Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-07T16:07:28.215Z Has data issue: false hasContentIssue false

9 - Small molecule interactions were central to the origin of life

Published online by Cambridge University Press:  10 November 2010

Mark A. Bedau
Affiliation:
Reed College, Oregon
Carol E. Cleland
Affiliation:
University of Colorado, Boulder
Get access

Summary

A SIMPLER ORIGIN FOR LIFE

Extraordinary discoveries inspire extraordinary claims. Thus, James Watson reported that immediately after he and Francis Crick uncovered the structure of DNA, Crick “winged into the Eagle [pub] to tell everyone within hearing that we had discovered the secret of life.” Their structure—an elegant double helix—almost merited such enthusiasm. Its proportions permitted information storage in a language in which four chemicals, called bases, played the same role as 26 letters do in the English language.

Further, the information was stored in two long chains, each of which specified the contents of its partner. This arrangement suggested a mechanism for reproduction: The two strands of the DNA double helix parted company, and new DNA building blocks that carry the bases, called nucleotides, lined up along the separated strands and linked up. Two double helices now existed in place of one, each a replica of the original.

The Watson–Crick structure triggered an avalanche of discoveries about the way living cells function today. These insights also stimulated speculations about life's origins. Nobel laureate H. J. Muller wrote that the gene material was “living material, the present-day representative of the first life,” which Carl Sagan visualized as “a primitive free-living naked gene situated in a dilute solution of organic matter.” (In this context, “organic” specifies compounds containing bound carbon atoms, both those present in life and those playing no part in life.) Many different definitions of life have been proposed.

Type
Chapter
Information
The Nature of Life
Classical and Contemporary Perspectives from Philosophy and Science
, pp. 129 - 136
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×