Skip to main content Accessibility help
  • Print publication year: 2010
  • Online publication date: July 2014

5 - Sensing, actuation, and interaction



Ubiquitous sensing, actuation, and interaction

The London of 2020, as described in Chapter 1, will have conserved most of its old character but it will also have become a mixed reality built upon the connections between the ubiquitous Internet and the physical world. These connections will be made by a variety of different intelligent embedded devices. Networks of distributed sensors and actuators together with their computing and communication capabilities will have spread throughout the infrastructures of cities and to various smaller objects in the everyday environment. Mobile devices will connect their users to this local sensory information and these smart environments. In this context, the mobile device will be a gateway connecting the local physical environment of its user to the specific digital services of interest, creating an experience of mixed virtual and physical realities. (See also Figure 1.1.)

Human interaction with this mixed reality will be based on various devices that make the immediate environment sensitive and responsive to the person in contact with it. Intelligence will become distributed across this heterogeneous network of devices that vary from passive radio frequency identification (RFID) tags to powerful computers and mobile devices. In addition, this device network will be capable of sharing information that is both measured by and stored in it, and of processing and evaluating the information on various levels.

Related content

Powered by UNSILO
[1] F., Zhao and L., Guibas, Wireless Sensor Networks, An Information Processing Approach, Morgan Kaufmann, 2004.
[2] G.-Z., Yang, Body Sensor Networks, Springer, 2006.
[3] T., Ryhanen, Impact of silicon MEMS – 30 years after, in Handbook of Silicon MEMS Materials and Technologies, V., Lindroos, M., Tilli, A., Lehto, and T., Motooka, eds., Elsevier, 2009 (in press).
[4] G., Meijer, ed., Smart Sensor Systems, Wiley, 2008.
[5] J. E., Huber, N. A., Fleck, and M. F., Ashby, The selection of mechanical actuators based on performance indices, Proc. R. Soc. Lond. A, 453, 2185-2205, 1997.
[6] S. P., Lacour, J., Jones, S., Wagner, T., Li, and Z., Suo, Stretchable interconnects for elastic electronic surfaces, Proc. IEEE, 93, 1459-1467, 2005.
[7] F. N., Hooge, T. G. M., Kleinpenning, and L. K. J., Vandamme, Experimental studies on 1/f noise, Rep. Prog. Phys., 44, 479-532, 1981.
[8] A., Van der Ziel, Noise in Solid State Devices and Circuits, Wiley, 1986.
[9] F. N., Hooge, 1 /f noise sources, IEEE Trans. Electron Devices, 41, 1926-1935, 1994.
[10] J., Chandrashekar, M. A., Hoon, N. J. P., Ryba, and C. S., Zuker, The receptors and cells of mammalian taste, Nature, 444, 288-294, 2006.
[11] E. A., Lumpkin and M. J., Caterina, Mechanisms of sensory transduction in the skin, Nature, 445, 858-865, 2007.
[12] Y., Tu, T. S., Shimizu, and H. C., Berg, Modeling the chemotactic response of Escherichia coli to time-varying stimuli, Proc. Natl Acad. Sci. (USA), 105, 14855-14860, 2008.
[13] S. D., Senturia, Microsystem Design, Kluwer, 2002.
[14] J., Monod, J., Wyman, and J. P., Changeux, On the nature of allosteric transitions: a plausible model, J. Mol. Biol., 12, 88-118, 1965.
[15] V., Sourjik, Receptor clustering and signal processing in E. coli chemotaxis, Trends Micro-biol., 12, 569-576, 2004.
[16] M. J., Tindall, S. L., Porter, P. K., Maini, G., Gaglia, and J. P., Armitage, Overview of mathematical approaches used to model bacterial chemotaxis I: the single cell, Bull. Math. Biol., 70, 1525-1569, 2008.
[17] X.-J., Huang and Y.-K., Chon, Chemical sensors based on nanostructured materials, Sensors and Actuators B: Chemical, 122, 659-671, 2007.
[18] L. G., Carrascosa, M., Moreno, M., Alvarez, and L. M., Lechuga, Nanomechanical biosensors: a newsensing tool, Trends Anal. Chem., 25, 196-206, 2006.
[19] G., Zheng, F., Patolsky, Y., Cui, W. U., Wang, and C. M., Lieber, Multiplexed electrical detection of cancermarkers withnanowire sensorarrays, Nat. Biotech, 23, 1294-1301, 2005.
[20] B., He, T. J., Morrow, and C. D., Keating, Nanowire sensors for multiplexed detection of biomolecules, Curr. Op. Chem. Biol., 12, 522-528, 2008.
[21] P. E., Sheehan and L. J., Whitman, Detection limits for nanoscale biosensors, Nano Lett., 5, 803-807, 2005.
[22] W., Yang, P., Thordarson, J. J., Gooding, S. P., Ringer, and F., Braet, Carbon nanotubes for biological and biomedical applications, Nanotech., 18, 1-12, 2007.
[23] Y., Dan, S., Evoy, and A. T. C., Johnson, Chemical gas sensors based on nanowires
[24] T. W., Tombler, C., Zhou, L., Alexseyev, et al., Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation, Nature, 405, 769-772, 2000.
[25] E. D., Minot, Y., Yaish, V., Sazonova, J.-Y., Park, M., Brink, and P. L., McEuen, Tuning carbon nanotube band gaps with strain, Phys. Rev. Lett., 90, 156401, 2003.
[26] J., Cao, Q., Wang, and H., Dai, Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching, Phys. Rev. Lett., 90, 157601, 2003.
[27] C., Hierold, Frommicro-to nanosystems: mechanical sensors gonano, J. Micromech. Microeng., 14, S1-S11, 2004.
[28] C., Stampfer, A., Jungen and C., Hierold, Single Walled Carbon Nanotubes as Active Elements in Nano Bridge Based NEMS, in Proceedings of the 2005 5th IEEE Conference on Nanotechnology, IEEE, 2005.
[29] C., Stampfer, T., Helbling, D., Obergfell, et al.Fabrication of single-walled carbon-nanotube-based pressure sensors, Nano Lett., 6, 233-237, 2006.
[30] P. G., Collins, M. S., Fuhrer, and A., Zettl, 1 /fnoise in carbon nanotubes, Appl. Phys. Lett., 76, 894-896, 2000.
[31] Z. L., Wang and J., Song, Piezoelectric nanogenerators basedonzinc oxide nanowire arrays, Science, 312, 242-246, 2006.
[32] X., Wang, J., Zhou, J., Song, J., Liu, N., Xu, and Z. L., Wang, Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire, Nano Lett., 6, 2768-2772, 2006.
[33] J. H., He, C. L., Hsin, J., Liu, L. J., Chen, andZ. L., Wang, Piezoeletric gated diode of a single ZnO nanowire, Adv. Mat., 19, 781-784, 2007.
[34] Z., Wang, J., Hu, A. P., Suryavanshi, K., Yum, and M.-F., Yu, Voltage generation from individual BaTiO3 nanowires under periodic tensile mechanical load, Nano Lett., 7, 2966-2969, 2007.
[35] X., Wang, J., Song, J., Liu, and Z. L., Wang, Direct-current nanogenerator driven by ultrasonic waves, Science, 316, 102-105, 2007.
[36] W. S., Su, Y. F., Chen, C. L., Hsiao, and L. W., Tu, Generation of electricity in GaN nanorods induced by piezoelectric effect, Appl. Phys. Lett., 90, 063110, 2007.
[37] J., Zhou, P., Fei, Y., Gao, et al., Mechanical-electrical triggers and sensors using piezoelectric microwires/nanowires, Nano Lett., 8, 2725-2730, 2008.
[38] F., Patolsky, G., Zheng, and C. M., Lieber, Nanowire-based biosensors, Anal. Chem., 78, 4260-4269, 2006.
[39] H.-H., Park, S., Jin, Y. J., Park, and H. S., Min, Quantum simulation of noise in silicon nanowire transistors, J. Appl. Phys., 104, 023708, 2008.
[40] S., Reza, G., Bosman, M. S., Islam, T. I., Kamins, S., Sharma, and R. S., Williams, Noise in silicon nanowires, IEEE Trans. Nanotech., 5, 523-529, 2006.
[41] J., Kivioja, A., Colli, M., Bailey, and T., Ryhanen, Double Gated Silicon Nanowwire Field Effect Transistors as Charge Detection Based Bio and Chemical Sensors, to be published.
[42] A., Bid, A., Bora, and A. K., Raychaudhuri, 1 /fnoise in nanowires, Nanotech., 17, 152-156, 2006.
[43] J., Kong, N. R., Franklin, C., Zhou, et al., Nanotube molecular wires as chemical sensors, Science, 287, 622-625, 2000.
[44] D., Zhang, C., Li, X., Liu, S., Han, T., Tang, and C., Zhou, Doping dependent NH3 sensing of indiumoxide nanowires, Appl. Phys. Lett., 83, 1845-1847, 2003.
[45] Z., Fan, D., Wang, P.-C., Chang, W.-Y., Tseng, and J. G., Lu, ZnO nanowire field-effect transistor and oxygen sensing property, Appl. Phys. Lett., 85, 5923-5925, 2004.
[46] Z., Fan and J. G., Lu, Chemical sensing with ZnO nanowire field-effect transistor, IEEE Trans. Nanotech., 5, 393-396, 2006.
[47] V. V., Sysoev, J., Goschnick, T., Schneider, E., Strelcov, and A., Kolmakov, A gradient microarray electronic nose based on percolating SnO2 nanowire sensing elements, Nano Lett., 7, 3182-3188, 2007.
[48] P.-C., Chen, F. N., Ishikawa, H.-K., Chang, K., Ryu, and C., Zhou, A nanoelectronic nose: a hybrid nanowire/carbon nanotube sensor array with integrated micromachined hotplates for sensing gas discrimination, Nanotech., 20, 125503, 2009.
[49] M. Y., Zavodchikova, T., Kulmala, A. G., Nasibulin, et al., Carbon nanotube thin film transistors based on aerosol methods, Nanotech., 20, 085201, 2009.
[50] T., Mattila, J., Kiihamäki, T., Lamminmaki, et al., 12 MHz micromechanical bulk acoustic mode oscillator, Sensor and Actuators, A101, 1-9, 2002.
[51] G., Piazza, R., Abdolvand, and F., Ayazi, Voltage-tunable piezoelectrically-transduced single-crystal silicon resonators on SOI substrate, in Proceedings of the IEEE Sixteenth Annual International Conference on Micro Electro Mechanical Systems (MEMS-03), pp. 149-152, IEEE, 2003.
[52] S., Humad, R., Abdolvand, G., Ho, G., Piazza, and F., Ayazi, High frequency micromechanical piezo-on-silicon block resonators, in Proceedings of the IEEE Sixteenth Annual International Conference on Micro Electro Mechanical Systems (MEMS-03), pp. 39-43, IEEE, 2003.
[53] V., Kaajakari, T., Mattila, A., Oja, and H., Seppa, Nonlinear limits for single-crystal silicon microresonators, J. Microelectromechanical Systems, 13, 715-724, 2004.
[54] A., Cleland, Foundations of Nanomechanics, Springer, 2003.
[55] A. N., Cleland and M. L., Roukes, Noise processes in nanomechanical resonators, J. Appl. Phys, 92, 2758-2769, 2002.
[56] K. L., Ekinci, Y. T., Yang, and M. L., Roukes, Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems, J. Appl. Phys., 95, 2682-2689, 2004.
[57] K. L., Ekinci and M. L., Roukes, Nanoelectromechanical systems, Rev. Sci. Instrum., 76, 061101, 2005.
[58] A. K., Naik, M. S., Hanay, W. K., Hiebert, X. L., Feng, and M. L., Roukes, Towards single-molecule nanomechanical mass spectrometry, Nature Nanotech., 4, 445-450, 2009.
[59] W. G., Conley, A., Raman, C. M., Krousgrill, and S., Mohammadil, Nonlinear and nonplanar dynamics of suspended nanotube and nanowire resonators, Nano Lett., 6, 1590-1595, 2008.
[60] R., He, X. L., Feng, M. L., Roukes, and P., Yang, Self-transducing silicon nanowire electrome-chanicalsystems at room temperature, Nano Lett., 8, 1756-1761, 2008.
[61] X. L., Feng, C. J., White, A., Hajimiri, and M. L., Roukes, Aself-sustaining ultrahigh-frequency nanoelectromechanical oscillator, Nature Nanotech., 3, 342-346, 2008.
[62] A., Colli, A., Fasoli, S., Pisana, et al., Nanowire lithography on silicon, Nano Lett., 8, 1358-1362, 2008.
[63] B., Lassagne, D., Garcia-Sanchez, A., Aguasca, and A., Bachtold, Ultrasensitive mass sensing with a nanotube electromechanical resonator, Nano Lett., 8, 3735-3738, 2008.
[64] J. S., Bunch, A. M., van der Zande, S. S., Verbridge, et al., Electromechanical resonators from graphene sheets, Science, 315, 490-493, 2007.
[65] J. T., Robinson, M., Zalalutdinov, J. W., Baldwin, et al., Wafer-scale reduced graphene oxide films for nanomechanical devices, Nano Lett., 8, 3441-3445, 2008.
[66] K., Jensen, J., Weldon, H., Garcia, and A., Zettl, Nanotube radio, Nano Lett., 7, 3508-3511, 2007.
[67] K., Jensen, K., Kim, and A., Zettl, An atomic-resolution nanomechanical mass sensor, Nature Nanotechnology, 3, 533-537, 2008.
[68] W. A., de Heer, A., Châtelain, and D. A., Ugarte, Carbon nanotube field-emission electron source, Science, 270, 1179-1180, 1995.
[69] S., Itoh and M., Tanaka, Current status of field-emission displays, Proc. IEEE, 90, 514-520, 2002.
[70] G., Amaratunga, Watching the nanotube, IEEE Spectrum, 40, 28-32, 2003.
[71] A., Ayari, P., Vincent, S., Perisanu, et al., Self-oscillations in field emission nanowire mechanical resonators: a nanometric dc/ac conversion, 7, 2252-2257, 2007.
[72] C., McDonagh, C. S., Burke and B. D., MacCraith, Optical chemical sensors, Chem. Rev., 108, 400-422, 2008.
[73] X., Fan, I. M., White, S. I., Shopova, H., Zhu, J. D., Suter, and Y., Sun, Sensitive optical biosensors for unlabelled targets: a review, Anal. Chim. Acta, 620, 8-26, 2008.
[74] J., Homola. Surface plasmon resonance sensors for detection of chemical and biological species, Chem. Rev., 108, 462-493, 2008.
[75] K., Kneipp, M., Moskovits, and H., Kneipp, eds., Surface-Enhanced Raman Scattering-Physics and Applications, Topics in Applied Physics, vol. 103, Springer, 2006.
[76] S. A., Maier, Plasmonics: Fundamentals and Applications, Springer, 2007.
[77] Merging Optics and Nanotechnologies Consortium, 2008, A European Roadmap for Photonics and Nanotechnologies, Available:
[78] C., Nylander,B., Liedberg, and T., Lind, Gas detection by means of surface plasmon resonance, Sens. Act., 3, 79, 1982.
[79] H., Raether, Surface Plasmons, Springer-Verlag, 1988.
[80] M., E Stewart, C. R., Anderson, L. B., Thompson, et al., Nanostructured plasmonics sensors, Chem. Rev., 108, 94-521, 2008.
[81] E., Bakker and Y., Qin, Electrochemical sensors, Anal. Chem., 78, 3965-3984, 2006.
[82] C., Amatore, S., Arbault, M., Guille, and F., Lemaitre, Electrochemical monitoring of single cellsecretion: vesicular exocytosis and oxidative stress, Chem. Rev., 108, 2585-2621, 2008.
[83] F., Fan, J., Kwak, and A. J., Bard, Single molecule electrochemistry, J. Am. Chem. Soc., 118, 9669-9675, 1996.
[84] R. T., Kennedy, L., Huang, M., Atkinson, and P., Dush, Amperometric monitoring of chemical secretions from individual pancreatic beta-cells, Anal. Chem., 65, 1882-1887, 1993.
[85] Y., Cui, Q., Wei, H., Park, and C. M., Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science, 293, 1289-1292, 2001.
[86] C. P., Andrieux, P., Hapiot, and J. M., Saveant, Ultramicroelectrodes for fast electrochemical kinetics, Electroanalysis, 2, 183-193, 1990.
[87] A. J., Bard and L. R., Faulkner, Potential sweep methods in Electrochemical Methods, Fundamentals and Applications, second edition, pp. 226-260, Wiley, 2001.
[88] A. J., Bard, J. A., Crayston, G. P., Kittlesen, T., VarcoShea, and M. S., Wrighton, Digitalsimulation of the measured electrochemical response of reversible redox couples at microelectrode arrays: consequences arising from closely spaced ultramicroelectrodes, Anal. Chem., 58, 2321-2331, 1986.
[89] E., Stern, J. F., Klemic, D. A., Routenberg, et al., Label-free immunodetection with CMOS-compatible semiconducting nanowires, Nature, 445, 519-522, 2007.
[90] P. R., Nair and M. A., Alam, Screening-limited response of nanobiosensors, Nano Lett., 8, 1281-1285, 2008.
[91] J., Wang, Electrochemical biosensors: towards point-of-care cancer diagnostics, Biosens. Bioelectron., 21, 1887-1892, 2006.
[92] J., Hahm and C. M., Lieber, Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors, Nano Lett., 4, 51-54, 2004.
[93] H., Reller, E., Kirowa-Eisner, and E., Gileadi, Ensembles of microelectrodes: digital simulation by the two dimensional expanding grid method. Cyclic voltammetry, iR effects and applications, J. Electroanal. Chem., 161, 247-268, 1984.
[94] I. F., Cheng, L. D., Whiteley and C. R., Martin, Ultramicroelectrode ensembles. Comparisonof experimental and theoretical responses and evaluation of electroanalytical detection limits, Anal. Chem., 61, 762-766, 1989.
[95] V. P., Menon and, C. R., Martin, Fabrication and evaluation of nanoelectrode ensembles, Anal. Chem., 67, 1920-1928, 1995.
[96] Y., Netzer, The design of low-noise amplifier, Proc. IEEE, 69, 728-741, 1981.
[97] W., Gerstner and W., Kistler, Spiking Neuron Models–Single Neurons, Populations, Plasticity, Cambridge University Press, 2002.
[98] T., Morie, T., Matsuura, M., Nagata, and A., Iwata, A multinanodot floating-gate MOSFET circuit for spiking neuron models, IEEE Trans. Nanotech., 2, 158-164, 2003.
[99] A. V. M., Herz, T., Gollisch, C. K., Machens, and D., Jaeger, Modeling single-neuron dynamics and computations: a balance of detail and abstraction, Science, 314, 80-85, 2006.
[100] L. O., Chua and S. M., Kang, Memristive devices and systems, Proc. IEEE, 64, 209-223, 1976.
[101] R., Waser and M., Aono, Nanoionics-based resistive switching memories, Nature Mat., 6, 833-840, 2007.
[102] D. B., Strukov, G. S., Snider, D. R., Stewart, and R. S., Williams, The missing memristor found, Nature, 453, 80-83, 2008.
[103] J. J., Yang, M. D., Pickett, X., Li, D. A. A., Ohlberg, D. R., Stewart, and R. S., Williams, Memristive switching mechanism for metal/oxide/metal nanodevices, Nature Nanotech., 3, 429-433, 2008.
[104] M., Rinkio, A., Johansson, G. S., Paraoanu, and P., Torma, High-speed memory from carbon nanotube field-effect transistors with high-/c gate dielectric, Nano Lett., 9, 643-647, 2009.
[105] S. H., Jo, K.-H., Kim, and W., Lu, High-density crossbar arrays based on a Si memristive system, Nano Lett., 9, 870-874, 2009.
[106] L., Gammaitoni, P., Hanggi, P., Jung, and F., Marchesoni, Stochastic resonance, Rev. Mod. Phys, 70, 223-287, 1998.
[107] M. D., Donnell, N. G., Stocks, C. E. M., Pearce, and D., Abbott, Stochastic Resonance–From Suprathreshold Stochastic Resonance to Stochastic Signal Quantization, Cambridge University Press, 2008.
[108] J. J., Collins, C. C., Chow, and T. T., Imhoff, Stochastic resonance without tuning, Nature, 376, 236-238, 1995.
[109] R. L., Badzey and P., Mohanty, Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance, Nature, 437, 995-998, 2005.
[110] F., Martorell, M. D., McDonnell, A., Rubio, and D., Abbott, Using noise to break the noise barrier in circuits, in Proceedings of the SPIE Smart Structures, Devices, and Systems II, vol. 5649, S.F., Al-Sarafi, ed., pp. 53-66, SPIE, 2005.
[111] I., Lee, X., Liu, C., Zhou, and B., Kosko, Noise-enhanced detection of subthreshold signals with carbon nanotubes, IEEE Trans. Nanotech., 5, 613-627, 2006.
[112] T., Oya, T., Asai, and Y., Amemiya, Stochastic resonance in an ensemble of single-electron neuromorphic devices and its application to competitive neural networks, Chaos, Solitons and Fractals, 32, 855-861, 2007.
[113] S., Kasai and T., Asai, Stochastic resonance in Schottky wrap gate-controlled GaAs field-effect transistors and their networks, Appl. Phys. Express, 1, 1-3, 2008.
[114] J. R., Heath, P. J., Kuekes, G. S., Snider, and R. S., Williams, A defect-tolerant computer architecture: opportunities for nanotechnology, Science, 280, 1716-1721, 1998.
[115] M. M., Ziegler and M. R., Stan, CMOS/nano co-design for crossbar-based molecular electronic systems, IEEE Trans. Nanotechnology, 2, 217-230, 2003.
[116] Ö., Türel, J. H., Lee, X., Ma, and K. K., Likharev, Neuromorphic architectures for nanoelectronic circuits, Int. J. Circ. Theor. Appl., 32, 277-302, 2004.
[117] D. B., Strukov and K. K., Likharev, CMOL FPGA: a reconfigurable architecture for hybrid circuits with two-terminal nanodevices, Nanotechnology, 16, 888-900, 2005.
[118] X., Ma, D. B., Strukov, J. H., Lee, and K. K., Likharev, Afterlife for silicon: CMOL circuit architectures, in Proceedings of the Fifth IEEE Conference on Nanotechnology (2005), IEEE, 2005.
[119] A., DeHon, Nanowire-based programmable architectures, ACM J. Emerging Technol. Computing Sys., 1, 109-162, 2005.
[120] C. A., Moritz, T., Wang, P., Narayanan, et al., Fault-tolerant nanoscale processors on semiconductor nanowire grids, IEEE Trans. Circuits Syst. I, 54, 2422-2437, 2007.
[121] G. S., Snider and R. S., Williams, Nano/CMOS architectures using a field-programmable nanowire interconnect, Nanotech., 18, 1-11, 2007.
[122] F. C., Hoppensteadt and E. M., Izhikevich, Pattern recognition via synchronization in phase-locked loop neural networks, IEEE Trans. Neural Networks, 11, no. 3, 734-738, 2000.
[123] F. C., Hoppensteadt and E. M., Izhikevich, Synchronization of MEMS resonators and mechanical neurocomputing, IEEE Trans. Circuits Syst. I, 48, no. 2, 133-138, 2001.
[124] A., Pikovsky, M., Rosenblum, and J., Kurths, Synchronization – A Universal Concept in Nonlinear Sciences, Cambridge University Press, 2001.
[125] E., Buks and M. L., Roukes, Electrically tunable collective response in a coupled micromechanical array, J. Microelectromechanical Systems, 11, 802-807, 2002.
[126] M., Sato, B. E., Hubbard, A. J., Sievers, B., Ilic, D. A., Czaplewski, and H. G., Craighead, Observation of locked intrinsic localized vibrational modes in a micromechanical oscillator array, Phys. Rev. Lett., 90, 044102, 2003.
[127] R., Lifshitz and M. C., Cross, Response of parametrically driven nonlinear coupled oscillators with application to micromechanical and nanomechanical resonator arrays, Phys. Rev., B67, 134302, 2003.
[128] M. C., Cross, A., Zumdieck, R., Lifshitz, and J. L., Rogers, Synchronization by nonlinear frequency pulling, Phys. Rev. Lett., 93, 224101, 2004.
[129] M. K., Zalalutdinov, J. W., Baldwin, M. H., Marcus, R. B., Reichenbach, J. M., Parpia, and B. H., Houston, Two-dimensional array of coupled nanomechanical resonators, Appl. Phys. Lett., 88, 143504, 2006.
[130] N., Nefenov, Applications of coupled nanoscale resonators for spectral sensing, J. Phys.: Condens. Matter, 21, 2009, in press.
[131] E., Goto, The parametron, a digital computing element which utilizes parametric oscillation, Proc. IRE, 1304-1316, 1959.
[132] I., Mahboob and H., Yamaguchi, Bit storage and bit flip operations in an electromechanical oscillator, Nature Nanotech., 3, 275-279, 2008.
[133] L., Lin, R., Osan, andJ. Z., Tsien, Organizing principles of real-time memory encoding: neural clique assemblies and universal neural codes, Trends Neurosciences, 29, 48-57, 2006.
[134] J., Hertz, A., Krogh, and R. G., Palmer, Introduction to the Theory of Neural Computation, Santa Fe Institute in the Science of Complexity, Westview Press, 1991.
[135] E., Alpaydin, Introduction to Machine Learning, MIT Press, 2004.
[136] N., Cristianini and J., Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods, Cambridge University Press, 2000.
[137] M., Uusitalo, J., Peltonen, and T., Ryhanen, Machine Learning: How It Can Help Nanocom-puting, to be published, 2009.
[138] Y., Bar-Cohen, T., Xue, M., Shahinpoor, J., Simpson, and J., Smith, Flexible, low-mass robotic arm actuated by electroactive polymers and operated equivalently to human arm and hand, in the Proceedings of Robotics 98: The Third Conference and Exhibition/Demonstration on Robotics for Challenging Environments (1998), ASCE, 1998.
[139] D., Voet, J. G., Voet, and C. W., Pratt, Fundamentals of Biochemistry, Life at the Molecular Level, second edition, pp. 1072-1114, Wiley, 2006.
[140] A., Ummat, A., Dubey and C., Mavroidis, Bio-nanorobotics: a field inspired by nature, in Biomimetics, Biologically Inspired Technologies, Y., Bar-Cohen, ed., Taylor & Francis, 2006.
[141] Y., Bar-Cohen, Artificial muscles using electroactive polymers, in Biomimetics, Biologically Inspired Technologies, Y., Bar-Cohen, ed., Taylor & Francis, 2006.
[142] R. M., Walser, Metamaterials: an introduction, in Introduction to Complex Mediums for Electromagnetics and Optics, W. S., Weiglhofer and A., Lakhtakia, eds., SPIE Press, 2003.
[143] R. D., Kornbluh, R. E., Pelrine, H., Prahlad and S. E., Stanford, Mechanical meta-materials, International Patent Number WO2005/089176A2, 2005.
[144] R. H., Baughman, and L. W., Shacklette, Application of dopant-induced structure property changes of conducting polymers, in Science and Applications of Conducting Polymers, W. R., Salanek, D. T., Clark, E. J., Samuelson, eds., p. 47, AdamHilger, 1991.
[145] T. F., Otero and E., de Larreta-Azelain, Electrochemical control of themorphology, adherence, appearance and growth of polypyrrole films, Synth. Met., 26, 79-88, 1988.
[146] E. W. H., Jager, E., Smela, and O., Inganas, Microfabricating conjugated polymer actuators, Science, 290, 1540-1545, 2000.
[147] E., Smela, O., Inganas, andW., Lu, Controlled folding of micrometer-size structures, Science, 268, 1735-1738, 1995.
[148] T. F., Otero and M. T., Cortes, Artificial muscles with tactile sensitivity, Adv. Mater., 15, 279-282, 2003.
[149] J. M., Sansinena, V, Olazabal, T. F., Otero, C. N., Polo da Fonseca, and M. A., De Paoli, A solid state artificial muscle based on polypyrrole and a solid polymeric electrolyte working in air, Chem. Commun., 22, 2217-2218, 1997.
[150] R. H., Baughman, C. X., Cui, A. A., Zakhidov, et al., Carbon nanotube actuators, Science, 284, 1340-1344, 1999.
[151] T., Fukushima, A., Kosaka, Y., Ishimura, et al., Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes, Science, 300, 2072-2074, 2003.
[152] T., Fukushima, K., Asaka, A., Kosaka, and T., Aida, Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel, Angew. Chem. Int. Ed., 44, 2410-2413, 2005.
[153] G., Gu, M., Schmid, P. W., Chiu, et al., V2O5 nanofibre sheet actuators, Nat. Mater., 2, 316-319, 2003.