Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T08:54:06.370Z Has data issue: false hasContentIssue false

Chapter 8 - Sequencing

Published online by Cambridge University Press:  05 November 2015

John M. S. Bartlett
Affiliation:
Ontario Institute for Cancer Research, Toronto
Abeer Shaaban
Affiliation:
Queen Elizabeth Hospital Birmingham
Fernando Schmitt
Affiliation:
University of Porto
Get access
Type
Chapter
Information
Molecular Pathology
A Practical Guide for the Surgical Pathologist and Cytopathologist
, pp. 103 - 118
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sanger, F., Nicklen, S. and Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74(12): 5463–7.CrossRefGoogle ScholarPubMed
Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J. et al. Initial sequencing and analysis of the human genome. Nature 2001; 409(6822): 860921.Google ScholarPubMed
Robison, R. A. Moore's law: predictor and driver of the silicon era. World Neurosurg 2012; 78(5): 399403.CrossRefGoogle ScholarPubMed
Wetterstrand, K. DNA sequencing Costs: data from the NHGRI Genome Sequencing Program (GSP), available at www.genome.gov/sequencingcosts.Google Scholar
Metzker, M. L. Sequencing technologies – the next generation. Nat Rev Genet 2010; 11(1): 3146.CrossRefGoogle ScholarPubMed
Mardis, E. R. A decade's perspective on DNA sequencing technology. Nature 2011; 470(7333): 198203.CrossRefGoogle ScholarPubMed
Ewing, B. and Green, P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 1998; 8(3): 186–94.Google ScholarPubMed
Meyerson, M., Gabriel, S. and Getz, G. Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 2010; 11(10): 685–96.CrossRefGoogle ScholarPubMed
Wang, Z., Gerstein, M. and Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009; 10(1): 5763.CrossRefGoogle ScholarPubMed
Oakman, C., Santarpia, L. and Di Leo, A. Breast cancer assessment tools and optimizing adjuvant therapy. Nat Rev Clin Oncol 2010; 7(12): 725–32.CrossRefGoogle ScholarPubMed
Sinicropi, D., Qu, K., Collin, F., Crager, M., Liu, M.-L., Pelham, R. J. et al. Whole transcriptome RNA-Seq analysis of breast cancer recurrence risk using formalin-fixed paraffin-embedded tumor tissue. PLoS ONE 2012; 7(7): e40092.CrossRefGoogle ScholarPubMed
Shen, H. and Laird, P. W. Interplay between the cancer genome and epigenome. Cell 2013; 153(1): 3855.CrossRefGoogle ScholarPubMed
Schones, D. E. and Zhao, K. Genome-wide approaches to studying chromatin modifications. Nat Rev Genet 2008; 9(3): 179–91.CrossRefGoogle ScholarPubMed
Ajay, S. S., Parker, S. C. J., Abaan, H. O., Fajardo, K. V. F. and Margulies, E. H. Accurate and comprehensive sequencing of personal genomes. Genome Res 2011; 21(9): 1498–505.CrossRefGoogle ScholarPubMed
Carter, S. L., Cibulskis, K., Helman, E., McKenna, A., Shen, H., Zack, T. et al. Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol 2012; 30(5): 413–21.CrossRefGoogle ScholarPubMed
Wheeler, D. A., Srinivasan, M., Egholm, M., Shen, Y., Chen, L., McGuire, A. et al. The complete genome of an individual by massively parallel DNA sequencing. Nature 2008; 452(7189): 872–6.CrossRefGoogle ScholarPubMed
Vogelstein, B., Papadopoulos, N., Velculescu, V. E., Zhou, S., Diaz, L. A. and Kinzler, K. W. Cancer genome landscapes. Science 2013; 339(6127): 1546–58.CrossRefGoogle ScholarPubMed
Kerem, B., Rommens, J. M., Buchanan, J. A., Markiewicz, D., Cox, T. K., Chakravarti, A. et al. Identification of the cystic fibrosis gene: genetic analysis. Science 1989; 245(4922): 1073–80.CrossRefGoogle ScholarPubMed
Riordan, J. R., Rommens, J. M., Kerem, B., Alon, N., Rozmahel, R., Grzelczak, Z. et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989; 245(4922): 1066–73.CrossRefGoogle ScholarPubMed
Rommens, J. M., Iannuzzi, M. C., Kerem, B., Drumm, M. L., Melmer, G., Dean, M. et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 1989; 245(4922): 1059–65.CrossRefGoogle ScholarPubMed
Ng, S. B., Bigham, A. W., Buckingham, K. J., Hannibal, M. C., McMillin, M. J., Gildersleeve, H. I. et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 2010; 42(9): 790–3.Google ScholarPubMed
Bainbridge, M. N., Wiszniewski, W., Murdock, D. R., Friedman, J., Gonzaga-Jauregui, C., Newsham, I. et al. Whole-genome sequencing for optimized patient management. Sci Transl Med 2011; 3(87): 87re3.CrossRefGoogle ScholarPubMed
Hudson, T. J., Anderson, W., Artez, A., Barker, A. D., Bell, C., Bernabé, R. R. et al. International network of cancer genome projects. Nature 2010; 464(7291): 993–8.Google ScholarPubMed
Slamon, D. J., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. New Engl J Med 2001; 344(11): 783–92.CrossRefGoogle Scholar
Chapman, P. B., Hauschild, A., Robert, C., Haanen, J. B., Ascierto, P., Larkin, J. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. New Engl J Med 2011; 364(26): 2507–16.CrossRefGoogle ScholarPubMed
Cronin, M. and Ross, J. S. Comprehensive next-generation cancer genome sequencing in the era of targeted therapy and personalized oncology. Biomark Med 2011; 5(3): 293305.CrossRefGoogle ScholarPubMed
Wall, D. P. and Tonellato, P. J. The future of genomics in pathology. F1000 Med Rep 2012 2014:4, available at www.ncbi.nlm.nih.gov/pmc/articles/PMC3391753/.Google Scholar
Haspel, R. L., Arnaout, R., Briere, L., Kantarci, S., Marchand, K., Tonellato, P. et al. A call to action: training pathology residents in genomics and personalized medicine. Am J Clin Pathol 2010; 133(6): 832–4.CrossRefGoogle Scholar
Kamalakaran, S., Varadan, V., Janevski, A., Banerjee, N., Tuck, D., McCombie, W. R. et al. Translating next generation sequencing to practice: opportunities and necessary steps. Mol Oncol 2013; 7(4): 743–55.CrossRefGoogle ScholarPubMed
Kohlmann, A., Klein, H.-U., Weissmann, S., Bresolin, S., Chaplin, T., Cuppens, H. et al. The Interlaboratory RObustness of Next-generation sequencing (IRON) study: a deep sequencing investigation of TET2, CBL and KRAS mutations by an international consortium involving 10 laboratories. Leukemia 2011; 25(12): 1840–8.CrossRefGoogle Scholar
Tran, B., Brown, A. M. K., Bedard, P. L., Winquist, E., Goss, G. D., Hotte, S. J. et al. Feasibility of real time next generation sequencing of cancer genes linked to drug response: results from a clinical trial. Int J Cancer 2013; 132(7): 1547–55.CrossRefGoogle ScholarPubMed
Ferreira-Gonzalez, A., Emmadi, R., Day, S. P., Klees, R. F., Leib, J. R., Lyon, E. et al. Revisiting oversight and regulation of molecular-based laboratory-developed tests: a position statement of the Association for Molecular Pathology. J Mol Diagn 2014; 16(1): 36.CrossRefGoogle ScholarPubMed
Gargis, A. S., Kalman, L., Berry, M. W., Bick, D. P., Dimmock, D. P., Hambuch, T. et al. Assuring the quality of next-generation sequencing in clinical laboratory practice. Nat Biotech 2012; 30(11): 1033–6.CrossRefGoogle ScholarPubMed
Green, R. C., Berg, J. S., Grody, W. W., Kalia, S. S., Korf, B. R., Martin, C. L. et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med 2013; 15(7): 565–74.CrossRefGoogle ScholarPubMed
Schrijver, I., Aziz, N., Farkas, D. H., Furtado, M., Gonzalez, A. F., Greiner, T. C. et al. Opportunities and challenges associated with clinical diagnostic genome sequencing: a report of the Association for Molecular Pathology. J Mol Diagn 2012; 14(6): 525–40.CrossRefGoogle ScholarPubMed
Rehm, H. L., Bale, S. J., Bayrak-Toydemir, P., Berg, J. S., Brown, K. K., Deignan, J. L. et al. ACMG clinical laboratory standards for next-generation sequencing. Genet Med 2013; 15(9): 733–47.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×