Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T05:00:05.079Z Has data issue: false hasContentIssue false

Chapter 11 - Tumors of the breast

Published online by Cambridge University Press:  05 November 2015

John M. S. Bartlett
Affiliation:
Ontario Institute for Cancer Research, Toronto
Abeer Shaaban
Affiliation:
Queen Elizabeth Hospital Birmingham
Fernando Schmitt
Affiliation:
University of Porto
Get access
Type
Chapter
Information
Molecular Pathology
A Practical Guide for the Surgical Pathologist and Cytopathologist
, pp. 147 - 173
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A. et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747–52.CrossRefGoogle ScholarPubMed
Sorlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98(19): 10869–74.CrossRefGoogle ScholarPubMed
Van't Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A., Mao, M. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415: 530–6.CrossRefGoogle ScholarPubMed
Paik, S., Shak, S., Tang, G., Kim, C., Baker, J., Cronin, M. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. New Engl J Med 2004; 351(27): 2817–26.CrossRefGoogle ScholarPubMed
The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 6170.CrossRefGoogle Scholar
Weigelt, B., Horlings, H. M., Kreike, B., Hayes, M. M., Hauptmann, M., Wessels, L. F. et al. Refinement of breast cancer classification by molecular characterization of histological special types. J Pathol 2008; 216(2): 141–50.CrossRefGoogle ScholarPubMed
Weigelt, B., Geyer, F. C., Horlings, H. M., Kreike, B., Halfwerk, H. and Reis-Filho, J. S. Mucinous and neuroendocrine breast carcinomas are transcriptionally distinct from invasive ductal carcinomas of no special type. Mod Pathol 2009; 22(11): 1401–14.CrossRefGoogle ScholarPubMed
Weigelt, B., Geyer, F. C., Natrajan, R., Lopez-Garcia, M. A., Ahmad, A. S., Savage, K. et al. The molecular underpinning of lobular histological growth pattern: a genome-wide transcriptomic analysis of invasive lobular carcinomas and grade- and molecular subtype-matched invasive ductal carcinomas of no special type. J Pathol 2010; 220(1): 4557.CrossRefGoogle ScholarPubMed
Gruel, N., Lucchesi, C., Raynal, V., Rodrigues, M. J., Pierron, G., Goudefroye, R. et al. Lobular invasive carcinoma of the breast is a molecular entity distinct from luminal invasive ductal carcinoma. Eur J Cancer 2010; 46(13): 2399–407.CrossRefGoogle ScholarPubMed
Horlings, H. M., Weigelt, B., Anderson, E. M., Lambros, M. B., Mackay, A., Natrajan, R. et al. Genomic profiling of histological special types of breast cancer. Breast Cancer Res Treat 2013; 142(2): 257–69.CrossRefGoogle ScholarPubMed
Goldhirsch, A., Wood, W. C., Coates, A. S., Gelber, R. D., Thurlimann, B. and Senn, H. J. Strategies for subtypes – dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 2011; 22(8): 1736–47.CrossRefGoogle ScholarPubMed
Mackay, A., Weigelt, B., Grigoriadis, A., Kreike, B., Natrajan, R., A'Hern, R. et al. Microarray-based class discovery for molecular classification of breast cancer: analysis of interobserver agreement. J Natl Cancer Inst 2011; 103(8): 662–73.CrossRefGoogle ScholarPubMed
Owens, M. A., Horten, B. C. and Da Silva, M. M. HER2 amplification ratios by fluorescence in situ hybridization and correlation with immunohistochemistry in a cohort of 6556 breast cancer tissues. Clin Breast Cancer 2004; 5(1): 63–9.CrossRefGoogle Scholar
Wolff, A. C., Hammond, M. E., Schwartz, J. N., Hagerty, K. L., Allred, D. C., Cote, R. J. et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 2007; 25(1): 118–45.CrossRefGoogle Scholar
Zemzoum, I., Kates, R. E., Ross, J. S., Dettmar, P., Dutta, M., Henrichs, C. et al. Invasion factors uPA/PAI-1 and HER2 status provide independent and complementary information on patient outcome in node-negative breast cancer. J Clin Oncol 2003; 21(6): 1022–8.CrossRefGoogle ScholarPubMed
Ross, J. S., Fletcher, J. A., Bloom, K. J., Linette, G. P., Stec, J., Symmans, W. F. et al. Targeted therapy in breast cancer: the HER-2/neu gene and protein. Mol Cell Proteomics 2004; 3(4): 379–98.CrossRefGoogle ScholarPubMed
Vogel, C. L., Cobleigh, M. A., Tripathy, D., Gutheil, J. C., Harris, L. N., Fehrenbacher, L. et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 2002; 20(3): 719–26.CrossRefGoogle ScholarPubMed
Slamon, D. J., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. New Engl J Med 2001; 344(11): 783–92.CrossRefGoogle Scholar
Smith, I. Future directions in the adjuvant treatment of breast cancer: the role of trastuzumab. Ann Oncol 2001; 12(Suppl. 1): S759.CrossRefGoogle ScholarPubMed
Piccart-Gebhart, M. J., Procter, M., Leyland-Jones, B., Goldhirsch, A., Untch, M., Smith, I. et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. New Engl J Med 2005; 353(16): 1659–72.CrossRefGoogle ScholarPubMed
Romond, E. H., Perez, E. A., Bryant, J., Suman, V. J., Geyer, C. E. Jr., Davidson, N. E. et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. New Engl J Med 2005; 353(16): 1673–84.CrossRefGoogle ScholarPubMed
Esteva, F. J., Yu, D., Hung, M. C. and Hortobagyi, G. N. Molecular predictors of response to trastuzumab and lapatinib in breast cancer. Nat Rev Clin Oncol 2010; 7(2): 98107.CrossRefGoogle ScholarPubMed
Moelans, C. B., de Weger, R. A., van der Wall, E. and van Diest, P. J. Current technologies for HER2 testing in breast cancer. Crit Rev Oncol Hematol 2011; 80: 380–92.CrossRefGoogle ScholarPubMed
Wolff, A. C., Hammond, M. E., Hicks, D. G., Dowsett, M., McShane, L. M., Allison, K. H. et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: american society of clinical oncology/college of american pathologists clinical practice guideline update. J Clin Oncol 2013; 31(31): 39974013.CrossRefGoogle Scholar
Kostopoulou, E., Vageli, D., Kaisaridou, D., Nakou, M., Netsika, M., Vladica, N. et al. Comparative evaluation of non-informative HER-2 immunoreactions (2+) in breast carcinomas with FISH, CISH and QRT-PCR. Breast 2007; 16(6): 615–24.CrossRefGoogle ScholarPubMed
Bedard, Y. C., Pollett, A. F., Leung, S. W. and O'Malley, F. P. Assessment of thin-layer breast aspirates for immunocytochemical evaluation of HER2 status. Acta Cytol 2003; 47(6): 979–84.CrossRefGoogle ScholarPubMed
Pauletti, G., Dandekar, S., Rong, H., Ramos, L., Peng, H., Seshadri, R. et al. Assessment of methods for tissue-based detection of the HER-2/neu alteration in human breast cancer: a direct comparison of fluorescence in situ hybridization and immunohistochemistry. J Clin Oncol 2000; 18(21): 3651–64.CrossRefGoogle Scholar
Lebeau, A., Deimling, D., Kaltz, C., Sendelhofert, A., Iff, A., Luthardt, B. et al. HER-2/neu analysis in archival tissue samples of human breast cancer: comparison of immunohistochemistry and fluorescence in situ hybridization. J Clin Oncol 2001; 19(2): 354–63.CrossRefGoogle ScholarPubMed
Tanner, M., Gancberg, D., Di, L. A., Larsimont, D., Rouas, G., Piccart, M. J. et al. Chromogenic in situ hybridization: a practical alternative for fluorescence in situ hybridization to detect HER-2/neu oncogene amplification in archival breast cancer samples. Am J Pathol 2000; 157(5): 1467–72.CrossRefGoogle ScholarPubMed
Arnould, L., Denoux, Y., MacGrogan, G., Penault-Llorca, F., Fiche, M., Treilleux, I. et al. Agreement between chromogenic in situ hybridisation (CISH) and FISH in the determination of HER2 status in breast cancer. Br J Cancer 2003; 88(10): 1587–91.CrossRefGoogle ScholarPubMed
Hanna, W. M. and Kwok, K. Chromogenic in-situ hybridization: a viable alternative to fluorescence in-situ hybridization in the HER2 testing algorithm. Mod Pathol 2006; 19(4): 481–7.CrossRefGoogle ScholarPubMed
Gruver, A. M., Peerwani, Z. and Tubbs, R. R. Out of the darkness and into the light: bright field in situ hybridisation for delineation of ERBB2 (HER2) status in breast carcinoma. J Clin Pathol 2010; 63(3): 210–19.CrossRefGoogle ScholarPubMed
Ni, R., Mulligan, A. M., Have, C. and O'Malley, F. P. PGDS, a novel technique combining chromogenic in situ hybridization and immunohistochemistry for the assessment of ErbB2 (HER2/neu) status in breast cancer. Appl Immunohistochem Mol Morphol 2007; 15(3): 316–24.CrossRefGoogle ScholarPubMed
Downs-Kelly, E., Pettay, J., Hicks, D., Skacel, M., Yoder, B., Rybicki, L. et al. Analytical validation and interobserver reproducibility of EnzMet GenePro: a second-generation bright-field metallography assay for concomitant detection of HER2 gene status and protein expression in invasive carcinoma of the breast. Am J Surg Pathol 2005; 29(11): 1505–11.CrossRefGoogle ScholarPubMed
Francis, G. D., Jones, M. A., Beadle, G. F. and Stein, S. R. Bright-field in situ hybridization for HER2 gene amplification in breast cancer using tissue microarrays: correlation between chromogenic (CISH) and automated silver-enhanced (SISH) methods with patient outcome. Diagn Mol Pathol 2009; 18(2): 8895.CrossRefGoogle ScholarPubMed
Bartlett, J. M., Campbell, F. M., Ibrahim, M., Wencyk, P., Ellis, I., Kay, E. et al. Chromogenic in situ hybridization: a multicenter study comparing silver in situ hybridization with FISH. Am J Clin Pathol 2009; 132(4): 514–20.CrossRefGoogle ScholarPubMed
Penault-Llorca, F., Bilous, M., Dowsett, M., Hanna, W., Osamura, R. Y., Ruschoff, J. et al. Emerging technologies for assessing HER2 amplification. Am J Clin Pathol 2009; 132(4): 539–48.CrossRefGoogle ScholarPubMed
Van den Bempt, I., Van Loo, P., Drijkoningen, M., Neven, P., Smeets, A., Christiaens, M. R. et al. Polysomy 17 in breast cancer: clinicopathologic significance and impact on HER-2 testing. J Clin Oncol 2008; 26(30): 4869–74.Google Scholar
Moelans, C. B., de Weger, R. A. and van Diest, P. J. Absence of chromosome 17 polysomy in breast cancer: analysis by CEP17 chromogenic in situ hybridization and multiplex ligation-dependent probe amplification. Breast Cancer Res Treat 2010; 120(1): 17.CrossRefGoogle ScholarPubMed
Yeh, I. T., Martin, M. A., Robetorye, R. S., Bolla, A. R., McCaskill, C., Shah, R. K. et al. Clinical validation of an array CGH test for HER2 status in breast cancer reveals that polysomy 17 is a rare event. Mod Pathol 2009; 22(9): 1169–75.CrossRefGoogle ScholarPubMed
Moelans, C. B., Reis-Filho, J. S. and van Diest, P. J. Implications of rarity of chromosome 17 polysomy in breast cancer. Lancet Oncol 2011; 12(12): 1087–9.CrossRefGoogle ScholarPubMed
Hofmann, M., Stoss, O., Gaiser, T., Kneitz, H., Heinmoller, P., Gutjahr, T. et al. Central HER2 IHC and FISH analysis in a trastuzumab (Herceptin) phase II monotherapy study: assessment of test sensitivity and impact of chromosome 17 polysomy. J Clin Pathol 2008; 61(1): 8994.CrossRefGoogle Scholar
Schouten, J. P., McElgunn, C. J., Waaijer, R., Zwijnenburg, D., Diepvens, F. and Pals, G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 2002; 30(12): e57.CrossRefGoogle ScholarPubMed
Moelans, C. B., de Weger, R. A., van Blokland, M. T., Ezendam, C., Elshof, S., Tilanus, M. G. et al. HER-2/neu amplification testing in breast cancer by multiplex ligation-dependent probe amplification in comparison with immunohistochemistry and in situ hybridization. Cell Oncol 2009; 31(1): 110.Google ScholarPubMed
Moerland, E., van Hezik, R. L., van der Aa, T. C., van Beek, M. W. and van den Brule, A. J. Detection of HER2 amplification in breast carcinomas: comparison of Multiplex Ligation-dependent Probe Amplification (MLPA) and Fluorescence In Situ Hybridization (FISH) combined with automated spot counting. Cell Oncol 2006; 28(4): 151–9.Google ScholarPubMed
Moelans, C. B., de Weger, R. A., Ezendam, C. and van Diest, P. J. HER-2/neu amplification testing in breast cancer by Multiplex Ligation-dependent Probe Amplification: influence of manual- and laser microdissection. BMC Cancer 2009; 9: 4.CrossRefGoogle ScholarPubMed
Shi, Y., Huang, W., Tan, Y., Jin, X., Dua, R., Penuel, E. et al. A novel proximity assay for the detection of proteins and protein complexes: quantitation of HER1 and HER2 total protein expression and homodimerization in formalin-fixed, paraffin-embedded cell lines and breast cancer tissue. Diagn Mol Pathol 2009; 18(1): 1121.CrossRefGoogle ScholarPubMed
Hoefnagel, L. D., van de Vijver, M. J., van Slooten, H. J., Wesseling, P., Wesseling, J., Westenend, P. J. et al. Receptor conversion in distant breast cancer metastases. Breast Cancer Res 2010; 12(5): R75.CrossRefGoogle ScholarPubMed
Hoefnagel, L. D., Moelans, C. B., Meijer, S. L., van Slooten, H. J., Wesseling, P., Wesseling, J. et al. Prognostic value of estrogen receptor alpha and progesterone receptor conversion in distant breast cancer metastases. Cancer 2012; 118(20): 4929–35.CrossRefGoogle ScholarPubMed
Broom, R. J., Tang, P. A., Simmons, C., Bordeleau, L., Mulligan, A. M., O'Malley, F. P. et al. Changes in estrogen receptor, progesterone receptor and HER-2/neu status with time: discordance rates between primary and metastatic breast cancer. Anticancer Res 2009; 29(5): 1557–62.Google ScholarPubMed
Tapia, C., Savic, S., Wagner, U., Schonegg, R., Novotny, H., Grilli, B. et al. HER2 gene status in primary breast cancers and matched distant metastases. Breast Cancer Res 2007; 9: R31.CrossRefGoogle ScholarPubMed
Santinelli, A., Pisa, E., Stramazzotti, D. and Fabris, G. HER-2 status discrepancy between primary breast cancer and metastatic sites. Impact on target therapy. Int J Cancer 2008; 122(5): 9991004.CrossRefGoogle ScholarPubMed
Gancberg, D., Di, L. A., Cardoso, F., Rouas, G., Pedrocchi, M., Paesmans, M. et al. Comparison of HER-2 status between primary breast cancer and corresponding distant metastatic sites. Ann Oncol 2002; 13(7): 1036–43.CrossRefGoogle ScholarPubMed
Hoefnagel, L. D., van der Groep, P., van de Vijver, M. DJ, Boers, J. E., Wesseling, P., Wesseling, J. et al. Discordance in ER alpha, PR and HER2 receptor status across different distant breast cancer metastases within the same patient. Ann Oncol 2013; 24(12): 3017–23.CrossRefGoogle ScholarPubMed
Beca, F. and Schmitt, F. Growing indication for FNA to study and analyze tumor heterogeneity at metastatic sites. Cancer Cytopathol 2014; 122(7): 504–11; doi: 10.1002/cncy.21395.CrossRefGoogle ScholarPubMed
Gu, M., Ghafari, S. and Zhao, M. Fluorescence in situ hybridization for HER-2/neu amplification of breast carcinoma in archival fine needle aspiration biopsy specimens. Acta Cytologica 2005: 49: 471–6.CrossRefGoogle ScholarPubMed
Weigelt, B. and Reis-Filho, J. S. Activating mutations in HER2: neu opportunities and neu challenges. Cancer Discov 2013; 3(2): 145–7.CrossRefGoogle ScholarPubMed
Bose, R., Kavuri, S. M., Searleman, A. C., Shen, W., Shen, D., Koboldt, D. C. et al. Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov 2013; 3(2): 224–37.CrossRefGoogle ScholarPubMed
Patani, N., Martin, L. A. and Dowsett, M. Biomarkers for the clinical management of breast cancer: international perspective. Int J Cancer 2013; 133(1): 113.CrossRefGoogle ScholarPubMed
Sparano, J. A. and Paik, S. Development of the 21-gene assay and its application in clinical practice and clinical trials. J Clin Oncol 2008; 26(5): 721–8.CrossRefGoogle ScholarPubMed
Paik, S., Tang, G., Shak, S., Kim, C., Baker, J., Kim, W. et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 2006; 24(23): 3726–34.CrossRefGoogle ScholarPubMed
Albain, K. S., Barlow, W. E., Shak, S., Hortobagyi, G. N., Livingston, R. B., Yeh, I. T. et al. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol 2010; 11(1): 5565.CrossRefGoogle ScholarPubMed
Hall, P. S., McCabe, C., Stein, R. C. and Cameron, D. Economic evaluation of genomic test-directed chemotherapy for early-stage lymph node-positive breast cancer. J Natl Cancer Inst 2012; 104(1): 5666.CrossRefGoogle ScholarPubMed
Buyse, M., Loi, S., van't Veer, L., Viale, G., Delorenzi, M., Glas, A. M. et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 2006; 98(17): 1183–92.CrossRefGoogle ScholarPubMed
van de Vijver, M. J., He, Y. D., Van't Veer, L. J., Dai, H., Hart, A. A., Voskuil, D. W. et al. A gene-expression signature as a predictor of survival in breast cancer. New Engl J Med 2002; 347(25): 19992009.CrossRefGoogle ScholarPubMed
Knauer, M., Mook, S., Rutgers, E. J., Bender, R. A., Hauptmann, M., van de Vijver, M. J. et al. The predictive value of the 70-gene signature for adjuvant chemotherapy in early breast cancer. Breast Cancer Res Treat 2010; 120(3): 655–61.CrossRefGoogle ScholarPubMed
Bogaerts, J., Cardoso, F., Buyse, M., Braga, S., Loi, S., Harrison, J. A. et al. Gene signature evaluation as a prognostic tool: challenges in the design of the MINDACT trial. Nat Clin Pract Oncol 2006; 3(10): 540–51.CrossRefGoogle ScholarPubMed
Drukker, C. A., Bueno-de-Mesquita, J. M., Retel, V. P., van Harten, W. H., van Tinteren, H., Wesseling, J. et al. A prospective evaluation of a breast cancer prognosis signature in the observational RASTER study. Int J Cancer 2013; 133(4): 929–36.CrossRefGoogle ScholarPubMed
Sapino, A., Roepman, P., Linn, S. C., Snel, M. H., Delahaye, L. J., van den Akker, J. et al. MammaPrint molecular diagnostics on formalin-fixed, paraffin-embedded tissue. J Mol Diagn 2013; 16(2): 190–7Google ScholarPubMed
Retel, V. P., Joore, M. A., Drukker, C. A., Bueno-de-Mesquita, J. M., Knauer, M., van Tinteren, H. et al. Prospective cost-effectiveness analysis of genomic profiling in breast cancer. Eur J Cancer 2013; 49(18): 3773–9.CrossRefGoogle ScholarPubMed
Parker, J. S., Mullins, M., Cheang, M. C., Leung, S., Voduc, D., Vickery, T. et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 2009; 27(8): 1160–7.CrossRefGoogle ScholarPubMed
Nielsen, T. O., Parker, J. S., Leung, S., Voduc, D., Ebbert, M., Vickery, T. et al. A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer. Clin Cancer Res 2010; 16(21): 5222–32.CrossRefGoogle ScholarPubMed
Esserman, L. J., Berry, D. A., Cheang, M. C., Yau, C., Perou, C. M., Carey, L. et al. Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: results from the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657). Breast Cancer Res Treat 2012; 132(3): 1049–62.CrossRefGoogle ScholarPubMed
Sotiriou, C., Wirapati, P., Loi, S., Harris, A., Fox, S., Smeds, J. et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 2006; 98(4): 262–72.CrossRefGoogle ScholarPubMed
Loi, S., Haibe-Kains, B., Desmedt, C., Lallemand, F., Tutt, A. M., Gillet, C. et al. Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J Clin Oncol 2007; 25(10): 1239–46.CrossRefGoogle ScholarPubMed
Desmedt, C., Giobbie-Hurder, A., Neven, P., Paridaens, R., Christiaens, M. R., Smeets, A. et al. The Gene expression Grade Index: a potential predictor of relapse for endocrine-treated breast cancer patients in the BIG 1–98 trial. BMC Med Genomics 2009; 2: 40.CrossRefGoogle ScholarPubMed
Cuzick, J., Dowsett, M., Pineda, S., Wale, C., Salter, J., Quinn, E. et al. Prognostic value of a combined estrogen receptor, progesterone receptor, Ki-67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the Genomic Health recurrence score in early breast cancer. J Clin Oncol 2011; 29(32): 4273–8.CrossRefGoogle ScholarPubMed
Dowsett, M., Sestak, I., Lopez-Knowles, E., Sidhu, K., Dunbier, A. K., Cowens, J. W. et al. Comparison of PAM50 risk of recurrence score with oncotype DX and IHC4 for predicting risk of distant recurrence after endocrine therapy. J Clin Oncol 2013; 31(22): 2783–90.CrossRefGoogle ScholarPubMed
Dowsett, M., Nielsen, T. O., A'Hern, R., Bartlett, J., Coombes, R. C., Cuzick, J. et al. Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer working group. J Natl Cancer Inst 2011; 103(22): 1656–64.CrossRefGoogle ScholarPubMed
Dave, B., Migliaccio, I., Gutierrez, M. C., Wu, M. F., Chamness, G. C., Wong, H. et al. Loss of phosphatase and tensin homolog or phosphoinositol-3 kinase activation and response to trastuzumab or lapatinib in human epidermal growth factor receptor 2-overexpressing locally advanced breast cancers. J Clin Oncol 2011; 29(2): 166–73.CrossRefGoogle ScholarPubMed
Wang, L., Zhang, Q., Zhang, J., Sun, S., Guo, H., Jia, Z. et al. PI3K pathway activation results in low efficacy of both trastuzumab and lapatinib. BMC Cancer 2011; 11: 248.CrossRefGoogle ScholarPubMed
Jensen, J. D., Knoop, A., Laenkholm, A. V., Grauslund, M., Jensen, M. B., Santoni-Rugiu, E. et al. PIK3CA mutations, PTEN, and pHER2 expression and impact on outcome in HER2-positive early-stage breast cancer patients treated with adjuvant chemotherapy and trastuzumab. Ann Oncol 2012; 23(8): 2034–42.CrossRefGoogle ScholarPubMed
Cizkova, M., Dujaric, M. E., Lehmann-Che, J., Scott, V., Tembo, O., Asselain, B. et al. Outcome impact of PIK3CA mutations in HER2-positive breast cancer patients treated with trastuzumab. Br J Cancer 2013; 108(9): 1807–9.CrossRefGoogle ScholarPubMed
Ma, C. X., Crowder, R. J. and Ellis, M. J. Importance of PI3-kinase pathway in response/resistance to aromatase inhibitors. Steroids 2011; 76(8): 750–2.CrossRefGoogle ScholarPubMed
Campeau, P. M., Foulkes, W. D. and Tischkowitz, M. D. Hereditary breast cancer: new genetic developments, new therapeutic avenues. Hum Genet 2008; 124(1): 3142.CrossRefGoogle ScholarPubMed
Mavaddat, N., Peock, S., Frost, D., Ellis, S., Platte, R., Fineberg, E. et al. Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. J Natl Cancer Inst 2013; 105(11): 812–22.CrossRefGoogle ScholarPubMed
Antoniou, A., Pharoah, P. D., Narod, S., Risch, H. A., Eyfjord, J. E., Hopper, J. L. et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 2003; 72(5): 1117–30.CrossRefGoogle ScholarPubMed
De Leeneer, K., Coene, I., Crombez, B., Simkens, J., Van den Broecke, R., Bols, A. et al. Prevalence of BRCA1/2 mutations in sporadic breast/ovarian cancer patients and identification of a novel de novo BRCA1 mutation in a patient diagnosed with late onset breast and ovarian cancer: implications for genetic testing. Breast Cancer Res Treat 2012; 132(1): 8795.CrossRefGoogle Scholar
Da, S. L. and Lakhani, S. R. Pathology of hereditary breast cancer. Mod Pathol 2010; 23(Suppl. 2): S4651.Google Scholar
Chen, S. and Parmigiani, G. Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol 2007; 25(11): 1329–33.Google ScholarPubMed
Schrader, K. A., Masciari, S., Boyd, N., Wiyrick, S., Kaurah, P., Senz, J. et al. Hereditary diffuse gastric cancer: association with lobular breast cancer. Fam Cancer 2008; 7: 7382.CrossRefGoogle ScholarPubMed
Bertucci, F., Orsetti, B., Negre, V., Finetti, P., Rouge, C., Ahomadegbe, J. C. et al. Lobular and ductal carcinomas of the breast have distinct genomic and expression profiles. Oncogene 2008; 27(40): 5359–72.CrossRefGoogle ScholarPubMed
Morrogh, M., Andrade, V. P., Giri, D., Sakr, R. A., Paik, W., Qin, L. X. et al. Cadherin-catenin complex dissociation in lobular neoplasia of the breast. Breast Cancer Res Treat 2012; 132(2): 641–52.CrossRefGoogle ScholarPubMed
Moelans, C. B. and van Diest, P. J. Breast: ductal carcinoma. Atlas Genet Cytogenet Oncol Haematol 2013; 17(3): 209–20.Google Scholar
Nahta, R. and O'Regan, R. M. Evolving strategies for overcoming resistance to HER2-directed therapy: targeting the PI3K/Akt/mTOR pathway. Clin Breast Cancer 2010; 10(Suppl. 3): S728.CrossRefGoogle ScholarPubMed
Gaynor, K. U., Grigorieva, I. V., Allen, M. D., Esapa, C. T., Head, R. A., Gopinath, P. et al. GATA3 mutations found in breast cancers may be associated with aberrant nuclear localization, reduced transactivation and cell invasiveness. Horm Cancer 2013; 4(3): 123–39.CrossRefGoogle ScholarPubMed
Holst, F., Stahl, P. R., Ruiz, C., Hellwinkel, O., Jehan, Z., Wendland, M. et al. Estrogen receptor alpha (ESR1) gene amplification is frequent in breast cancer. Nat Genet 2007; 39(5): 655–60.CrossRefGoogle ScholarPubMed
Tomita, S., Zhang, Z., Nakano, M., Ibusuki, M., Kawazoe, T., Yamamoto, Y. et al. Estrogen receptor alpha gene ESR1 amplification may predict endocrine therapy responsiveness in breast cancer patients. Cancer Sci 2009; 100(6): 1012–17.CrossRefGoogle ScholarPubMed
Tsiambas, E., Georgiannos, S. N., Salemis, N., Alexopoulou, D., Lambropoulou, S., Dimo, B. et al. Significance of estrogen receptor 1 (ESR-1) gene imbalances in colon and hepatocellular carcinomas based on tissue microarrays analysis. Med Oncol 2011; 28(4): 934–40.CrossRefGoogle ScholarPubMed
Moelans, C. B., de Weger, R. A., Monsuur, H. N., Maes, A. H. and van Diest, P. J. Molecular differences between ductal carcinoma in situ and adjacent invasive breast carcinoma: a multiplex ligation-dependent probe amplification study. Anal Cell Pathol (Amst) 2010; 33(3): 165–73.Google ScholarPubMed
Moelans, C. B., Monsuur, H. N., de Pinth, J. H., Radersma, R. D., de Weger, R. A. and van Diest, P. J. ESR1 amplification is rare in breast cancer and is associated with high grade and high proliferation: a multiplex ligation-dependent probe amplification study. Anal Cell Pathol (Amst) 2010; 33(1): 1318.CrossRefGoogle ScholarPubMed
Lin, C. H., Liu, J. M., Lu, Y. S., Lan, C., Lee, W. C., Kuo, K. T. et al. Clinical significance of ESR1 gene copy number changes in breast cancer as measured by fluorescence in situ hybridisation. J Clin Pathol 2013; 66(2): 140–5.CrossRefGoogle ScholarPubMed
Holst, F., Moelans, C. B., Filipits, M., Singer, C. F., Simon, R. and van Diest, P. J. On the evidence for ESR1 amplification in breast cancer. Nat Rev Cancer 2012; 12(2): 149.CrossRefGoogle ScholarPubMed
Nessling, M., Richter, K., Schwaenen, C., Roerig, P., Wrobel, G., Wessendorf, S. et al. Candidate genes in breast cancer revealed by microarray-based comparative genomic hybridization of archived tissue. Cancer Res 2005; 65(2): 439–47.CrossRefGoogle ScholarPubMed
Ooi, A., Inokuchi, M., Harada, S., Inazawa, J., Tajiri, R., Kitamura, S. S. et al. Gene amplification of ESR1 in breast cancers–fact or fiction? A fluorescence in situ hybridization and multiplex ligation-dependent probe amplification study. J Pathol 2012; 227(1): 816.CrossRefGoogle ScholarPubMed
Robinson, D. R., Wu, Y. M., Vats, P., Su, F., Lonigro, R. J., Cao, X. et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet 2013; 45: 1446–51.CrossRefGoogle ScholarPubMed
Toy, W., Shen, Y., Won, H., Green, B., Sakr, R. A., Will, M. et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat Genet 2013; 45(12): 1439–45.CrossRefGoogle ScholarPubMed
Huang, H. E., Chin, S. F., Ginestier, C., Bardou, V. J., Adelaide, J., Iyer, N. G. et al. A recurrent chromosome breakpoint in breast cancer at the NRG1/neuregulin 1/heregulin gene. Cancer Res 2004; 64(19): 6840–4.CrossRefGoogle ScholarPubMed
Chua, Y. L., Ito, Y., Pole, J. C., Newman, S., Chin, S. F., Stein, R. C. et al. The NRG1 gene is frequently silenced by methylation in breast cancers and is a strong candidate for the 8p tumour suppressor gene. Oncogene 2009; 28(46): 4041–52.CrossRefGoogle Scholar
Edwards, P. A. Fusion genes and chromosome translocations in the common epithelial cancers. J Pathol 2010; 220(2): 244–54.CrossRefGoogle ScholarPubMed
Howarth, K. D., Blood, K. A., Ng, B. L., Beavis, J. C., Chua, Y., Cooke, S. L. et al. Array painting reveals a high frequency of balanced translocations in breast cancer cell lines that break in cancer-relevant genes. Oncogene 2008; 27(23): 3345–59.CrossRefGoogle ScholarPubMed
Vasudev, P. and Onuma, K. Secretory breast carcinoma: unique, triple-negative carcinoma with a favorable prognosis and characteristic molecular expression. Arch Pathol Lab Med 2011; 135(12): 1606–10.CrossRefGoogle ScholarPubMed
Marchio, C., Weigelt, B. and Reis-Filho, J. S. Adenoid cystic carcinomas of the breast and salivary glands (or “The strange case of Dr Jekyll and Mr Hyde” of exocrine gland carcinomas). J Clin Pathol 2010; 63(3): 220–8.CrossRefGoogle Scholar
Mikeska, T., Bock, C., Do, H. and Dobrovic, A. DNA methylation biomarkers in cancer: progress towards clinical implementation. Expert Rev Mol Diagn 2012; 12(5): 473–87.CrossRefGoogle ScholarPubMed
Suijkerbuijk, K. P., van der Wall, E. and van Diest, P. J. Oxytocin: bringing magic into nipple aspiration. Ann Oncol 2007; 18(10): 1743–4.CrossRefGoogle ScholarPubMed
Suijkerbuijk, K. P., van der Wall, E., Vooijs, M. and van Diest, P. J. Molecular analysis of nipple fluid for breast cancer screening. Pathobiology 2008; 75(2): 149–52.CrossRefGoogle ScholarPubMed
Suijkerbuijk, K. P., van der Wall, E., Meijrink, H., Pan, X., Borel, R. Ausems, M. G. et al. Successful oxytocin-assisted nipple aspiration in women at increased risk for breast cancer. Fam Cancer 2010; 9(3): 321–5.CrossRefGoogle ScholarPubMed
Fackler, M. J., Malone, K., Zhang, Z., Schilling, E., Garrett-Mayer, E., Swift-Scanlan, T. et al. Quantitative multiplex methylation-specific PCR analysis doubles detection of tumor cells in breast ductal fluid. Clin Cancer Res 2006; 12(11 Pt. 1): 3306–10.CrossRefGoogle ScholarPubMed
Suijkerbuijk, K. P., Pan, X., van der Wall, E., van Diest, P. J. and Vooijs, M. Comparison of different promoter methylation assays in breast cancer. Anal Cell Pathol (Amst) 2010; 33(3): 133–41.Google ScholarPubMed
Suijkerbuijk, K. P., Fackler, M. J., Sukumar, S., van Gils, C. H., van Laar, T., van der Wall, E. et al. Methylation is less abundant in BRCA1-associated compared with sporadic breast cancer. Ann Oncol 2008; 19(11): 1870–4.CrossRefGoogle ScholarPubMed
Kloten, V., Becker, B., Winner, K., Schrauder, M. G., Fasching, P. A., Anzeneder, T. et al. Promoter hypermethylation of the tumor-suppressor genes ITIH5, DKK3, and RASSF1A as novel biomarkers for blood-based breast cancer screening. Breast Cancer Res 2013; 15(1): R4.CrossRefGoogle ScholarPubMed
Xu, Z., Bolick, S. C., Deroo, L. A., Weinberg, C. R., Sandler, D. P. and Taylor, J. A. Epigenome-wide association study of breast cancer using prospectively collected sister study samples. J Natl Cancer Inst 2013; 105(10): 694700.CrossRefGoogle ScholarPubMed
Iwamoto, T., Yamamoto, N., Taguchi, T., Tamaki, Y. and Noguchi, S. BRCA1 promoter methylation in peripheral blood cells is associated with increased risk of breast cancer with BRCA1 promoter methylation. Breast Cancer Res Treat 2011; 129(1): 6977.CrossRefGoogle ScholarPubMed
Brennan, K., Garcia-Closas, M., Orr, N., Fletcher, O., Jones, M., Ashworth, A. et al. Intragenic ATM methylation in peripheral blood DNA as a biomarker of breast cancer risk. Cancer Res 2012; 72(9): 2304–13.Google ScholarPubMed
Sharma, G., Mirza, S., Parshad, R., Gupta, S. D. and Ralhan, R. DNA methylation of circulating DNA: a marker for monitoring efficacy of neoadjuvant chemotherapy in breast cancer patients. Tumour Biol 2012; 33(6): 1837–43.CrossRefGoogle ScholarPubMed
Avraham, A., Uhlmann, R., Shperber, A., Birnbaum, M., Sandbank, J., Sella, A. et al. Serum DNA methylation for monitoring response to neoadjuvant chemotherapy in breast cancer patients. Int J Cancer 2012; 131(7): E116672.CrossRefGoogle ScholarPubMed
Lips, E. H., Mulder, L., Oonk, A., van der Kolk, L. E., Hogervorst, F. B., Imholz, A. L. et al. Triple-negative breast cancer: BRCAness and concordance of clinical features with BRCA1-mutation carriers. Br J Cancer 2013; 108(10): 2172–7.CrossRefGoogle ScholarPubMed
Leidner, R. S., Li, L. and Thompson, C. L. Dampening enthusiasm for circulating microRNA in breast cancer. PLoS ONE 2013; 8(3): e57841.CrossRefGoogle ScholarPubMed
Chen, X., Hu, Z., Wang, W., Ba, Y., Ma, L., Zhang, C. et al. Identification of ten serum microRNAs from a genome-wide serum microRNA expression profile as novel noninvasive biomarkers for non-small cell lung cancer diagnosis. Int J Cancer 2012; 130(7): 1620–8.CrossRefGoogle Scholar
Garzon, R., Marcucci, G. and Croce, C. M. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 2010; 9(10): 775–89.CrossRefGoogle ScholarPubMed
Cittelly, D. M., Das, P. M., Salvo, V. A., Fonseca, J. P., Burow, M. E. and Jones, F. E. Oncogenic HER2{Delta}16 suppresses miR-15a/16 and deregulates BCL-2 to promote endocrine resistance of breast tumors. Carcinogenesis 2010; 31(12): 2049–57.CrossRefGoogle ScholarPubMed
Mei, M., Ren, Y., Zhou, X., Yuan, X. B., Han, L., Wang, G. X. et al. Downregulation of miR-21 enhances chemotherapeutic effect of taxol in breast carcinoma cells. Technol Cancer Res Treat 2010; 9(1): 7786.CrossRefGoogle ScholarPubMed
Marcus, J. N., Watson, P., Page, D. L., Narod, S. A., Lenoir, G. M., Tonin, P. et al. Hereditary breast cancer: pathobiology, prognosis, and BRCA1 and BRCA2 gene linkage. Cancer 1996; 77(4): 697709.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Honrado, E., Osorio, A., Milne, R. L., Paz, M. F., Melchor, L., Cascon, A. et al. Immunohistochemical classification of non-BRCA1/2 tumors identifies different groups that demonstrate the heterogeneity of BRCAX families. Mod Pathol 2007; 20(12): 1298–306.CrossRefGoogle ScholarPubMed
Lakhani, S. R., Jacquemier, J., Sloane, J. P., Gusterson, B. A., Anderson, T. J., van de Vijver, M. J. et al. Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. J Natl Cancer Inst 1998; 90(15): 1138–45.CrossRefGoogle ScholarPubMed
Armes, J. E., Egan, A. J., Southey, M. C., Dite, G. S., McCredie, M. R., Giles, G. G. et al. The histologic phenotypes of breast carcinoma occurring before age 40 years in women with and without BRCA1 or BRCA2 germline mutations: a population-based study. Cancer 1998; 83(11): 2335–45.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
van der Groep, P., van der Wall, E. and van Diest, P. J. Pathology of hereditary breast cancer. Cell Oncol (Dordr) 2011; 34(2): 7188.CrossRefGoogle ScholarPubMed
van der Groep, P., van Diest, P. J., Menko, F. H., Bart, J., de Vries, E. G. and van der Wall, E. Molecular profile of ductal carcinoma in situ of the breast in BRCA1 and BRCA2 germline mutation carriers. J Clin Pathol 2009; 62(10): 926–30.CrossRefGoogle ScholarPubMed
Ottini, L., Silvestri, V., Rizzolo, P., Falchetti, M., Zanna, I., Saieva, C. et al. Clinical and pathologic characteristics of BRCA-positive and BRCA-negative male breast cancer patients: results from a collaborative multicenter study in Italy. Breast Cancer Res Treat 2012; 134(1): 411–18.CrossRefGoogle ScholarPubMed
Deb, S., Jene, N. and Fox, S. B. Genotypic and phenotypic analysis of familial male breast cancer shows under representation of the HER2 and basal subtypes in BRCA-associated carcinomas. BMC Cancer 2012; 12: 510.CrossRefGoogle ScholarPubMed
Wasielewski, M., den Bakker, M. A., van den Ouweland, A., Meijer-van Gelder, M. E., Portengen, H., Klijn, J. G. et al. CHEK2 1100delC and male breast cancer in the Netherlands. Breast Cancer Res Treat 2009; 116(2): 397400.CrossRefGoogle ScholarPubMed
Melhem-Bertrandt, A., Bojadzieva, J., Ready, K. J., Obeid, E., Liu, D. D., Gutierrez-Barrera, A. M. et al. Early onset HER2-positive breast cancer is associated with germline TP53 mutations. Cancer 2012; 118(4): 908–13.CrossRefGoogle ScholarPubMed
Wilson, J. R., Bateman, A. C., Hanson, H., An, Q., Evans, G., Rahman, N. et al. A novel HER2-positive breast cancer phenotype arising from germline TP53 mutations. J Med Genet 2010; 47(11): 771–4.CrossRefGoogle ScholarPubMed
Balleine, R. L., Murali, R., Bilous, A. M., Farshid, G., Waring, P., Provan, P. et al. Histopathological features of breast cancer in carriers of ATM gene variants. Histopathology 2006; 49(5): 523–32.CrossRefGoogle ScholarPubMed
Keller, G., Vogelsang, H., Becker, I., Hutter, J., Ott, K., Candidus, S. et al. Diffuse type gastric and lobular breast carcinoma in a familial gastric cancer patient with an E-cadherin germline mutation. Am J Pathol 1999; 155(2): 337–42.CrossRefGoogle Scholar
Banneau, G., Guedj, M., MacGrogan, G., de Mascarel, I., Velasco, V., Schiappa, R. et al. Molecular apocrine differentiation is a common feature of breast cancer in patients with germline PTEN mutations. Breast Cancer Res 2010; 12(4): R63.CrossRefGoogle ScholarPubMed
Huzarski, T., Cybulski, C., Jakubowska, A., Byrski, T., Gronwald, J., Domagala, P. et al. Clinical characteristics of breast cancer in patients with an NBS1 mutation. Breast Cancer Res Treat 2013; 141(3): 471–6.CrossRefGoogle ScholarPubMed
Korde, L. A., Zujewski, J. A., Kamin, L., Giordano, S., Domchek, S., Anderson, W. F. et al. Multidisciplinary meeting on male breast cancer: summary and research recommendations. J Clin Oncol 2010; 28(12): 2114–22.CrossRefGoogle ScholarPubMed
Thompson, D. and Easton, D. Variation in cancer risks, by mutation position, in BRCA2 mutation carriers. Am J Hum Genet 2001; 68(2): 410–19.CrossRefGoogle ScholarPubMed
Tai, Y. C., Domchek, S., Parmigiani, G. and Chen, S. Breast cancer risk among male BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst 2007; 99(23): 1811–14.CrossRefGoogle ScholarPubMed
Pinto, R., Pilato, B., Ottini, L., Lambo, R., Simone, G., Paradiso, A. et al. Different methylation and microRNA expression pattern in male and female familial breast cancer. J Cell Physiol 2013; 228(6): 1264–9.CrossRefGoogle ScholarPubMed
Johansson, I., Nilsson, C., Berglund, P., Strand, C., Jonsson, G., Staaf, J. et al. High-resolution genomic profiling of male breast cancer reveals differences hidden behind the similarities with female breast cancer. Breast Cancer Res Treat 2011; 129(3): 747–60.CrossRefGoogle ScholarPubMed
Anderson, W. F., Jatoi, I., Tse, J. and Rosenberg, P. S. Male breast cancer: a population-based comparison with female breast cancer. J Clin Oncol 2010; 28: 232–9.CrossRefGoogle ScholarPubMed
Giordano, S. H., Cohen, D. S., Buzdar, A. U., Perkins, G. and Hortobagyi, G. N. Breast carcinoma in men: a population-based study. Cancer 2004; 101(1): 51–7.CrossRefGoogle ScholarPubMed
Muir, D., Kanthan, R. and Kanthan, S. C. Male versus female breast cancers. A population-based comparative immunohistochemical analysis. Arch Pathol Lab Med 2003; 127(1): 3641.CrossRefGoogle ScholarPubMed
Kornegoor, R., Moelans, C. B., Verschuur-Maes, A. H., Hogenes, M. C., de Bruin, P. C., Oudejans, J. J. et al. Oncogene amplification in male breast cancer: analysis by multiplex ligation-dependent probe amplification. Breast Cancer Res Treat 2012; 135(1): 4958.CrossRefGoogle ScholarPubMed
Kornegoor, R., Verschuur-Maes, A. H., Buerger, H., Hogenes, M. C., de Bruin, P. C., Oudejans, J. J. et al. Molecular subtyping of male breast cancer by immunohistochemistry. Mod Pathol 2012; 25(3): 398404.CrossRefGoogle ScholarPubMed
Kornegoor, R., Verschuur-Maes, A. H., Buerger, H., Hogenes, M. C., de Bruin, P. C., Oudejans, J. J. et al. Immunophenotyping of male breast cancer. Histopathology 2012; 61(6): 1145–55.CrossRefGoogle ScholarPubMed
Lacle, M. M., Kornegoor, R., Moelans, C. B., Maes-Verschuur, A. H., van der Pol, C., Witkamp, A. J. et al. Analysis of copy number changes on chromosome 16q in male breast cancer by multiplex ligation-dependent probe amplification. Mod Pathol 2013; 26(11): 1461–7.CrossRefGoogle ScholarPubMed
Callari, M., Cappelletti, V., De Cecco, L., Musella, V., Miodini, P., Veneroni, S. et al. Gene expression analysis reveals a different transcriptomic landscape in female and male breast cancer. Breast Cancer Res Treat 2011; 127(3): 601–10.CrossRefGoogle ScholarPubMed
Takagi, K., Moriya, T., Kurosumi, M., Oka, K., Miki, Y., Ebata, A. et al. Intratumoral estrogen concentration and expression of estrogen-induced genes in male breast carcinoma: comparison with female breast carcinoma. Horm Cancer 2013; 4(1): 111.CrossRefGoogle ScholarPubMed
Kornegoor, R., Moelans, C. B., Verschuur-Maes, A. H., Hogenes, M. C., de Bruin, P. C., Oudejans, J. J. et al. Promoter hypermethylation in male breast cancer: analysis by multiplex ligation-dependent probe amplification. Breast Cancer Res 2012; 14(4): R101.CrossRefGoogle ScholarPubMed
Lehmann, U., Streichert, T., Otto, B., Albat, C., Hasemeier, B., Christgen, H. et al. Identification of differentially expressed microRNAs in human male breast cancer. BMC Cancer 2010; 10: 109.CrossRefGoogle ScholarPubMed
Fassan, M., Baffa, R., Palazzo, J. P., Lloyd, J., Crosariol, M., Liu, C. G. et al. MicroRNA expression profiling of male breast cancer. Breast Cancer Res 2009; 11(4): R58.CrossRefGoogle ScholarPubMed
Costa, J., Gerhard, R., Rossi, E., Cirnes, L., Justino, A., Machado, J. C. et al. Massive parallel sequencing to assess the mutational landscape of fine needle aspirate samples: a pilot study. Lab Invest 2013; 93: 87A.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×