Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-12T19:01:21.495Z Has data issue: false hasContentIssue false

Chapter 2 - Molecular regulation of cellular function

Published online by Cambridge University Press:  05 November 2015

John M. S. Bartlett
Affiliation:
Ontario Institute for Cancer Research, Toronto
Abeer Shaaban
Affiliation:
Queen Elizabeth Hospital Birmingham
Fernando Schmitt
Affiliation:
University of Porto
Get access
Type
Chapter
Information
Molecular Pathology
A Practical Guide for the Surgical Pathologist and Cytopathologist
, pp. 10 - 21
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gerhart, J. Warkany lecture: signaling pathways in development. Teratology 1998; 60(4): 226–39.Google Scholar
Barolo, S. and Posakony, J. W. Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling. Genes Dev 2002; 16(10): 1167–81.CrossRefGoogle ScholarPubMed
Robinson, D. R., Wu, Y.-M. and Lin, S.-F. The protein tyrosine kinase family of the human genome. Oncogene 2000; 19(49): 5548–57.CrossRefGoogle ScholarPubMed
Moustakas, A. and Heldin, C.-H. The regulation of TGFbeta signal transduction. Development 2009; 136(22): 3699–714.CrossRefGoogle ScholarPubMed
Yoshimura, A., Naka, T. and Kubo, M. SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol 2007; 7(6): 454–65.CrossRefGoogle ScholarPubMed
Massague, J. TGFbeta signalling in context. Nat Rev Mol Cell Biol 2012; 13(10): 616–30.CrossRefGoogle ScholarPubMed
Lemmon, M. A. and Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 2010; 141(7): 1117–34.CrossRefGoogle ScholarPubMed
Pinkas-Kramarski, R., Soussan, L., Waterman, H., Levkowitz, G., Alroy, I., Klapper, L. et al. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J 1996; 15(10): 2452–67.CrossRefGoogle ScholarPubMed
Zaczek, A., Brandt, B. and Bielawski, K. P. The diverse signaling network of EGFR, HER2, HER3 and HER4 tyrosine kinase receptors and the consequences for therapeutic approaches. Histol Histopathol 2005; 20(3): 1005–15.Google ScholarPubMed
Pires-daSilva, A. and Sommer, R. J. The evolution of signalling pathways in animal development. Nat Rev Genet 2003; 4(1): 3949.CrossRefGoogle ScholarPubMed
Simons, K. and Toomre, D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 2000; 1(1): 31–9.CrossRefGoogle ScholarPubMed
Krall, J. A., Beyer, E. M. and MacBeath, G. High- and low-affinity epidermal growth factor receptor-ligand interactions activate distinct signaling pathways. PLoS ONE 2011; 6(1): e15945.CrossRefGoogle ScholarPubMed
Li, L., Leid, M. and Rothenberg, E. V. An early T cell lineage commitment checkpoint dependent on the transcription factor Bcl11b. Science 2010; 329(5987): 8993.CrossRefGoogle Scholar
Li, P., Burke, S., Wang, J., Chen, X., Ortiz, M., Lee, S. C. et al. Reprogramming of T cells to natural killer-like cells upon Bcl11b deletion. Science 2010; 329(5987): 85–9.CrossRefGoogle ScholarPubMed
van de Wetering, M., de Lau, W. and Clevers, H. WNT signaling and lymphocyte development. Cell 2002; 109(Suppl.): S13S19.CrossRefGoogle ScholarPubMed
Ikawa, T., Hirose, S., Masuda, K., Kakugawa, K., Satoh, R., Shibano-Satoh, A. et al. An essential developmental checkpoint for production of the T cell lineage. Science 2010; 329(5987): 93–6.CrossRefGoogle ScholarPubMed
Braunstein, M. and Anderson, M. K. HEB-deficient T-cell precursors lose T-cell potential and adopt an alternative pathway of differentiation. Mol Cell Biol 2011; 31(5): 971–82.CrossRefGoogle ScholarPubMed
Ben-Shlomo, I., Yu, H. S., Rauch, R., Kowalski, H. W. and Hsueh, A. J. Signaling receptome: a genomic and evolutionary perspective of plasma membrane receptors involved in signal transduction. Sci STKE 2003; 2003(187): RE9.CrossRefGoogle ScholarPubMed
Takebe, N., Harris, P. J., Warren, R. Q. and Ivy, S. P. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 2011; 8(2): 97106.CrossRefGoogle ScholarPubMed
Katritch, V., Cherezov, V. and Stevens, R. C. Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 2013; 53: 531–56.CrossRefGoogle ScholarPubMed
Radtke, F., Wilson, A. and MacDonald, H. R. Notch signaling in T- and B-cell development. Curr Opin Immunol 2004; 16(2): 174–9.CrossRefGoogle Scholar
Ma, J., Meng, Y., Kwiatkowski, D. J., Chen, X., Peng, H., Sun, Q. et al. Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade. J Clin Invest 2010; 120(1): 103–14.CrossRefGoogle ScholarPubMed
Wang, Z., Li, Y., Banerjee, S., Kong, D., Ahmad, A., Nogueira, V. et al. Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-kappaB signaling pathways. J Cell Biochem 2010; 109(4): 726–36.CrossRefGoogle ScholarPubMed
Androutsellis-Theotokis, A., Leker, R. R., Soldner, F., Hoeppner, D. J., Ravin, R., Poser, S. W. et al.Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 2006; 442(7104): 823–6.CrossRefGoogle ScholarPubMed
Borday, C., Cabochette, P., Parain, K., Mazurier, N., Janssens, S., Tran, H. T. et al.Antagonistic cross-regulation between Wnt and Hedgehog signalling pathways controls post-embryonic retinal proliferation. Development 2012; 139(19): 3499–509.CrossRefGoogle ScholarPubMed
Gibcus, J. H. and Dekker, J. The hierarchy of the 3D genome. Mol Cell 2013; 49(5): 773–82.CrossRefGoogle Scholar
Wilson, R. C. and Doudna, J. A. Molecular mechanisms of RNA interference. Annu Rev Biophys 2013; 42: 217–39.CrossRefGoogle ScholarPubMed
Bray, S. and Bernard, F. Notch targets and their regulation. Curr Top Dev Biol 2010; 92: 253–75.CrossRefGoogle ScholarPubMed
Petitjean, A., Mathe, E., Kato, S., Ishioka, C., Tavtigian, S. V., Hainaut, P. et al.Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 2007; 28(6): 622–9.CrossRefGoogle ScholarPubMed
Muller, P. A. and Vousden, K. H. p53 mutations in cancer. Nat Cell Biol 2013; 15(1): 28.CrossRefGoogle ScholarPubMed
Aster, J. C., Blacklow, S. C. and Pear, W. S. Notch signalling in T-cell lymphoblastic leukaemia/lymphoma and other haematological malignancies. J Pathol 2011; 223(2): 262–73.CrossRefGoogle ScholarPubMed
De Sousa E. Melo, F., Vermeulen, L., Fessler, E. and Medema, J. P. Cancer heterogeneity – a multifaceted view. EMBO Rep 2013; 14(8): 686–95.Google ScholarPubMed
Greaves, M. and Maley, C. C. Clonal evolution in cancer. Nature 2012; 481(7381): 306–13.CrossRefGoogle ScholarPubMed
Carmeliet, P. VEGF as a key mediator of angiogenesis in cancer. Oncology 2005; 69(Suppl. 3): 410.CrossRefGoogle ScholarPubMed
Mimeault, M. and Batra, S. K. Frequent deregulations in the hedgehog signaling network and cross-talks with the epidermal growth factor receptor pathway involved in cancer progression and targeted therapies. Pharmacol Rev 2010; 62(3): 497524.CrossRefGoogle ScholarPubMed
Taylor, M. D., Liu, L., Raffel, C., Hui, C. C., Mainprize, T. G., Zhang, X. et al.Mutations in SUFU predispose to medulloblastoma. Nat Genet 2002; 31(3): 306–10.CrossRefGoogle ScholarPubMed
Kandoth, C., McLellan, M. D., Vandin, F., Ye, K., Niu, B., Lu, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 2013; 502(7471): 333–9.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×