Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-01T05:07:31.017Z Has data issue: false hasContentIssue false

Chapter 19 - Pediatric tumors

Published online by Cambridge University Press:  05 November 2015

John M. S. Bartlett
Affiliation:
Ontario Institute for Cancer Research, Toronto
Abeer Shaaban
Affiliation:
Queen Elizabeth Hospital Birmingham
Fernando Schmitt
Affiliation:
University of Porto
Get access
Type
Chapter
Information
Molecular Pathology
A Practical Guide for the Surgical Pathologist and Cytopathologist
, pp. 336 - 355
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Stiller, C. Childhood Cancer in Britain: Incidence, Survival, Mortality, 1st edn. (Oxford University Press, 2007).CrossRefGoogle Scholar
Fletcher, C. D. M., Bridge, J. A., Hagendoorn, P. C. W. and Mertens, F. (eds.), WHO Classification of Soft Tissue and Bone Tumours, 4th edn. (Lyon: IARC, 2013).Google Scholar
Hawkins, H. K. and Camacho-Velasquez, J. V. Rhabdomyosarcoma in children. Correlation of form and prognosis in one institution’s experience. Am J Surg Pathol 11(7): 531542, 1987.CrossRefGoogle ScholarPubMed
Heerema-McKenney, A., Wijnaendts, L. C., Pulliam, J. F., Lopez-Terrada, D., McKenney, J. K., Zhu, S. et al. Diffuse myogenin expression by immunohistochemistry is an independent marker of poor survival in pediatric rhabdomyosarcoma: a tissue microarray study of 71 primary tumors including correlation with molecular phenotype. Am J Surg Pathol 32(10): 15131522, 2008.CrossRefGoogle ScholarPubMed
Sorensen, P. H., Lynch, J. C., Qualman, S. J., Tirabosco, R., Lim, J. F., Maurer, H. M. et al. PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children's oncology group. J Clin Oncol 20(11): 26722679, 2002.CrossRefGoogle ScholarPubMed
Barr, F. G., Qualman, S. J., Macris, M. H., Melnyk, N., Lawlor, E. R., Strzelecki, D. M. et al. Genetic heterogeneity in the alveolar rhabdomyosarcoma subset without typical gene fusions. Cancer Res 62(16): 47044710, 2002.Google ScholarPubMed
Sumegi, J., Streblow, R., Frayer, R. W., Dal Cin, P., Rosenberg, A., Meloni-Ehrig, A. et al. Recurrent t(2;2) and t(2;8) translocations in rhabdomyosarcoma without the canonical PAX-FOXO1 fuse PAX3 to members of the nuclear receptor transcriptional coactivator family. Gene Chromosome Canc 49(3): 224236, 2010.CrossRefGoogle Scholar
Hachitanda, T., Toyoshima, S., Akazawa, K. and Tsuneyoshi, M. N-myc gene amplification in rhabdomyosarcoma detected by FISH: its correlation with histologic features. Mod Pathol 11(12): 12221227, 1998.Google ScholarPubMed
Williamson, D., Lu, Y.-J., Gordon, T., Sciot, R., Kelsey, A., Fisher, C. et al. Relationship between MYCN copy number and expression in rhabdomyosarcomas and correlation with adverse prognosis in alveolar subtype. J Clin Oncol 23(4): 880888, 2005.CrossRefGoogle ScholarPubMed
Xia, S. J. and Barr, F. G. Chromosome translocations in sarcomas and the emergence of oncogenic transcription factors. Eur J Cancer 41: 25132527, 2005.CrossRefGoogle ScholarPubMed
Shern, J. F., Chen, L., Chmielecki, J. et al. Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion positive and fusion negative tumours. Cancer Discov 4(2): 216231, 2014.CrossRefGoogle Scholar
Paulson, V., Chandler, G., Rakheja, D., Galindo, R. L., Wilson, K., Amatruda, J. F. et al. High-resolution array CGH identifies common mechanisms that drive embryonal rhabdomyosarcoma pathogenesis. Gene Chromosome Canc 50(6): 397408, 2011.CrossRefGoogle ScholarPubMed
Scrable, H., Witte, D., Shimada, H., Seemayer, T. A., Wang Wuu, S., Soukup, S. et al. Molecular differential pathology of rhabdomyosarcoma. Gene Chromosome Canc 1(1): 2335, 1989.CrossRefGoogle ScholarPubMed
de Alava, E. and Gerald, W. L. Molecular biology of the Ewing's sarcoma/primitive neuroectodermal tumour family. J Clin Oncol 18(1): 204213, 2000.CrossRefGoogle Scholar
de Alava, E., Kawai, A., Healy, J. H., Fligman, I., Meyers, P. A., Huvos, A. G. et al. EWS-FLI1 fusion transcript structure is an independent determinant of prognosis in Ewing's sarcoma. J Clin Oncol 16(4): 12481255, 1998.CrossRefGoogle ScholarPubMed
Fisher, C. The diversity of soft tissue tumours with EWSR1 gene rearrangements: a review. Histopathol 64(1): 134150, 2014.CrossRefGoogle ScholarPubMed
Romeo, S. and Dei Tos, A. P. Soft tissue tumours associated with EWSR1 translocation. Virchows Arch 456(2): 219234, 2010.CrossRefGoogle Scholar
Salto Kawamura, M., Yamazaki, Y., Kaneko, K., Kawaguchi, N., Kanda, H., Mukai, H. et al. Fusion between CIC and DUX4 upregulates PEA3 family genes in Ewing-like sarcomas with t(14;19)(q35;q13) translocation. Hum Mol Genet 15: 21252137, 2005.CrossRefGoogle Scholar
Thorner, P., Squire, J., Chilton-MacNeill, S., Marrano, P., Bayani, J., Malkin, D. et al. Is the EWS/FLI1 fusion transcript specific for Ewing sarcoma and peripheral neuroectodermal tumour? A report of 4 cases showing this transcript in a wider range of tumour types. Am J Pathol 148(4): 11251138, 1996.Google Scholar
Hattinger, C. M., Potschger, U., Tarkkanen, M., Squire, J., Zielenska, M., Kiuru-Kuhlefelt, S. et al. Prognostic impact of chromosomal aberrations in Ewing tumours. Br J Cancer 86(11): 17631769, 2002.CrossRefGoogle ScholarPubMed
Roberts, P. Cancer cytogenetics. Encyclopedia of Life Sciences (Wiley J.), www.els.net, 2008.CrossRefGoogle ScholarPubMed
Shimada, H., Ambros, I. M., Dehner, L. P., Hata, J., Joshi, V. V., Roald, B. et al. The International Neuroblastoma Pathology Classification (the Shimada system) Cancer 86(2): 364372, 1999.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Westermark, U. K., Wilhelm, M., Frenzel, A. and Arsenian Henriksson, M. The MYCN oncogene and differentiation in neuroblastoma. Semin Cancer Biol 21(4): 256266, 2011.CrossRefGoogle ScholarPubMed
Barone, G., Anderson, J., Pearson, D. J., Petrie, K. and Chesler, L. et al. New strategies in neuroblastoma: therapeutic targeting of MYCN and ALK. Clin Cancer Res 19(21): 58145821, 2013.CrossRefGoogle ScholarPubMed
Janoueix-Lerosey, I., Schleiermacher, G., Michels, E., Mosseri, V., Ribeiro, A., Lequin, D. et al. Overall genomic pattern is a predictor of outcome in neuroblastoma. J Clin Oncol 27(7): 10261033, 2009.CrossRefGoogle ScholarPubMed
Schleiermacher, G., Janoueix-Lerosey, I., Ribeiro, A., Klijanienko, J., Couturier, J., Pierron, G. et al. Accumulation of segmental alterations determines progression in neuroblastoma. J Clin Oncol 28(19): 31223130, 2010.CrossRefGoogle ScholarPubMed
White, P. S., Thompson, P. M., Gotoh, T., Okawa, E. R., Igarashi, J., Kok, M. et al. Definition and characterisation of a region of 1p36.3 consistently deleted in neuroblastoma. Oncogene 24(16): 26842694, 2005.CrossRefGoogle ScholarPubMed
Domingo-Fernandez, R., Watters, K., Piskareva, O., Stallings, R. L. and Bray, I. The role of genetic and epigenetic alterations in neuroblastoma disease pathogenesis. Paediatr Surg Int 29(2): 101119, 2013.CrossRefGoogle ScholarPubMed
Michels, E., Vandesompele, J., De Preter, K., Hoebeeck, J., Vermeulen, J., Schramm, A. et al. Array CGH based classification of neuroblastoma into genomic subgroups. Gene Chromosome Canc 46(12): 10981108, 2007.CrossRefGoogle Scholar
Bown, N., Cotterill, S., Lastowska, M., O'Neill, S., Pearson, A. D., Plantaz, D. et al. Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. New Engl J Med 340(25): 19541961, 1999.CrossRefGoogle ScholarPubMed
Spitz, R., Hero, B., Ernestus, K. and Berthold, F. Gain of distal chromosome arm 17q is not associated with poor prognosis in neuroblastoma. Clin Cancer Res 9(13): 48354840, 2003.Google Scholar
Pugh, T. J., Morozova, O., Attiyeh, E. F., Asgharzadeh, S., Wei, J. S., Auclair, D. et al. The genetic landscape of high risk neuroblastoma. Nat Genet 45(3): 279–84, 2013.CrossRefGoogle ScholarPubMed
Azarova, A. M., Gautam, G. and George, R. E. Emerging importance of ALK in neuroblastoma. Sem Cancer Biol 21(4): 267275, 2011.CrossRefGoogle ScholarPubMed
Wood, A. C., Laudenslager, M., Haglund, E. A., Attiyeh, E. F., Pawel, B., Courtwright, J. et al. Inhibition of ALK mutated neuroblastomas by the selective inhibitor PF-02341066. J Clin Oncol 27: 10008b, 2009.CrossRefGoogle Scholar
Mosse, Y. P., Laudenslager, M., Khazi, D., Carlisle, A. J., Winter, C. L., Rappaport, E. et al. Germline PHOXB2 mutation in hereditary neuroblastoma. Am J Hum Genet 75(4): 727730, 2004.CrossRefGoogle ScholarPubMed
Sausen, M., Leary, R. J., Jones, S., Wu, J., Reynolds, C. P., Liu, X. et al. Integrated genomic analyses identify ARID1A and ARID1B alterations in the childhood cancer neuroblastoma. Nat Genet 45(1): 1217, 2013.CrossRefGoogle ScholarPubMed
Chang, F. Desmoplastic small round cell tumours: cytologic, histologic, and immunohistochemical features. Arch Pathol Lab Med 130(5): 728732, 2006.CrossRefGoogle ScholarPubMed
Sandberg, A. A. and Bridge, J. A. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumours: DSRCT. Cancer Genet Cytogenet 138(1): 110, 2002.CrossRefGoogle Scholar
Alaggio, R., Rosolen, A., Sartori, F., Leszl, A., d'Amore, E. S., Bisogno, G. et al. Spindle cell tumour with EWSR1-WTI transcript and a favorable clinical course: a variant of DSRCT, a variant of leiomyosarcoma, or a new entity? Report of 2 paediatric cases. Am J Surg Pathol 31(3): 454459, 2007.CrossRefGoogle Scholar
Coffin, C. M., Hornick, J. L. and Fletcher, C. D. Inflammatory myofibroblastic tumour: comparison of clinicopathologic, histologic, and immunohistochemical features including ALK expression in atypical and aggressive cases. J Surg Pathol 31(4): 509520, 2007.CrossRefGoogle Scholar
Lawrence, B, Perez-Atayde, A., Hibbard, M. K., Rubin, B. P., Dal Cin, P., Pinkus, J. L. et al. TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumours. Am J Pathol 157(2): 377384, 2000.CrossRefGoogle Scholar
Naeem, R., Lux, M. L., Huang, S.-F., Naber, S. P., Corson, J. M. and Fletcher, J. A. Ring chromosomes in DFSP are composed of interspersed sequences from chromosomes 17 and 22. Am J Pathol 147(6): 15531558, 1995.Google ScholarPubMed
Simon, M.-P., Pedeutour, F., Sirvent, N., Grosgeorge, J., Minoletti, F., Coindre, J.-M. et al. Deregulation of the platelet derived growth facto B-chain gene via fusion with collagen gene COL1A1 in DFSP and giant-cell fibroblastoma. Nat Genet 15: 9598, 1997.CrossRefGoogle Scholar
López-Terrada, D., Alaggio, R., de Dávila, M. T., Czauderna, P., Hiyama, E., Katzenstein, H. et al. Children's Oncology Group Liver Tumor Committee: towards an international pediatric liver tumor consensus classification: proceedings of the Los Angeles COG liver tumors symposium. Mod Pathol 27(3): 472491, 2014.CrossRefGoogle ScholarPubMed
Tomlinson, G. E. and Kappler, R. Genetics and epigenetics of hepatoblastoma. Paediatr Blood Cancer 59(5): 785792, 2012.CrossRefGoogle ScholarPubMed
Weber, R. G., Pietsch, T., von Schweinitz, D. and Lichter, P. Characterisation of genomic alterations in hepatoblastomas: a role for gains on chromosomes 8q and 20 as predictors of poor outcome. Am J Pathol 157(2): 571578, 2000.CrossRefGoogle ScholarPubMed
Kumon, K., Kobayashi, H., Namiki, T., Tsunematsu, Y., Miyauchi, J., Kikuta, A. et al. Frequent increase of DNA copy number in the 2q24 chromosomal region and its association with a poor clinical outcome in hepatoblastoma: cytogenetic and comparative genomic hybridisation analysis. Jpn J Cancer Res 92(8): 854862, 2001.CrossRefGoogle Scholar
Schneider, N., Cooley, L., Finegold, M., Douglass, E. C., Tomlinson, G. E. et al. Report of the first recurring chromosome translocation: der(4)t(1;4)(q12;q34). Gene Chromosome Canc 19(4): 291294, 1997.3.0.CO;2-J>CrossRefGoogle Scholar
Tomlinson, G. E., Douglass, E. C., Pollock, B. H., Finegold, M. J. and Schneider, N. R. Cytogenetic analysis of a large series of hepatoblastoma: numerical aberrations with recurring translocations involving 1q12–21. Gene Chromosome Canc 44(2): 177184, 2005.CrossRefGoogle Scholar
Trobaugh-Lotario, A. D., Tomlinson, G. E., Finegold, M. J., Gore, L. and Feusner, J. H. Small cell undifferentiated variant of hepatoblastoma: adverse clinical and molecular features similar to rhabdoïd tumours. Paediatr Blood Cancer 52(3): 328334, 2009.CrossRefGoogle Scholar
Gray, S. G., Eriksson, T., Elkstrom, C., Holm, S., von Schweinitz, D., Kogner, P. et al. Altered expression of members of the IGF-axis in hepatoblastomas. Br J Cancer 82(9): 15611567, 2000.CrossRefGoogle ScholarPubMed
Arai, Y., Honda, S., Haruta, M., Kasai, F., Fujiwara, Y., Ohshima, J. et al. Genome-wide analysis of allelic imbalances reveals 4q deletions as a poor prognostic factor and MDM4 amplification at 1q32.1 in hepatoblastoma. Gene Chromosome Canc 49(7): 596609, 2010.CrossRefGoogle ScholarPubMed
Beckwith, J. B. and Palmer, N. F. Histopathology and prognosis of Wilms’ tumours: results from the First National Wilms’ Tumour Study. Cancer 41 (5): 19371948, 1978.3.0.CO;2-U>CrossRefGoogle Scholar
Oda, Y. and Tsuneyoshi, M. Extrarenal rhabdoïd tumours of soft tissue: clinicopathological and molecular genetic review and distinction from other soft-tissue sarcomas with rhabdoïd features. Pathol Int 56(6): 287295, 2006.CrossRefGoogle ScholarPubMed
Biegel, J. A., Zhou, J., Rorke, L. B., Stenstrom, C., Wainwright, L. M., Fogelgren, B. et al. Germline and acquired mutations of INI1 in atypical teratoid rhabdoïd tumours. Cancer Res 59(1): 7479, 1999.Google Scholar
Jackson, E. M., Sievert, A. J., Gai, X., Hakonarson, H., Judkins, A. R., Tooke, L. et al. Genomic analysis using high density SNP based oligonucleotide arrays and MLPA provides a comprehensive analysis of INI1/SMRCB1 in malignant rhabdoïd tumours. Clin Cancer Res 15(6): 19231930, 2009.CrossRefGoogle Scholar
Bandal, P., Bjerkegagen, B. and Heim, S. Rearrangements of chromosomal region 8q11–13 in lipomatous tumours; correlation with lipoblastoma morphology. J Pathol 208(3): 388394, 2006.CrossRefGoogle Scholar
Deen, M., Ebrahim, S., Schloff, D. and Mohammed, A. N. A novel PLAG1-RAD51L1 gene fusion resulting from a t(8;14)(q12;q24) in a case of lipoblastoma. Cancer Genetics 206(6): 233237, 2013.CrossRefGoogle Scholar
Hibbard, M. K., Kozakewich, H. P., Dal Cin, P., Sciot, R., Tan, X., Xiao, S. et al. PLAG1 fusion oncogenes in lipoblastoma. Cancer Res 60(17): 48694872, 2000.Google ScholarPubMed
Ropke, A., Kalinski, T., Kluba, U., von Falkenhausen, U., Wieacker, P. F. and Ropke, M. PLAG1 activation in lipoblastoma coinciding with low-level amplification of a derivative chromosome 8 with a deletion del(8)(q13q21.2). Cytogenet Genome Res 119(1–2): 3338, 2007.CrossRefGoogle Scholar
Zatkova, A., Rouillard, J. M., Hartmann, W., Lamb, B. J., Kuick, R., Eckart, M. et al. Amplification and overexpression of the IGF2 regulator PLAG1 in hepatoblastoma. Gene Chromosome Canc 39(2): 126137, 2004.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×