Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-22T09:07:17.714Z Has data issue: false hasContentIssue false

Chapter 7 - Tissue microarrays

Published online by Cambridge University Press:  05 November 2015

John M. S. Bartlett
Affiliation:
Ontario Institute for Cancer Research, Toronto
Abeer Shaaban
Affiliation:
Queen Elizabeth Hospital Birmingham
Fernando Schmitt
Affiliation:
University of Porto
Get access
Type
Chapter
Information
Molecular Pathology
A Practical Guide for the Surgical Pathologist and Cytopathologist
, pp. 88 - 102
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suvama, K., Layton, C. and Bancroft, J. (eds.), Theory and Practice of Histological Techniques, 7th edn. (New York: Churchill & Livingstone, 2008).Google Scholar
Kononen, J., Bubendorf, L., Kallioniemi, A., Barlund, M., Schraml, P., Leighton, S. et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 1998; 4(7): 844–7. PubMed PMID: 9662379.CrossRefGoogle ScholarPubMed
Battifora, H. The multitumor (sausage) tissue block: novel method for immunohistochemical antibody testing. Lab Invest 1986; 55(2): 244–8. PubMed PMID: 3525985.Google ScholarPubMed
Bubendorf, L., Nocito, A., Moch, H. and Sauter, G. Tissue microarray (TMA) technology: miniaturized pathology archives for high-throughput in situ studies. J Pathol 2001; 195(1): 72–9. PubMed PMID: 11568893.CrossRefGoogle ScholarPubMed
Tennstedt, P. and Sauter, G. Quality aspects of TMA analysis. Methods Mol Biol 2010; 664: 1726. PubMed PMID: 20690048.CrossRefGoogle ScholarPubMed
Torhorst, J., Bucher, C., Kononen, J., Haas, P., Zuber, M., Kochli, O. R. et al. Tissue microarrays for rapid linking of molecular changes to clinical endpoints. Am J Path 2001; 159(6): 2249–56. PubMed PMID: 11733374. Pubmed Central PMCID: 1850582.CrossRefGoogle ScholarPubMed
McCarthy, N. Tumour heterogeneity: Darwin's finches. Nat Rev Cancer 2012; 12(5): 317. PubMed PMID: 22495322.Google ScholarPubMed
Camp, R. L., Charette, L. A. and Rimm, D. L. Validation of tissue microarray technology in breast carcinoma. Lab Invest 2000; 80(12): 1943–9. PubMed PMID: 11140706.CrossRefGoogle ScholarPubMed
Graham, A. D., Faratian, D., Rae, F. and Thomas, J. S. Tissue microarray technology in the routine assessment of HER-2 status in invasive breast cancer: a prospective study of the use of immunohistochemistry and fluorescence in situ hybridization. Histopathology 2008; 52(7): 847–55. PubMed PMID: 18494613.CrossRefGoogle ScholarPubMed
Lugli, A., Spichtin, H., Maurer, R., Mirlacher, M., Kiefer, J., Huusko, P. et al. EphB2 expression across 138 human tumor types in a tissue microarray: high levels of expression in gastrointestinal cancers. Clin Cancer Res 2005; 11(18): 6450–8. PubMed PMID: 16166419.CrossRefGoogle Scholar
Tornillo, L., Duchini, G., Carafa, V., Lugli, A., Dirnhofer, S., Di Vizio, D. et al. Patterns of gene amplification in gastrointestinal stromal tumors (GIST). Lab Invest 2005; 85(7): 921–31. PubMed PMID: 15864317.CrossRefGoogle ScholarPubMed
Mirlacher, M. and Simon, R. Recipient block TMA technique. Methods Mol Biol 2010; 664: 3744. PubMed PMID: 20690050.CrossRefGoogle ScholarPubMed
Went, P. T., Dirnhofer, S., Bundi, M., Mirlacher, M., Schraml, P., Mangialaio, S. et al. Prevalence of KIT expression in human tumors. J Clin Oncol 2004; 22(22): 4514–22. PubMed PMID: 15542802.CrossRefGoogle ScholarPubMed
Kaimaktchiev, V., Terracciano, L., Tornillo, L., Spichtin, H., Stoios, D., Bundi, M. et al. The homeobox intestinal differentiation factor CDX2 is selectively expressed in gastrointestinal adenocarcinomas. Modern Pathol 2004; 17(11): 1392–9. PubMed PMID: 15205684.CrossRefGoogle ScholarPubMed
Lugli, A., Tornillo, L., Mirlacher, M., Bundi, M., Sauter, G. and Terracciano, L. M. Hepatocyte paraffin 1 expression in human normal and neoplastic tissues: tissue microarray analysis on 3,940 tissue samples. Am J Clin Pathol 2004; 122(5): 721–7. PubMed PMID: 15491968.CrossRefGoogle Scholar
Cillo, C., Schiavo, G., Cantile, M., Bihl, M. P., Sorrentino, P., Carafa, V. et al. The HOX gene network in hepatocellular carcinoma. Int J Cancer 2011; 129(11): 2577–87. PubMed PMID: 21626505.CrossRefGoogle ScholarPubMed
Zlobec, I., Terracciano, L., Tornillo, L., Gunthert, U., Vuong, T., Jass, J. R. et al. Role of RHAMM within the hierarchy of well-established prognostic factors in colorectal cancer. Gut 2008; 57(10): 1413–19. PubMed PMID: 18436576.CrossRefGoogle ScholarPubMed
Al-Kuraya, K., Schraml, P., Torhorst, J., Tapia, C., Zaharieva, B., Novotny, H. et al. Prognostic relevance of gene amplifications and coamplifications in breast cancer. Cancer Res 2004; 64(23): 8534–40. PubMed PMID: 15574759.CrossRefGoogle ScholarPubMed
Gannon, P. O., Lessard, L., Stevens, L. M., Forest, V., Begin, L. R., Minner, S. et al. Large-scale independent validation of the nuclear factor-kappa B p65 prognostic biomarker in prostate cancer. Eur J Cancer 2013; 49(10): 2441–8. PubMed PMID: 23541563.CrossRefGoogle ScholarPubMed
Wu, Y. H., Chang, T. H., Huang, Y. F., Huang, H. D. and Chou, C. Y. COL11A1 promotes tumor progression and predicts poor clinical outcome in ovarian cancer. Oncogene 2013; 33(26): 3432–40. PubMed PMID: 23934190.Google ScholarPubMed
Obermann, E. C., Went, P., Tzankov, A., Pileri, S. A., Hofstaedter, F., Marienhagen, J. et al. Cell cycle phase distribution analysis in chronic lymphocytic leukaemia: a significant number of cells reside in early G1-phase. J Clin Pathol 2007; 60(7): 794–7. PubMed PMID: 16950856. Pubmed Central PMCID: 1995795.Google ScholarPubMed
Simon, R., Mirlacher, M. and Sauter, G. Immunohistochemical analysis of tissue microarrays. Methods Mol Biol 2010; 664:113–26. PubMed PMID: 20690058.CrossRefGoogle ScholarPubMed
Heagerty, P. J., Lumley, T. and Pepe, M. S. Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics 2000; 56(2): 337–44. PubMed PMID: 10877287.CrossRefGoogle ScholarPubMed
Chaux, A., Albadine, R., Toubaji, A., Hicks, J., Meeker, A., Platz, E. A. et al. Immunohistochemistry for ERG expression as a surrogate for TMPRSS2-ERG fusion detection in prostatic adenocarcinomas. Am J Surg Pathol 2011; 35(7): 1014–20. PubMed PMID: 21677539. Pubmed Central PMCID: 3505676.CrossRefGoogle ScholarPubMed
Fischer, C. A., Zlobec, I., Green, E., Probst, S., Storck, C., Lugli, A. et al. Is the improved prognosis of p16 positive oropharyngeal squamous cell carcinoma dependent of the treatment modality? Int J Cancer 2010; 126(5): 1256–62. PubMed PMID: 19697324.CrossRefGoogle ScholarPubMed
Press, M. F., Sauter, G., Bernstein, L., Villalobos, I. E., Mirlacher, M., Zhou, J. Y. et al. Diagnostic evaluation of HER-2 as a molecular target: an assessment of accuracy and reproducibility of laboratory testing in large, prospective, randomized clinical trials. Clin Cancer Res 2005; 11(18): 6598–607. PubMed PMID: 16166438.CrossRefGoogle ScholarPubMed
Hoos, A. and Cordon-Cardo, C. Tissue microarray profiling of cancer specimens and cell lines: opportunities and limitations. Lab Invest 2001; 81(10): 1331–8. PubMed PMID: 11598146.CrossRefGoogle ScholarPubMed
Ferrer, B., Bermudo, R., Thomson, T., Nayach, I., Soler, M., Sanchez, M. et al. Paraffin-embedded cell line microarray (PECLIMA): development and validation of a high-throughput method for antigen profiling of cell lines. Pathobiology 2005; 72(5): 225–32. PubMed PMID: 16374066.CrossRefGoogle ScholarPubMed
Andersson, A. C., Stromberg, S., Backvall, H., Kampf, C., Uhlen, M., Wester, K. et al. Analysis of protein expression in cell microarrays: a tool for antibody-based proteomics. J Histochem Cytochem 2006; 54(12): 1413–23. PubMed PMID: 16957166.CrossRefGoogle ScholarPubMed
Zhao, S. and Natkunam, Y. Building “tissue” microarrays from suspension cells. Methods Mol Biol 2010; 664: 93101. PubMed PMID: 20690056.CrossRefGoogle ScholarPubMed
Uhlen, M., Bjorling, E., Agaton, C., Szigyarto, C. A., Amini, B., Andersen, E. et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 2005; 4(12): 1920–32. PubMed PMID: 16127175.Google Scholar
Zhou, L., Hodeib, M., Abad, J. D., Mendoza, L., Kore, A. R. and Hu, Z. New tissue microarray technology for analyses of gene expression in frozen pathological samples. BioTechniques 2007; 43(1): 101–5. PubMed PMID: 17695259.CrossRefGoogle ScholarPubMed
Zlobec, I., Terracciano, L., Jass, J. R. and Lugli, A. Value of staining intensity in the interpretation of immunohistochemistry for tumor markers in colorectal cancer. Virchows Archiv 2007; 451(4): 763–9. PubMed PMID: 17674041.CrossRefGoogle ScholarPubMed
Sundara Rajan, S., Horgan, K., Speirs, V. and Hanby, A. M. External validation of the ImmunoRatio image analysis application for ERalpha determination in breast cancer. J Clin Pathol 2014; 67(1): 72–5. PubMed PMID: 23986557.CrossRefGoogle ScholarPubMed
Mohammed, Z. M., McMillan, D. C., Elsberger, B., Going, J. J., Orange, C., Mallon, E. et al. Comparison of visual and automated assessment of Ki-67 proliferative activity and their impact on outcome in primary operable invasive ductal breast cancer. Br J Cancer 2012; 106(2): 383–8. PubMed PMID: 22251968. Pubmed Central PMCID: 3261670.CrossRefGoogle ScholarPubMed
Mohammed, Z. M., Going, J. J., McMillan, D. C., Orange, C., Mallon, E., Doughty, J. C. et al. Comparison of visual and automated assessment of HER2 status and their impact on outcome in primary operable invasive ductal breast cancer. Histopathology 2012; 61(4): 675–84. PubMed PMID: 22747525.CrossRefGoogle ScholarPubMed
Mohammed, Z. M., Edwards, J., Orange, C., Mallon, E., Doughty, J. C., McMillan, D. C. et al. Breast cancer outcomes by steroid hormone receptor status assessed visually and by computer image analysis. Histopathology 2012; 61(2): 283–92. PubMed PMID: 22571413.CrossRefGoogle ScholarPubMed
Ali, H. R., Irwin, M., Morris, L., Dawson, S. J., Blows, F. M., Provenzano, E. et al. Astronomical algorithms for automated analysis of tissue protein expression in breast cancer. Br J Cancer 2013; 108(3): 602–12. PubMed PMID: 23329232. Pubmed Central PMCID: 3593538.CrossRefGoogle ScholarPubMed
Wolff, A. C., Hammond, M. E., Schwartz, J. N., Hagerty, K. L., Allred, D. C., Cote, R. J. et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 2007; 25(1): 118–45. PubMed PMID: 17159189.CrossRefGoogle Scholar
Bang, Y. J., Van Cutsem, E., Feyereislova, A., Chung, H. C., Shen, L., Sawaki, A. et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 2010; 376(9742): 687–97. PubMed PMID: 20728210.CrossRefGoogle ScholarPubMed
Takeuchi, K., Soda, M., Togashi, Y., Suzuki, R., Sakata, S., Hatano, S. et al. RET, ROS1 and ALK fusions in lung cancer. Nat Med 2012; 18(3): 378–81. PubMed PMID: 22327623.CrossRefGoogle ScholarPubMed
Brown, L. A. and Huntsman, D. Fluorescent in situ hybridization on tissue microarrays: challenges and solutions. J Mol Histol 2007; 38(2): 151–7. PubMed PMID: 17216303.CrossRefGoogle ScholarPubMed
Drev, P., Grazio, S. F. and Bracko, M. Tissue microarrays for routine diagnostic assessment of HER2 status in breast carcinoma. Applied immunohistochemistry & molecular morphology. AIMM 2008; 16(2): 179–84. PubMed PMID: 18227723.Google Scholar
Oeggerli, M., Tian, Y., Ruiz, C., Wijker, B., Sauter, G., Obermann, E. et al. Role of KCNMA1 in breast cancer. PloS ONE 2012; 7(8): e41664. PubMed PMID: 22899999. Pubmed Central PMCID: 3416802.CrossRefGoogle ScholarPubMed
Turashvili, G., Leung, S., Turbin, D., Montgomery, K., Gilks, B., West, R. et al. Inter-observer reproducibility of HER2 immunohistochemical assessment and concordance with fluorescent in situ hybridization (FISH): pathologist assessment compared to quantitative image analysis. BMC Cancer 2009; 9: 165. PubMed PMID: 19476653. Pubmed Central PMCID: PMC2698924. Epub 2009/05/30. eng.CrossRefGoogle ScholarPubMed
Zlobec, I., Koelzer, V. H., Dawson, H., Perren, A. and Lugli, A. Next-generation tissue microarray (ngTMA) increases the quality of biomarker studies: an example using CD3, CD8, and CD45RO in the tumor microenvironment of six different solid tumor types. J Transl Med 2013; 11(1): 104. PubMed PMID: 23627766. Pubmed Central PMCID: 3644251.CrossRefGoogle ScholarPubMed
Mulrane, L., Rexhepaj, E., Penney, S., Callanan, J. J. and Gallagher, W. M. Automated image analysis in histopathology: a valuable tool in medical diagnostics. Expert Rev Mol Diag 2008; 8(6): 707–25. PubMed PMID: 18999923.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×