Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2010
  • Online publication date: July 2014

2 - On the possible developments for the structural materials relevant for future mobile devices


Materials science and processing technologies of electronics materials have been central to the rapid progress that we have experienced in electronics and its applications. Drastically new options are being realized and these can have a major impact on mobile devices, based on applications related to, e.g., flexible and polymer electronics and roll-to-roll processes. Mobile devices are, however, balanced combinations of electronics and peripheral structures, in which the latter are also strongly dependent on the advanced materials that are available. There is expected to be relevant progress in materials science contributing to the structural parts of mobile devices, e.g., promoting lightweight construction, rigidity, flexibility, adaptability, functional materials, sensing, dirt repellency, adhesive properties, and other surface properties. In this chapter we will review some of the potential future developments, leaving some others to be discussed in later chapters since they are intimately related to the developments of the electronics. We expect the most significant developments to take place in “soft” organic and polymeric materials and nanostructured organic-inorganic hybrids and therefore the main emphasis is there. Biological materials offer illustrative examples of advanced materials properties providing versatile lightweight, functional, and sustainable structures, showing potential for the design of novel materials.


It is expected that new multifunctional materials with specific combinations of properties will extensively be developed for the structural parts and user interfaces of future mobile devices. Adaptivity, sensing, and context awareness are key sought-after features, and are described widely in the different chapters of this book.

Related content

Powered by UNSILO
[1] P., Ball, Designing the Molecular World, Chemistry at the Frontier, Princeton University Press, 1994.
[2] G. M., Whitesides and B., Grzybowski, Self-assembly at all scales, Science, 295, 2418-2421, 2002.
[3] R.A.L., Jones, Soft Machines: Nanotechnology and Life, Oxford University Press, 2004.
[4] P.M., Ajayanet al., eds., Nanocomposite Science and Technology, VCH-Wiley, 2004.
[5] G. A., Ozin and A. C., Arsenault, Nanochemistry; A Chemical Approach for Nanomaterials, The Royal Society of Chemistry, 2005.
[6] K., Matyjaszewskiet al., eds., Macromolecular Engineering, Wiley-VCH, 2007.
[7] P., Fratzl, Biomimetic materials research: what can we really learn from nature's structural materials?, J. R. Soc. Interface, 4, 637-642, 2007.
[8] M. A., Meyerset al., Biological materials: Structure and mechanical properties, Prog. Mater Science, 53, 1-206, 2008.
[9] S. D., Bergman and F., Wudl, Mendable polymers, J. Mater Chem., 18, 41-62, 2008.
[10] P., Cordieret al., Self-healing and thermoreversible rubber from supramolecular assembly, Nature, 451, 977-980, 2008.
[11] R. P., Wool, Self-healing materials: a review, Soft Matter, 4, 400-418, 2008.
[12] P.-G., de Genneset al., Capillarity and Wetting Phenomena; Drops, Bubbles, Pearls, and Waves, Springer-Verlag, 2002.
[13] R., Blossey, Self-cleaning surfaces-virtual realities, Nat. Mat., 2, 301-306, 2003.
[14] A., Tutejaet al., Designing superoleophobic surfaces, Science, 318, 1618-1622, 2007.
[15] D., Quere, Wetting and roughness, Annu. Rev. Mat. Res., 38, 71-99, 2008.
[16] H., Gleiter, Our thoughts are ours, their ends none of our own: Are there ways to synthesize materials beyond the limitations of today?, Acta Mat, 56, 5875-5893, 2008.
[17] M. C., Petty, Molecular Electronics; from Principles to Applications, Wiley, 2007.
[18] G., Hadziioannou and C. G., Malliaras, eds., Semiconducing Polymers; Chemistry, Physics and Engineering, Wiley-VCH, 2007.
[19] H. S., Nalwa, ed., Handbook of Organic Electronics and Photonics, American Scientific Publishers, 2008.
[20] N., Kochet al., Special Issue: “Organic Materials for Electronic Applications”, Appl. Phys. A: Mater. Sci. Process, 95, 2009.
[21] Y., Linet al., Self-directed self-assembly of nanoparticle/copolymer mixtures, Nature, 434, no. 3, 55-59, 2005.
[22] A. C., Balazset al., Nanoparticlepolymercomposites: where two small world smeet, Science, 314, 1107-1110, 2006.
[23] B. E., Chenet al., A critical appraisal of polymerclay nanocomposites, Chem. Soc. Rev., 37, 568-594, 2008.
[24] D. R., Paul and L. M., Robeson, Polymer nanotechnology: nanocomposites, Polymer, 49, 3187-3204, 2008.
[25] G. M., Whitesides, Self-assembling materials, Sci. Am., 273, 146, 1995.
[26] F. S., Bates and G. H., Fredrickson, Block copolymers – designer soft materials, Physics Today, 52, 32-38, 1999.
[27] I. W., Hamley, Nanotechnology with soft materials, Angew. Chem. Int. Ed., 42, 1692-1712, 2003.
[28] B. L., Zhou, Bio-inspired study of structural materials, Mat. Sci. Eng. C, 11, 13-18, 2000.
[29] U. G. K., Wegst and M. F., Ashby, The mechanical efficiency of natural materials, Philos. Mag., 84, 2167-2186, 2004.
[30] M. F., Ashby, On the engineering properties of materials, Acta Metall., 5, 1273-1293, 1989.
[31] Z., Tanget al., Nanostructured artifical nacre, Nat. Mat., 2, 413-418, 2003.
[32] P., Fratzlet al., J. Mat. Chem., 14, 2115-2123, 2004.
[33] B., Fiedleret al., Fundamental aspects of nano-reinforced composites, Comp. Sci. Tech., 66, 3115-3125, 2006.
[34] S. C., Tjong, Structural and mechanical properties of polymer nanocomposites, Mater. Sci. Eng. R, 53, 73-197, 2006.
[35] P., Podsiadloet al., Ultrastrong and stiff layered polymer nanocomposites, Science, 318, 80-83, 2007.
[36] D. W., Schaefer and R. S., Justice, How nano are nanocomposites?, Macromolecules, 40, 8501-8517, 2007.
[37] M., Alexandre and P., Dubois, Nanocomposites, in Macromolecular Engineering, vol. 4, K., Matyjaszewskiet al., eds., pp. 2033-2070, Wiley-VCH, 2007.
[38] L. J., Bondereret al., Bioinspired design and assembly of platelet reinforced polymer films, Science, 319, 1069-1073, 2008.
[39] L. A., Utracki, Clay-Containing Polymer Nanocomposites, Rapra Technology Ltd., 2004.
[40] J., Njuguna and K., Pielichowski, Polymer nanocomposites for aerospace applications: characterization, Adv. Eng. Mater., 6, 204-210, 2004.
[41] W., Wanget al., Effective reinforcement in carbon nanotube-polymer composites, Phil. Trans. R. Soc. A, 366, 1613-1626, 2008.
[42] A., Usukiet al., Synthesis of nylon 6–clay hybrid, J. Mater. Res., 8, 1179-1184, 1993.
[43] K., Yanoet al., Synthesis and properties of polyimideclay hybrid, J. Polym. Sci., Part A: Polym. Chem., 31, 2493-2498, 1993.
[44] A., Okada and A., Usuki, The chemistry of polymerclay hybrids, Mater. Sci. Eng. C, 3, 109-115, 1995.
[45] M., Okamotoet al., A house of cards structure inpolypropylene/claynano composites under elongational flow, Nano Letters, 1, no. 6, 295-298, 2001.
[46] S. S., Ray and M., Okamoto, Polymer/layered silicate nanocomposites: a review from prepa-rationto processing, Prog. Polym. Sci., 28, 1539-1641, 2003.
[47] F., Gao, Mater. Today, 7, 50, 2004.
[48] A., Usukiet al., Polymerclay nanocomposites, Adv. Polym. Sci., 179, 135-195, 2005.
[49] M., Okamoto, Polymer/layered filled nanocomposites: an overview from science to technology, in Macromolecular Engineering, vol. 4, K., Matyjaszewski, et al., eds., pp. 2071-2134, Wiley-VCH, 2007.
[50] A. J., Patil and S., Mann, Self-assembly of bio-inorganic nanohybrids using organoclay building blocks, J. Mat. Chem., 18, 4605-4615, 2008.
[51] S., Srivastava and N. A., Kotov, Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires, Acc. Chem. Res., 41, 1831-1841, 2008.
[52] P., Bordeset al., Nano-biocomposites: biodegradable polyester/nanoclay systems, Prog. Polym. Sci, 34, 125-155, 2009.
[53] O. L., Manevitch and, G. C., Rutledge, Elasticproperties of a single lamella of montmorillonite by molecular dynamics simulation, J. Phys. Chem B, 108, 1428-1435, 2004.
[54] J.-H., Leeet al., Properties of polyethylene-layered silicate nanocomposites prepared by melt intercalation with a PP-g-MA compatibilizer, Composite Sci. Tech., 65, 1996-2002, 2005.
[55] J. R., Capadonaet al., A versatile approach for the processing of polymer nanocomposites with self-assembled nanofiber templates, Nat. Nanotech., 2, 765-768, 2007.
[56] A., Dufresne, Polysaccharide nano crystal reinforced nanocomposites, Can. J. Chem., 86, 484-494, 2008.
[57] S. V., Ahiret al., Polymers with aligned carbon nanotubes: Active composite materials, Polymer, 49, 3841-3854, 2008.
[58] E. W., Wonget al., Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science, 277, 1971-1975, 1997.
[59] M.-F., Yuet al., Carbonnanotubes undertensile load, Science, 287, 637-640, 2000.
[60] M., Alexandre and P., Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Mat. Sci. Eng., 28, 1-63, 2000.
[61] R. R. S., Schlittleret al., Single crystals of single-walled carbon nanotubes formed by self-assembly, Science, 292, 1139, 2001.
[62] A. B., Daltonet al., Super-tough carbon-nanotube fibers, Nature, 423, 703-2003.
[63] T., Fukushimaet al., Molecularordering of organic moltensalts triggeredby single-walled carbon nanotubes, Science, 300, 2072-2074, 2003.
[64] C., Wanget al., Polymers containing fullerene or carbon nanotube structures, Prog. Polym. Sci., 29, 1079-1141, 2004.
[65] J. H., Rouseet al., Polymer/single-walled carbon nanotube films assembled via donor-acceptor interactions and their use as scaffolds for silica deposition, Chem. Mater., 16, 3904-3910, 2004.
[66] T., Liuet al., Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites, Macromolecules, 37, 7214-7222, 2004.
[67] M., Zhanget al., Strong, transparent, multifunctional, carbonnanotube sheets, 309, 1215-1219, 2005.
[68] L., Jiang and L., Gao, Fabrication and characterization of ZnO-coated multi-walled carbon nanotubes with enhanced photocatalytic activity, Mat. Chem. Phys., 91, 313-316, 2005.
[69] J. N., Coleman, et al., Mechanical reinforcement of polymers using carbon nanotubes, Adv. Mat., 18, 689-706, 2006.
[70] M., Oleket al., Quantum dot modified multiwall carbon nanotubes, J. Phys. Chem. B, 110, 12901-12904, 2006.
[71] M., Moniruzzamanet al., Tuning the mechanical properties of SWNT/nylon 6, 10 composites with flexible spacers at the interface, Nano Lett., 7, 1178-1185, 2007.
[72] L., Bokobza, Multiwall carbon nanotube elastomeric composites: a review, Polymer, 48, 4907-4920, 2007.
[73] Y., Liuet al., Noncovalent functionalization of carbon nanotubes with sodium lignosulfonate and subsequent quantum dot decoration, J. Phys. Chem. C, 111, 1223-1229, 2007.
[74] Y., Yeet al., High impact strength epoxy nanocomposites with natural nanotubes, Polymer, 48, 6426-6433, 2007.
[75] P., Miaudetet al., Hot-drawing of single and multiwall carbon nanotube fibers for high toughness and alignment, Nano Lett., 5, 2212-2215, 2005.
[76] R., Haggenmuelleret al., Interfacial in situ polymerization of single wall carbon nanotube/ nylon 6,6 nanocomposites, Polymer, 47, 2381-2388, 2006.
[77] K., Fleminget al., Cellulose crystallites, Chem. Eur. J., 7, 1831-1835, 2001.
[78] D., Klemmet al., Cellulose: fascinating biopolymer and sustainable raw material, Angew. Chem. Int. Ed., 44, 3358-3393, 2005.
[79] M., Nogiet al., Optically transparent nanofiber paper, Adv. Mat., 20, 1-4, 2009.
[80] J. R., Capadonaet al., Stimuli-responsive polymer nanocomposites inspired by the sea cucumberdermis, Science, 319, 1370-1374, 2008.
[81] M., Henrikssonet al., An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers, Eur. Polym. J., 43, no. 8, 3434-3441, 2007.
[82] M., Pääkköet al., Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels, Biomacromolecules, 8, 1934-1941, 2007.
[83] M., Pääkköet al., Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities, Soft Matter, 4, 2492-2499, 2008.
[84] M., Henrikssonet al., Cellulose nanopaper structures of high toughness, Biomacromolecules, 9, 1579-1585, 2008.
[85] A. N., Nakagaito and H., Yano, Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure, Appl. Phys. A, 80, 155-159, 2005.
[86] M., Nogi and H., Yano, Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry, Adv. Mat., 20, 1849-1852, 2008.
[87] T., Zimmermanet al., Cellulose fibrils for polymer reinforcement, Adv. Eng. Mater., 6, no. 9, 754-761, 2004.
[88] F. J. M., Hoebenet al., About supramolecular assemblies of n-conjugated systems, Chem. Rev., 105, 1491-1546, 2005.
[89] J., Ruokolainenet al., Switching supramolecular polymeric materials with multiple length scales, Science, 280, 557-560, 1998.
[90] S., Valkamaet al., Self-assembled polymeric solid films with temperature-induced large and reversible photonic bandgap switching, Nat. Mat., 3, 872-876, 2004.
[91] R. P., Sijbesmaet al., Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding, Science, 278, 1601-1604, 1997.
[92] T., Thurn-Albrechtet al., Ultrahigh-density nanowire arrays grown in self-assembled copolymer templates, Science, 290, 2126-2129, 2000.
[93] C., Tanget al., Evolution of block copolymer lithography to highly ordered square arrays, Science, 322, 429-432, 2008.
[94] S., Parket al., Macroscopic 10-terabit-per-square-inch arrays from block copolymers with lateral order, Science, 323, 1030-1033, 2009.
[95] M., Muthukumaret al., Competing interactions and levels of ordering in self-organizing polymeric materials, Science, 277, 1225-1232, 1997.
[96] A., Pron and P., Rannou, Processible conjugated polymers: from organic semiconductors to organic metals and superconductors, Prog. Polym. Sci., 27, 135-190, 2002.
[97] P., Leclereet al., Supramolecular organization in block copolymers containing a conjugated segment: a joint AFM/molecular modeling study, Prog. Polym. Sci., 28, 55-81, 2003.
[98] V., Percecet al., Controlling polymer shape through the self-assembly of dendritic side-groups, Nature, 391, 161-164, 1998.
[99] X., Fenget al., Towards high charge-carrier mobilities by rational design of the shape and periphery of discotics, Nat. Mat., 8, 421-426, 2009.
[100] T., Katoet al., Functional liquid-crystalline assemblies: self-organized soft materials, Angew. Chem. Int. Ed. Engl., 45, 38-68, 2006.
[101] G., Holdenet al., eds., Thermoplastic Elastomers, Hanser, 2004.
[102] B., O'Regan and M., Graetzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353, 737-740, 1991.
[103] M., Gratzel, Dye-sensitized solid-state heterojunction solar cells, MRS Bulletin, 30, 23-27, 2005.
[104] E. J. W., Crossl and et al., A bicontinuous double gyroid hybrid solar cell, Nano Lett., in press, 2009.
[105] D. L., Kaplanet al., Self-organization (assembly) in biosynthesis of silk fibers – a hierarchical problem, Mat. Res. Soc. Symp. Proc., 255, 19-29, 1992.
[106] D. L., Kaplanet al., Silk, in Protein-Based Materials, K., McGrath, D., Kaplan, eds., pp. 103-131, Birkhauser, 1997.
[107] J. M., Goslineet al., The mechanical properties of spider silks: from fibroin sequence to mechanical function, J. Exp. Biol., 202, 3295-3303, 1999.
[108] S., Kubik, High-performance fibers from spider silk, Angew. Chem. Int. Ed., 41, 2721-2723, 2002.
[109] R., Valluzziet al., Silk: molecularo rganization and control of assembly, Phil. Trans. R. Soc. London, Ser. B: Bio. Sci., 357, 165-167, 2002.
[110] F., Vollrath and D., Porter, Spider silk as archetypal protein elastomer, Soft Matter, 2, 377-385, 2006.
[111] J. G., Hardyet al., Polymeric materials based on silk proteins, Polymer, 49, 4309-4327, 2008.
[112] S., Mannet al., Biomineralization, Chemical and Biochemical Perspectives, VCH Publishers, 1989.
[113] M., Darderet al., Design and preparation of bionanocomposites based on layered solids with functional and structural properties, Mat. Sci. Tech., 24, 1100-1110, 2008.
[114] H.-O., Fabritiuset al., Influence of structural principles on the mechanics of a biological fiber-based composite material with hierarchical organization: the exoskeleton of the lobsterHomarus americanus, Adv. Mat., 21, 391-400, 2009.
[115] G., Decher, Fuzzy nanoassemblies: towards layered polymeric multicomposites, Science, 277, 1232-1237, 1997.
[116] N. C., Seeman, Nucleic acid junctions and lattices, J. Theor. Biol., 99, 237-247, 1982.
[117] E., Winfreeet al., Design and self-assembly of two-dimensional DNA crystals, Nature, 394, 539-544, 1998.
[118] N. C., Seeman, DNA in a material world, Nature, 421, 427-431, 2003.
[119] P. W. K., Rothemund, Folding DNA to create nanoscale shapes and patterns, Nature, 440, 297-302, 2006.
[120] H., Yanet al., DNA-templated self-assembly of protein arrays and highly conductive nanowires, Science, 301, 1882-1884, 2003.
[121] E. S., Andersenet al., DNA origami design of dolphin-shaped structures with flexible tails, ACSNano, 2, 1213-1218, 2008.
[122] A., Kuzyket al., Dielectrophoretic trapping of DNA origami, Small, 4, 447-450, 2008.
[123] A., Lafuma and D., Quere, Superhydrophobic states, Nat. Mat., 2, 457-460, 2003.
[124] M., Callies and D., Quere, On water repellency, Soft Matter, 1, 55-61, 2005.
[125] X., Feng and L., Jiang, Design and creation of superwetting/antiwetting surfaces, Adv. Mat., 18, 3063-3078, 2006.
[126] M., Maet al., Decorated electrospun fibers exhibiting superhydrophobicity, Adv. Mat., 19, 255-259, 2007.
[127] L., Gaoet al., Superhydrophobicity and contact-line issues, MRS Bulletin, 33, 747-751, 2008.
[128] R., Fürstneret al., Der Lotus-Effekt: Selbstreinigung mikrostrukturierter Oberflächen, Nachricten aus der Chemie, 48, 24-28, 2000.
[129] P., Wagneret al., Quantitative assessment to the structural basis of water repellency in natural and technical surfaces, J. Exp. Bot., 54, 1295-1303, 2003.
[130] K., Autumnet al., Adhesive force of a single gecko foot-hair, Nature, 405, 681-685, 2000.
[131] A. K., Geimet al., Microfabricated adhesive mimicking gecko foot-hair, Nat. Mat., 2, 461-463, 2003.
[132] B., Bhushan, Adhesion of multi-level hierarchical attachment systems in gecko feet, J. Adh. Sci. Tech., 21, 1213-1258, 2007.
[133] B. N. J., Persson, Biological adhesion for locomotion on rough surfaces: basic principles and a theorist's view, MRS Bulletin, 32, 486-490, 2007.
[134] K., Autumn and N., Gravish, Gecko adhesion: evolutionary nanotechnology, Phil. Trans. R. Soc. A, 366, 1575-1590, 2008.
[135] A., del Campo and E., Arzt, Fabrication approaches for generating complex micro-and nanopatterns on polymeric surfaces, Chem. Rev., 108, 911-945, 2008.
[136] M. T., Northenet al., A gecko-inspired reversible adhesive, Adv. Mat., 20, 3905-3909, 2008.
[137] L., Quet al., Carbonnanotube arrays with strong shear binding-on and easy normal lifting-off, Science, 322, 238-242, 2007.
[138] J., Genzer and K., Efimenko, Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review, Biofouling, 22, 339-360, 2006.
[139] S., Weineret al., Materials designinbiology, Mat. Sci. Eng. C, 11, 1-8, 2000.
[140] X., Chenet al., A thermally re-mendable cross-linked polymeric material, Science, 295, 1698-1702, 2002.
[141] M., Chipara and K., Wooley, Molecular self-healing processes in polymers, Mat. Res. Soc. Symp. Proc., 851, 127-132, 2005.
[142] A. C., Balazs, Modeling self-healing materials, Materials Today, 10, 18-23, 2007.
[143] M. W., Kelleret al., Recent advances in self-healing materials systems, in Adaptive Structures, D., Wagg, ed., pp. 247-260, J. Wiley & Sons Ltd, 2007.
[144] R. S., Trasket al., Self-healing polymer composites: mimicking nature to enhance performance, Bioinspiration & Biomimetics, 2, P1-P9, 2007.
[145] D., Montarnalet al., Synthesis of self-healing supramolecular rubbers from fatty acid derivatives, diethylene triamine, and urea, J. Polym. Sci., Part A, 46, 7925-7936, 2008.
[146] S., Burattiniet al., A novel self-healing supramolecular polymer system, Faraday Discuss. Chem. Soc., in press, 2009.
[147] R. P., Sijbesma and E. W., Meijer, Quadruple hydrogen bonded systems, Chem. Commun., 5-16, 2003.