Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-22T09:27:31.806Z Has data issue: false hasContentIssue false

Chapter 20 - Serous effusions

Published online by Cambridge University Press:  05 November 2015

John M. S. Bartlett
Affiliation:
Ontario Institute for Cancer Research, Toronto
Abeer Shaaban
Affiliation:
Queen Elizabeth Hospital Birmingham
Fernando Schmitt
Affiliation:
University of Porto
Get access
Type
Chapter
Information
Molecular Pathology
A Practical Guide for the Surgical Pathologist and Cytopathologist
, pp. 356 - 372
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Davidson, B., Firat, B. P. and Michael, C. W. (eds.), Serous Effusions (London: Springer, 2011).Google Scholar
Sandberg, A. A. and Meloni-Ehrig, A. M. Cytogenetics and genetics of human cancer: methods and accomplishments. Cancer Genet Cytogenet 2010; 203(2): 102–26.CrossRefGoogle ScholarPubMed
Reis-Filho, J. S. and de Landér Schmitt, F. C. Fluorescence in situ hybridization, comparative genomic hybridization, and other molecular biology techniques in the analysis of effusions. Diagn Cytopathol 2005; 33(5): 294–9.CrossRefGoogle ScholarPubMed
Larramendy, M. L., Björkqvist, A. M., Tammilehto, L., Taavitsainen, M., Mattson, K. and Knuutila, S. Absence of trisomy 7 in nonneoplastic human ascitic and pleural fluid cells. An interphase cytogenetic study. Cancer Genet Cytogenet 1994; 78(1): 7881.CrossRefGoogle ScholarPubMed
Johnson, T. M., Kuffel, D. G. and Dewald, G. W. Detection of hyperdiploid malignant cells in pleural effusions with chromosome-specific probes and fluorescence in situ hybridization. Mayo Clin Proc 1996; 71(7): 643–8.CrossRefGoogle ScholarPubMed
Zojer, N., Fiegl, M., Angerler, J., Müllauer, L., Gsur, A., Roka, S. et al. Interphase fluorescence in situ hybridization improves the detection of malignant cells in effusions from breast cancer patients. Br J Cancer 1997; 75(3): 403–7.CrossRefGoogle ScholarPubMed
Zojer, N., Fiegl, M., Müllauer, L., Chott, A., Roka, S., Ackermann, J. et al. Chromosomal imbalances in primary and metastatic pancreatic carcinoma as detected by interphase cytogenetics: basic findings and clinical aspects. Br J Cancer 1998; 77(8): 1337–42.CrossRefGoogle ScholarPubMed
Roka, S., Fiegl, M., Zojer, N., Filipits, M., Schuster, R., Steiner, B. et al. Aneuploidy of chromosome 8 as detected by interphase fluorescence in situ hybridization is a recurrent finding in primary and metastatic breast cancer. Breast Cancer Res Treat 1998; 48(2): 125–33.CrossRefGoogle ScholarPubMed
Fiegl, M., Zojer, N., Kaufmann, H., Müllauer, L., Schuster, R., Huber, H. et al. Hyperdiploidy and apparent aneusomy in mesothelial cells from non-malignant effusions as detected by fluorescence in situ hybridization (FISH). Cytometry 1999; 38(1): 1523.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Fiegl, M., Kaufmann, H., Zojer, N., Schuster, R., Wiener, H., Müllauer, L. et al. Malignant cell detection by fluorescence in situ hybridization (FISH) in effusions from patients with carcinoma. Hum Pathol 2000; 31(4): 448–55.CrossRefGoogle ScholarPubMed
Fiegl, M., Massoner, A., Haun, M., Sturm, W., Kaufmann, H., Hack, R. et al. Sensitive detection of tumour cells in effusions by combining cytology and fluorescence in situ hybridisation (FISH). Br J Cancer 2004; 91(3): 558–63.CrossRefGoogle ScholarPubMed
Han, J., Cao, S., Zhang, K., Zhao, G., Xin, Y., Dong, Q. et al. Fluorescence in situ hybridization as adjunct to cytology improves the diagnosis and directs estimation of prognosis of malignant pleural effusions. J Cardiothorac Surg 2012; 7: 121.CrossRefGoogle ScholarPubMed
Rosolen, D. C., Kulikowski, L. D., Bottura, G., Nascimento, A. M., Acencio, M., Teixeira, L. et al. Efficacy of two fluorescence in situ hybridization (FISH) probes for diagnosing malignant pleural effusions. Lung Cancer 2013; 80(3): 284–8.CrossRefGoogle ScholarPubMed
Gradishar, W. J. Emerging approaches for treating HER2-positive metastatic breast cancer beyond trastuzumab. Ann Oncol 2013; 24(10): 2492–500.CrossRefGoogle ScholarPubMed
Pazo Cid, R. A. and Antón, A. Advanced HER2-positive gastric cancer: current and future targeted therapies. Crit Rev Oncol Hematol 2013; 85(3): 350–62.CrossRefGoogle ScholarPubMed
Shabaik, A., Lin, G., Peterson, M., Hasteh, F., Tipps, A., Datnow, B. et al. Reliability of Her2/neu, estrogen receptor, and progesterone receptor testing by immunohistochemistry on cell block of FNA and serous effusions from patients with primary and metastatic breast carcinoma. Diagn Cytopathol 2011; 39(5): 328–32.CrossRefGoogle ScholarPubMed
Schlüter, B., Gerhards, R., Strumberg, D. and Voigtmann, R. Combined detection of Her2/neu gene amplification and protein overexpression in effusions from patients with breast and ovarian cancer. J Cancer Res Clin Oncol 2010; 136(9): 1389–400.CrossRefGoogle ScholarPubMed
Arihiro, K., Oda, M., Ogawa, K., Tominaga, K., Kaneko, Y., Shimizu, T. et al. Discordant HER2 status between primary breast carcinoma and recurrent/metastatic tumors using fluorescence in situ hybridization on cytological samples. Jpn J Clin Oncol 2013; 43(1): 5562.CrossRefGoogle ScholarPubMed
Bozzetti, C., Negri, F. V., Lagrasta, C. A., Crafa, P., Bassano, C., Tamagnini, I. et al. Comparison of HER2 status in primary and paired metastatic sites of gastric carcinoma. Br J Cancer 2011; 104(9): 1372–6.Google ScholarPubMed
Illei, P. B., Ladanyi, M., Rusch, V. W. and Zakowski, M. F. The use of CDKN2A deletion as a diagnostic marker for malignant mesothelioma in body cavity effusions. Cancer 2003; 99(1): 51–6.Google ScholarPubMed
Onofre, F. B., Onofre, A. S., Pomjanski, N., Buckstegge, B., Grote, H. J., Böcking, A. et al. 9p21 deletion in the diagnosis of malignant mesothelioma in serous effusions additional to immunocytochemistry, DNA-ICM, and AgNOR analysis. Cancer 2008; 114(3): 204–15.CrossRefGoogle ScholarPubMed
Matsumoto, S., Nabeshima, K., Kamei, T., Hiroshima, K., Kawahara, K., Hata, S. et al. Morphology of 9p21 homozygous deletion-positive pleural mesothelioma cells analyzed using fluorescence in situ hybridization and virtual microscope system in effusion cytology. Cancer Cytopathol 2013; 121(8): 415–22.CrossRefGoogle ScholarPubMed
Flores-Staino, C., Darai-Ramqvist, E., Dobra, K. and Hjerpe, A. Adaptation of a commercial fluorescent in situ hybridization test to the diagnosis of malignant cells in effusions. Lung Cancer 2010; 68(1): 3943.CrossRefGoogle Scholar
Savic, S., Franco, N., Grilli, B., Barascud Ade, V., Herzog, M., Bode, B. et al. Fluorescence in situ hybridization in the definitive diagnosis of malignant mesothelioma in effusion cytology. Chest 2010; 138(1): 137–44.CrossRefGoogle ScholarPubMed
Shin, H. J., Shin, D. M., Tarco, E. and Sneige, N. Detection of numerical aberrations of chromosomes 7 and 9 in cytologic specimens of pleural malignant mesothelioma. Cancer 2003; 99(4): 233–9.CrossRefGoogle ScholarPubMed
O'Connell, J. T., Hacker, C. M. and Barsky, S. H. MUC2 is a molecular marker for pseudomyxoma peritonei. Mod Pathol 2002; 15(9): 958–72.Google ScholarPubMed
Li, X., Wan, L., Shen, H., Geng, J., Nie, J., Wang, G. et al. Thyroid transcription factor-1 amplification and expressions in lung adenocarcinoma tissues and pleural effusions predict patient survival and prognosis. J Thorac Oncol 2012; 7(1): 7684.CrossRefGoogle ScholarPubMed
Günes, C. and Rudolph, K. L. The role of telomeres in stem cells and cancer. Cell 2013; 152(3): 390–3.CrossRefGoogle ScholarPubMed
Podlevsky, J. D. and Chen, J. J. It all comes together at the ends: telomerase structure, function, and biogenesis. Mutat Res 2012; 730(1–2): 311.CrossRefGoogle ScholarPubMed
Yang, C. T., Lee, M. H., Lan, R. S. and Chen, J. K. Telomerase activity in pleural effusions: diagnostic significance. J Clin Oncol 1998; 16(2): 567–73.CrossRefGoogle ScholarPubMed
Cunningham, V. J., Markham, N., Shroyer, A. L., and Shroyer, K. R. Detection of telomerase expression in fine-needle aspirations and fluids. Diagn Cytopathol 1998; 18(6): 431–6.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Mu, X. C., Brien, T. P., Ross, J. S., Lowry, C. V. and McKenna, B. J. Telomerase activity in benign and malignant cytologic fluids. Cancer 1999; 87(2): 93–9.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Tangkijvanich, P., Tresukosol, D., Sampatanukul, P., Sakdikul, S., Voravud, N., Mahachai, V. et al. Telomerase assay for differentiating between malignancy-related and nonmalignant ascites. Clin Cancer Res 1999; 5(9): 2470–5.Google ScholarPubMed
Toshima, S., Arai, T., Yasuda, Y., Takaya, T., Ito, Y., Hayakawa, K. et al. Cytological diagnosis and telomerase activity of cells in effusions of body cavities. Oncol Rep 1999; 6(1): 199203.Google ScholarPubMed
Tseng, C. J., Jain, S., Hou, H. C., Liu, W., Pao, C. C., Lin, C. T. et al. Applications of the telomerase assay in peritoneal washing fluids. Gynecol Oncol 2001; 81(3): 420–3.CrossRefGoogle ScholarPubMed
Dejmek, A., Yahata, N., Ohyashiki, K., Ebihara, Y., Kakihana, M., Hirano, T. et al. In situ telomerase activity in pleural effusions: a promising marker for malignancy. Diagn Cytopathol 2001; 24(1): 1115.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Hiroi, S., Nakanishi, K. and Kawai, T. Expressions of human telomerase mRNA component (hTERC) and telomerase reverse transcriptase (hTERT) mRNA in effusion cytology. Diagn Cytopathol 2003; 29(4): 212–16.CrossRefGoogle ScholarPubMed
Nagel, H., Schlott, T., Schulz, G. M. and Droese, M. Gene expression analysis of the catalytic subunit of human telomerase (hEST2) in the differential diagnosis of serous effusions. Diagn Mol Pathol 2001; 10(1): 60–5.CrossRefGoogle ScholarPubMed
Braunschweig, R., Guilleret, I., Delacrétaz, F., Bosman, F. T., Mihaescu, A. and Benhattar, J. Pitfalls in TRAP assay in routine detection of malignancy in effusions. Diagn Cytopathol 2001; 25(4): 225–30.CrossRefGoogle ScholarPubMed
Yamashita, K., Kuba, T., Shinoda, H., Takahashi, E. and Okayasu, I. Detection of K-ras point mutations in the supernatants of peritoneal and pleural effusions for diagnosis complementary to cytologic examination. Am J Clin Pathol 1998; 109(6): 704–11.CrossRefGoogle ScholarPubMed
Yu, C. J., Shew, J. Y., Liaw, Y. S., Kuo, S. H., Luh, K. T., Yang, P. C. et al. Application of mucin quantitative competitive reverse transcription polymerase chain reaction in assisting the diagnosis of malignant pleural effusion. Am J Respir Crit Care Med 2001; 164(7): 1312–18.CrossRefGoogle ScholarPubMed
Sakaguchi, M., Virmani, A. K., Ashfaq, R., Rogers, T. E., Rathi, A., Liu, Y. et al. Development of a sensitive, specific reverse transcriptase polymerase chain reaction-based assay for epithelial tumour cells in effusions. Br J Cancer 1999; 79(3–4): 416–22.CrossRefGoogle ScholarPubMed
Sang, M., Lian, Y., Zhou, X. and Shan, B. MAGE-A family: attractive targets for cancer immunotherapy. Vaccine 2011; 29(47): 8496–500.CrossRefGoogle ScholarPubMed
Hofmann, M. and Ruschenburg, I. mRNA detection of tumor-rejection genes BAGE, GAGE, and MAGE in peritoneal fluid from patients with ovarian carcinoma as a potential diagnostic tool. Cancer 2002; 96(3): 187–93.CrossRefGoogle ScholarPubMed
Saito, T., Kobayashi, M., Harada, R., Uemura, Y. and Taguchi, H. Sensitive detection of small cell lung carcinoma cells by reverse transcriptase-polymerase chain reaction for prepro-gastrin-releasing peptide mRNA. Cancer 2003; 97(10): 2504–11.CrossRefGoogle ScholarPubMed
Fiegl, M., Haun, M., Massoner, A., Krugmann, J., Müller-Holzner, E., Hack, R. et al. Combination of cytology, fluorescence in situ hybridization for aneuploidy, and reverse-transcriptase polymerase chain reaction for human mammaglobin/mammaglobin B expression improves diagnosis of malignant effusions. J Clin Oncol 2004; 22(3): 474–83.CrossRefGoogle ScholarPubMed
Salani, R., Davidson, B., Fiegl, M., Marth, C., Müller-Holzner, E., Gastl, G. et al. Measurement of cyclin E genomic copy number and strand length in cell-free DNA distinguish malignant versus benign effusions. Clin Cancer Res 2007; 13(19): 5805–9.CrossRefGoogle ScholarPubMed
Wang, T., Qian, X., Wang, Z., Yu, L., Ding, Y. and Liu, B. Detection of cell-free BIRC5 mRNA in effusions and its potential diagnostic value for differentiating malignant and benign effusions. Int J Cancer 2009; 125(8): 1921–5.CrossRefGoogle ScholarPubMed
Mohamed, F., Vincent, N., Cottier, M., Peoc'h, M., Merrouche, Y., Patouillard, B. et al. Improvement of malignant serous effusions diagnosis by quantitative analysis of molecular claudin 4 expression. Biomarkers 2010; 15(4): 315–24.CrossRefGoogle ScholarPubMed
Ellison, G., Zhu, G., Moulis, A., Dearden, S., Speake, G. and McCormack, R. EGFR mutation testing in lung cancer: a review of available methods and their use for analysis of tumour tissue and cytology samples. J Clin Pathol 2013; 66(2): 7989.CrossRefGoogle ScholarPubMed
Tsai, T. H., Wu, S. G., Chang, Y. L., Wu, C. T., Tsai, M. F., Wei, P. F. et al. Effusion immunocytochemistry as an alternative approach for the selection of first-line targeted therapy in advanced lung adenocarcinoma. J Thorac Oncol 2012; 7(6): 9931000.CrossRefGoogle ScholarPubMed
Goto, K., Satouchi, M., Ishii, G., Nishio, K., Hagiwara, K., Mitsudomi, T. et al. An evaluation study of EGFR mutation tests utilized for non-small-cell lung cancer in the diagnostic setting. Ann Oncol 2012; 23(11): 2914–19.CrossRefGoogle ScholarPubMed
Soda, M., Isobe, K., Inoue, A., Maemondo, M., Oizumi, S., Fujita, Y. et al. A prospective PCR-based screening for the EML4-ALK oncogene in non-small cell lung cancer. Clin Cancer Res 2012; 18(20): 5682–9.CrossRefGoogle ScholarPubMed
Wu, S. G., Kuo, Y. W., Chang, Y. L., Shih, J. Y., Chen, Y. H., Tsai, M. F. et al. EML4-ALK translocation predicts better outcome in lung adenocarcinoma patients with wild-type EGFR. J Thorac Oncol 2012; 7: 98104.CrossRefGoogle ScholarPubMed
Zaidi, S. K., Van Wijnen, A. J., Lian, J. B., Stein, J. L. and Stein, G. S. Targeting deregulated epigenetic control in cancer. J Cell Physiol 2013; 228(11): 2103–8.CrossRefGoogle ScholarPubMed
Benlloch, S., Galbis-Caravajal, J. M., Martín, C., Sanchez-Paya, J., Rodríguez-Paniagua, J. M., Romero, S. et al. Potential diagnostic value of methylation profile in pleural fluid and serum from cancer patients with pleural effusion. Cancer 2006; 107(8): 1859–65.CrossRefGoogle ScholarPubMed
Katayama, H., Hiraki, A., Aoe, K., Fujiwara, K., Matsuo, K., Maeda, T. et al. Aberrant promoter methylation in pleural fluid DNA for diagnosis of malignant pleural effusion. Int J Cancer 2007; 120(10): 2191–5.CrossRefGoogle ScholarPubMed
Fujii, M., Fujimoto, N., Hiraki, A., Gemba, K., Aoe, K., Umemura, S. et al. Aberrant DNA methylation profile in pleural fluid for differential diagnosis of malignant pleural mesothelioma. Cancer Sci 2012; 103(3): 510–14.CrossRefGoogle ScholarPubMed
Yang, T. M., Leu, S. W., Li, J. M., Hung, M. S., Lin, C. H., Lin, Y. C. et al. WIF-1 promoter region hypermethylation as an adjuvant diagnostic marker for non-small cell lung cancer-related malignant pleural effusions. J Cancer Res Clin Oncol 2009; 135(7): 919–24.CrossRefGoogle ScholarPubMed
Hiraki, M., Kitajima, Y., Sato, S., Nakamura, J., Hashiguchi, K., Noshiro, H. et al. Aberrant gene methylation in the peritoneal fluid is a risk factor predicting peritoneal recurrence in gastric cancer. World J Gastroenterol 2010; 16(3): 330–8.CrossRefGoogle ScholarPubMed
de Matos Granja, N., Soares, R., Rocha, S., Paredes, J., Longatto Filho, A., Alves, V. A. et al. Evaluation of breast cancer metastases in pleural effusions by molecular biology techniques. Diagn Cytopathol 2002; 27(4): 210–13.CrossRefGoogle ScholarPubMed
Granja Nde, M., Ricardo, S. A., Longatto Filho, A., Alves, V. A., Bedrossian, C. W., Wiley, E. L. et al. Potential use of loss of heterozygosity in pleural effusions of breast cancer metastases using the microsatellite marker of the 16q22.1 region of the CDH1 gene. Anal Quant Cytol Histol 2005; 27(2): 61–6.Google ScholarPubMed
Lee, J. H., Hong, Y. S., Ryu, J. S. and Chang, J. H. p53 and FHIT mutations and microsatellite alterations in malignancy-associated pleural effusion. Lung Cancer 2004; 44(1): 3342.CrossRefGoogle ScholarPubMed
Woenckhaus, M., Grepmeier, U., Werner, B., Schulz, C., Rockmann, F., Wild, P. J. et al. Microsatellite analysis of pleural supernatants could increase sensitivity of pleural fluid cytology. J Mol Diagn 2005; 7(4): 517–24.CrossRefGoogle ScholarPubMed
Economidou, F., Tzortzaki, E. G., Schiza, S., Antoniou, K. M., Neofytou, E., Zervou, M. et al. Microsatellite DNA analysis does not distinguish malignant from benign pleural effusions. Oncol Rep 2007; 18(6): 1507–12.Google Scholar
Nagel, H., Schulten, H. J., Gunawan, B., Brinck, U. and Füzesi, L. The potential value of comparative genomic hybridization analysis in effusion- and fine needle aspiration cytology. Mod Pathol 2002; 15(8): 818–25.CrossRefGoogle ScholarPubMed
Pirker, C., Holzmann, K., Spiegl-Kreinecker, S., Elbling, L., Thallinger, C., Pehamberger, H. et al. Chromosomal imbalances in primary and metastatic melanomas: over-representation of essential telomerase genes. Melanoma Res 2003; 13(5): 483–92.CrossRefGoogle ScholarPubMed
Yen, C. C., Liang, S. C., Jong, Y. J., Chen, Y. J., Lin, C. H., Chen, Y. M. et al. Chromosomal aberrations of malignant pleural effusions of lung adenocarcinoma: different cytogenetic changes are correlated with genders and smoking habits. Lung Cancer 2007; 57(3): 292301.CrossRefGoogle ScholarPubMed
Davidson, B., Zhang, Z., Kleinberg, L., Li, M., Flørenes, V. A., Wang, T. L. et al. Gene expression signatures differentiate ovarian/peritoneal serous carcinoma from diffuse malignant peritoneal mesothelioma. Clin Cancer Res 2006; 12(20 Pt. 1): 5944–50.CrossRefGoogle ScholarPubMed
Davidson, B., Tuft Stavnes, H., Holth, A., Chen, X., Yang, Y., Shih, le-M. et al. Gene expression signatures differentiate ovarian/peritoneal serous carcinoma from breast carcinoma in effusions. J Cell Mol Med 2011; 15(3): 535–44.CrossRefGoogle ScholarPubMed
Davidson, B., Stavnes, H. T., Risberg, B., Nesland, J. M., Wohlschlaeger, J., Yang, Y. et al. Gene expression signatures differentiate adenocarcinoma of lung and breast origin in effusions. Hum Pathol 2012; 43(5): 684–94.CrossRefGoogle ScholarPubMed
Yuan, Y., Nymoen, D. A., Dong, H. P., Bjørang, O., Shih, le-M., Low, P. S. et al. Expression of the folate receptor genes FOLR1 and FOLR3 differentiates ovarian carcinoma from breast carcinoma and malignant mesothelioma in serous effusions. Hum Pathol 2009; 40(10): 1453–60.CrossRefGoogle ScholarPubMed
Brenne, K., Nymoen, D. A., Reich, R., Davidson, B. PRAME (Preferentially Expressed Antigen of Melanoma) is a novel marker for differentiating serous carcinoma from malignant mesothelioma. Am J Clin Pathol 2012; 137(2): 240–7.CrossRefGoogle ScholarPubMed
Brenne, K., Nymoen, D. A., Hetland, T. E., Trope, C. G. and Davidson, B. Expression of the Ets transcription factor EHF in serous ovarian carcinoma effusions is a marker of poor survival. Hum Pathol 2012; 43(4): 496505.CrossRefGoogle ScholarPubMed
Brusegard, K., Stavnes, H. T., Nymoen, D. A., Flatmark, K., Trope, C. G., Davidson, B. Rab25 is overexpressed in Müllerian serous carcinoma compared to malignant mesothelioma. Virchows Arch 2012; 460(2): 193202.CrossRefGoogle ScholarPubMed
Bock, A. J., Nymoen, D. A., Brenne, K., Kaern, J. and Davidson, B. SCARA3 mRNA is overexpressed in ovarian carcinoma compared to breast carcinoma effusions. Hum Pathol 2012; 43(5): 669–74.CrossRefGoogle ScholarPubMed
Stavnes, H. T., Nymoen, D. A., Langerød, A., Hetland Falkenthal, T. E., Kærn, J., Tropé, C. G. et al. AZGP1 and SPDEF mRNA expression differentiates breast carcinoma from ovarian serous carcinoma. Virchows Arch 2013; 462(2): 163–73.CrossRefGoogle ScholarPubMed
Yuan, Y., Nymoen, D. A., Tuft Stavnes, H., Rosnes, A. K., Bjørang, O., Wu, C. et al. Tenascin-X is a novel diagnostic marker of malignant mesothelioma. Am J Surg Pathol 2009; 33(11): 1673–82.CrossRefGoogle ScholarPubMed
Stancel, G. A., Coffey, D., Alvarez, K., Halks-Miller, M., Lal, A., Mody, D. et al. Identification of tissue of origin in body fluid specimens using a gene expression microarray assay. Cancer Cytopathol 2012; 120(1): 6270.CrossRefGoogle ScholarPubMed
Holloway, A. J., Diyagama, D. S., Opeskin, K., Creaney, J., Robinson, B. W., Lake, R. A. et al. A molecular diagnostic test for distinguishing lung adenocarcinoma from malignant mesothelioma using cells collected from pleural effusions. Clin Cancer Res 2006; 12(17): 5129–35.CrossRefGoogle ScholarPubMed
Gueugnon, F., Leclercq, S., Blanquart, C., Sagan, C., Cellerin, L., Padieu, M. et al. Identification of novel markers for the diagnosis of malignant pleural mesothelioma. Am J Pathol 2011; 178(3): 1033–42.CrossRefGoogle ScholarPubMed
Weber, J. A., Baxter, D. H., Zhang, S., Huang, D. Y., Huang, K. H., Lee, M. J. et al. The microRNA spectrum in 12 body fluids. Clin Chem 2010; 56(11): 1733–41.CrossRefGoogle ScholarPubMed
Wittmann, J. and Jack, H. M. Serum microRNAs as powerful cancer biomarkers. Biochim Biophys Acta 2010; 1806(2): 200–7.Google ScholarPubMed
Xie, L., Chen, X., Wang, L., Qian, X., Wang, T., Wei, J. et al. Cell-free miRNAs may indicate diagnosis and docetaxel sensitivity of tumor cells in malignant effusions. BMC Cancer 2010; 10: 591.CrossRefGoogle ScholarPubMed
Han, H. S., Yun, J., Lim, S. N., Han, J. H., Lee, K. H., Kim, S. T. et al. Downregulation of cell-free miR-198 as a diagnostic biomarker for lung adenocarcinoma-associated malignant pleural effusion. Int J Cancer 2013; 133(3): 645–52.CrossRefGoogle ScholarPubMed
Vaksman, V., Tropé, C., Davidson, B. and Reich, R. Exosome-derived miRNAs and ovarian carcinoma progression. Carcinogenesis 2014; 35(9): 2113–20.CrossRefGoogle ScholarPubMed
Tyan, Y. C., Wu, H. Y., Lai, W. W., Su, W. C., Liao, P. C. et al. Proteomic profiling of human pleural effusion using two-dimensional nano liquid chromatography tandem mass spectrometry. J Proteome Res 2005; 4(4): 1274–86.CrossRefGoogle ScholarPubMed
Hsieh, W. Y., Chen, M. W., Ho, H. T., You, T. M. and Lu, Y. T. Identification of differentially expressed proteins in human malignant pleural effusions. Eur Respir J 2006; 28(6): 1178–85.CrossRefGoogle ScholarPubMed
Elschenbroich, S., Ignatchenko, V., Clarke, B., Kalloger, S. E., Boutros, P. C. et al. In-depth proteomics of ovarian cancer ascites: combining shotgun proteomics and selected reaction monitoring mass spectrometry. J Proteome Res 2011; 10(5): 2286–99.CrossRefGoogle ScholarPubMed
Yu, C. J., Wang, C. L., Wang, C. I., Chen, C. D., Dan, Y. M., Wu, C. C. et al. Comprehensive proteome analysis of malignant pleural effusion for lung cancer biomarker discovery by using multidimensional protein identification technology. J Proteome Res 2011; 10(10): 4671–82.CrossRefGoogle ScholarPubMed
Davidson, B., Espina, V., Steinberg, S. M. Flørenes, V. A., Liotta, L. A., Kristensen, G. B. et al. Proteomic profiling of malignant ovarian cancer effusions: survival and injury pathways discriminate clinical outcome. Clin Cancer Res 2006; 12(3 Pt. 1): 791–9.Google Scholar
Kim, G., Davidson, B., Henning, R., Wang, J., Yu, M., Annunziata, C. et al. Adhesion molecule protein signature in ovarian cancer effusions is prognostic of patient outcome. Cancer 2012; 118(6): 1543–53.CrossRefGoogle ScholarPubMed
Bala, L., Sharma, A., Yellapa, R. K., Roy, R., Choudhuri, G. and Khetrapal, C. L.. (1)H NMR spectroscopy of ascitic fluid: discrimination between malignant and benign ascites and comparison of the results with conventional methods. NMR Biomed 2008; 21(6): 606–14.CrossRefGoogle ScholarPubMed
Vettukattil, R., Hetland, T. E., Flørenes, V. A., Kærn, J., Davidson, B. and Bathen, T. F. Proton magnetic resonance metabolomic characterization of ovarian serous carcinoma effusions: chemotherapy-related effects and comparison with malignant mesothelioma and breast carcinoma. Hum Pathol 2013; 44(9): 1859–66.CrossRefGoogle ScholarPubMed
Castellarin, M., Milne, K., Zeng, T., Tse, K., Mayo, M., Zhao, Y. et al. Clonal evolution of high-grade serous ovarian carcinoma from primary to recurrent disease. J Pathol 2013; 229(4): 515–24.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×