragrance chemistry: Proceedings of the Phytochemical Society of Europe (vol. 46, pp. 57–66). Dordrecht: Kluwer Academic Publishers.Google Scholar
Schulze-Makuch, D. & Irwin, L. N. (2004). Life in the universe: Expectations and constraints. Berlin: Springer-Verlag.Google Scholar
Ricardo, A., Carrigan, M. A., Olcott, A. N., & Benner, S. A. (2004). Borate minerals stabilize ribose. Science, 303, 196.CrossRefGoogle ScholarPubMed
Schoffstall, A. M. (1976). Prebiotic phosphorylation of nucleosides in formamide. Origins of Life and Evolution of the Biosphere, 7, 399–412.CrossRefGoogle ScholarPubMed
Schoffstall, A. M., Barto, R. J., & Ramo, D. L. (1982). Nucleoside and deoxynucleoside phosphorylation in formamide solutions. Origins of Life and Evolution of the Biosphere, 12, 143–151.CrossRefGoogle ScholarPubMed
Schoffstall, A. M. & Liang, E. M. (1985). Phosphorylation mechanisms in chemical evolution. Origins of Life and Evolution of the Biosphere, 15, 141–150.CrossRefGoogle Scholar
Sagan, C, Thompson, W. R., & Khare, B. N. (1992). Titan: A laboratory for prebiological organic chemistry. Accounts of Chemical Research, 25, 286–292.CrossRefGoogle ScholarPubMed
Tawfik, D. S., & Griffiths, A. D. (1998). Man-made cell-like compartments for molecular evolution. Nature Biotechnology, 16, 652–656.CrossRefGoogle ScholarPubMed
Lu, B. C. Y., Zhang, D., & Sheng, W. (1990). Solubility enhancement in supercritical solvents. Pure Applied Chemistry, 62, 2277–2285.CrossRefGoogle Scholar
Robertson, W. W. & Reynolds, R. E. (1958). Effects of hydrostatic pressure on the intensity of the singlet-triplet transition of 1-chloronaphthalene in ethyl iodide. Journal of Chemical Physics, 29, 138–141.CrossRefGoogle Scholar
King, A. D. & Robertson, W. W. (1962). Solubility of naphthalene in compressed gases. Journal of Chemical Physics, 37, 1453–1455.CrossRefGoogle Scholar
West, R. A. (1999). Atmospheres of the giant planets. In McFadden, L.-A., Weissman, P. R. and Johnson, T. V. (Eds.) Encyclopedia of the solar system (vol. 2, pp. 383–402). New York: Academic Press.Google Scholar
Sagan, C. & Salpeter, E. E. (1976). Particles, environments, and possible ecologies in the Jovian atmosphere. Astrophysics Journal, 32, 737–755.Google Scholar
Layboum-Parry, J. (2002). Survival mechanisms in Antarctic lakes. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 357, 863–869.CrossRefGoogle Scholar
Junge, K., Eicken, H., & Deming, J. W. (2003). Motility of Colwellia psychrerythraea strain 34H at subzero temperatures. Applied Environmental Microbiology, 69, 4282–4284.CrossRefGoogle ScholarPubMed
Junge, K., Eicken, H., & Deming, J. W. (2004). Bacterial activity at −2 to −20 degrees C in Arctic wintertime sea ice. Applied Environmental Microbiology, 70, 550–557.CrossRefGoogle ScholarPubMed
Navarro-Gonzalez, R., Rainey, F. A., Molina, P., et al. (2003). Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science, 302, 1018–1021.CrossRefGoogle ScholarPubMed
Gold, T. (1992). The deep, hot biosphere. Proceedings of the National Academy of Sciences, 89, 6045–6049.CrossRefGoogle ScholarPubMed
Pedersen, K. (1993). The deep subterranean biosphere. Earth-Science Review, 34, 243–260.CrossRefGoogle Scholar
Stevens, T. O. (1997). Subsurface microbiology and the evolution of the biosphere. In Amy, P. S. and Halderman, D. L. (Eds.), Microbiology of the terrestrial deep subsurface: Microbiology of extreme and unusual environments (pp. 205–224). Boca Raton, FL: Chemical Rubber Company Press.Google Scholar
Frick, L., MacNeela, J. P., & Wolfenden, R. (1987). Transition state stabilization by deaminases: Rates of nonenzymatic hydrolysis of adenosine and cytidine. Bioorganic Chemistry, 15, 100–108.CrossRefGoogle Scholar
Westheimer, F. H (1987). Why Nature chose phosphates. Science, 235, 1173–1178.CrossRefGoogle ScholarPubMed
Jayaraman, K., McParland, K. B., Miller, P., & Tso, P. O. P. (1981). Non-ionic oligonucleoside methylphosphonates 4: Selective-inhibition of Escherichia coli protein-synthesis and growth by non-ionic oligonucleotides complementary to the 3′ end of 16S ribosomal-RNA. Proceedings of the National Academy of Sciences, 78, 1537–1541.CrossRefGoogle Scholar
Miller, P. S., McParland, K. B., Jayaraman, K., & Tso, P. O. P. (1981). Biochemical and biological effects of nonionic nucleic acid methylphosphonates. Biochemistry, 20, 1874–1880.CrossRefGoogle ScholarPubMed
Reddy, P. M. & Braice, T. C. (2003), Solid-phase synthesis of positively charged deoxynucleic guanidine (DNG) oligonucleotide mixed sequences. Bioorganic and Medicinal Chemistry Letters, 13, 1281–1285.CrossRefGoogle ScholarPubMed
Linkletter, B. A., Szabo, I. E., & Bruice, T. C. (2001). Solid-phase synthesis of oligopurine deoxynucleic guanidine (DNG) and analysis of binding with DNA oligomers. Nucleic Acids Research, 29, 2370–2376.CrossRefGoogle ScholarPubMed
Benner, S. A. & Hutter, D. (2002). Phosphates, DNA, and the search for nonterran life. A second generation model for genetic molecules. Bioorganic Chemistry, 30, 62–80.CrossRefGoogle Scholar
Huang, Z., Schneider, K. C., & Benner, S. A. (1991). Building blocks for oligonucleotide analogs with dimethylene-sulfide, -sulfoxide and -sulfone groups replacing phosphodiester linkages. Journal of Organic Chemistry, 56, 3869–3882.CrossRefGoogle Scholar
Huang, Z., Schneider, K. C., & Benner, S. A. (1993). Oligonucleotide analogs with dimethylene-sulfide, -sulfoxide and -sulfone groups replacing phosphodiester linkages. Methods in Molecular Biology, 20, 315–353.Google Scholar
Roughton, A. L., Portmann, S., Benner, S. A., & Egli, M. (1995). Crystal structure of a dimethylene-sulfone-linked ribodinucleotide analog. Journal of the American Chemical Society, 117, 7249–7250.CrossRefGoogle Scholar
Richert, C., Roughton, A. L., & Benner, S. A. (1996). Nonionic analogs of RNA with dimethylene sulfone bridges. Journal of the American Chemical Society, 118, 4518–4531.CrossRefGoogle Scholar
Schmidt, J. G., Eschgfaeller, B., & Benner, S. A. (2003). A direct synthesis of nucleoside analogs homologated at the 3' and 5' positions. Helvetica ChimicaActa, 86, 2957–2997.Google Scholar
Eschgfaeller, B., Schmidt, J. G., & Benner, S. A. (2003). Synthesis and properties of oligodeoxynucleotide analogs with bis(methylene) sulfone-bridges. Helvetica Chimica Acta, 86, 2937–2956.Google Scholar
Steinbeck, C. & Richert, C. (1998). The role of ionic backbones in RNA structure: An unusually stable non-Watson-Crick duplex of a nonionic analog in an apolar medium. Journal of the American Chemical Society, 120, 11,576–11,580.CrossRefGoogle Scholar
Flory, P. J. (1953). Principles of polymer chemistry. Ithaca, NY: Cornell University Press.Google Scholar
Lee, D. H., Granja, J. R., Martinez, J. A., Severin, K., & Ghadiri, M. R. (1996). A self-replicating peptide. Nature, 382, 525–528.CrossRefGoogle ScholarPubMed
Cronin, J. R. & Pizzarello, S. (1986). Amino-acids of the Murchison meteorite III: Seven carbon acyclic primary alpha-amino alkanoic acids. Geochimica et Cosmochimica Acta, 50, 2419–2427.CrossRefGoogle ScholarPubMed
Ahn, J.-M, Boyle, N. A., MacDonald, M. T., & Janda, K. D. (2002). Peptidomimetics and peptide backbone modifications. Mini Reviews in Medicinal Chemistry, 2, 463–473.CrossRefGoogle ScholarPubMed
Yamauchi, K., Mitsuda, Y., & Kinoshita, M. (1975). Peptides containing aminophosphonic acids III. The synthesis of tripeptide analogs containing aminomethylphosphonic acid. Bulletin of the Chemical Society of Japan, 48, 3285–3286.CrossRefGoogle Scholar
Visser, C. M. & Kellog, R. M. (1978). Biotin: Its place in evolution. Journal of Molecular Evolution, 11, 171–178.CrossRefGoogle Scholar
Ogren, W. L. & Bowes, G. (1972). Oxygen inhibition and other properties of soybean ribulose 1,5-diphosphate carboxylase. Journal of Biological Chemistry, 247, 2171–2176.Google Scholar
Benner, S. A. (2004). Understanding nucleic acids using synthetic chemistry. Accounts of Chemical Research, 37, 794–797.CrossRefGoogle ScholarPubMed
Elbeik, T., Surtihadi, J., Destree, M., et al. (2004). Multicenter evaluation of the performance characteristics of the Bayer VERS ANT HCV RNA 3.0 assay (bDNA). Journal of Clinical Microbiology, 42, 563–569.CrossRefGoogle Scholar
Sismour, A. M., Lutz, S., Park, J. H., et al. (2004). PCR amplification of DNA containing non-standard base pairs by variants of reverse transcriptase from human immunodeficiency virus-1. Nucleic Acids Research, 32, 728–735.CrossRefGoogle ScholarPubMed
Edwards, K. J., Bond, P. L., Gihring, T. M., & Banfield, J. F. (2000). An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science, 287, 1796–1799.CrossRefGoogle ScholarPubMed
Freier, W. M. & Altmann, K. H. (1997). The ups and downs of nucleic acid duplex stability: Structure-stability studies on chemically-modified DNA:RNA duplexes. Nucleic Acids Research, 25, 4429.CrossRefGoogle ScholarPubMed
Gilbert, W. (1986). The RNA world. Nature, 319, 818.CrossRefGoogle Scholar
Ban, N., Nissen, P., Hansen, J., Moore, P. B., & Steitz, T. A. (2000). The complete atomic structure of the large ribosomal subunit at 2.4 angstrom resolution. Science, 289, 905–920.CrossRefGoogle Scholar
Kruger, K., Grabowski, P. J., Zaug, A. J., Sands, J., Gottschling, D. E., & Cech, T. R. (1982). Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell, 31, 147–157.CrossRefGoogle ScholarPubMed
Guerrier-Takada, C, Bardiner, K., Marsh, T., Pace, N., & Altaian, S, (1983). The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell, 35, 849–857.CrossRefGoogle ScholarPubMed
Battel, D. P. & Szostak, J. W. (1993). Isolation of new ribozymes from a large pool of random sequences. Science, 261, 1411–1418.Google Scholar
Benner, S. A., Ellington, A. D., & Tauer, A. (1989). Modem metabolism as a palimpsest of the RNA world. Proceedings of the National Academy of Sciences, 86, 7054–7058.CrossRefGoogle Scholar
Shapiro, R. (1988). Prebiotic ribose synthesis: A critical analysis. Origins of Life and Evolution of the Biosphere, 18, 71–85.CrossRefGoogle ScholarPubMed
Larralde, R., Robertson, M. P., & Miller, S. L. (1995). Rates of decomposition of ribose and other sugars: Implications for chemical evolution. Proceedings of the National Academy of Sciences, 92, 8158–8160.CrossRefGoogle ScholarPubMed
Hollis, J. M., Lovas, F. J., & Jewell, P. R. (2000). Interstellar glycolaldehyde: The first sugar. Astrophysics Journal, 540, L107–L110.CrossRefGoogle Scholar
Hollis, J. M., Vogel, S. N., Snyder, L. E., Jewell, P. R., & Lovas, R. J. (2001). The spatial scale of glycolaldehyde in the galactic center. Astrophysics Journal, 554, L81–L85.CrossRefGoogle Scholar
Butlerow, A. (1861). Bildung einer zuckerartingen Substanz durch Synthese. Annalen, 120, 295–298.CrossRefGoogle Scholar
Breslow, R. (1959). On the mechanism of the formose reaction. Tetrahedron Letters, 21, 22–26.CrossRefGoogle Scholar
Schöning, K. U., Scholz, P., Guntha, S., Wu, X., Krishnamurthy, R., & Eschenmoser, A. (2000). Chemical etiology of nucleic acid structure: The α-threofuranosyl-(3′–2′) oligonucleotide system. Science, 290, 1347–1351.CrossRefGoogle Scholar
Krishnamurthy, R., Arrhenius, G., & Eschenmoser, A. (1999). Formation of glycolaldehyde phosphate from glycolaldehyde in aqueous solution. Origins of Life and Evolution of the Biosphere, 29, 333–354.CrossRefGoogle ScholarPubMed
Ryan, J. G., Leeman, W. P., Morris, J. D., & Langmuir, C. H. (1996). The boron systematics of intraplate lavas: Implications for crust and mantle evolution. Geochimica et Cosmochimica Acta, 60, 415–422.CrossRefGoogle Scholar
Moody, J. B. (1976). Serpentinization. Lithos, 9, 125–138.CrossRefGoogle Scholar
Kawakami, T. (2001). Tourmaline breakdown in the migmatite zone of the Ryoke Metamorphic Belt, SW Japan. Journal of Metamorphic Geology, 19, 61–75.CrossRefGoogle Scholar
Pizzarello, S. & Webber, A. L. (2004). Prebiotic amino acids as asymmetric catalysts. Science, 303, 1151.CrossRefGoogle ScholarPubMed
Kofoed, J., Machuquerio, M., Reymond, J. L., & Darbre, T. (2004). Zinc-proline catalyzed pathway for the formation of sugars. Chemical Communications, 13, 1540–1541.CrossRefGoogle Scholar
Springsteen, G. & Joyce, G. F. (2004). Selective derivatization and sequestration of ribose from a prebiotic mix. American Chemical Society, 126, 9578–9583.CrossRefGoogle ScholarPubMed
Rouse, G. W., Goffredi, S. K., & Vrijenhoek, R. C. (2004). Osedax: Bone-eating marine worms with dwarf males. Science, 305, 668–671.CrossRefGoogle ScholarPubMed
Watson, J. D., Hopkins, N. H., Roberts, J. W., Steitz, J. A., & Weiner, A. M. (1987). Molecular biology of the gene (4th ed., p. 1115). Menlo Park, CA: Benjamin Cummings.Google Scholar
Benner, S. A. (1999). How small can a microorganism be? In Size limits of very small organisms: Proceedings of a workshop (pp. 126–135). Washington DC: National Academy Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×