Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-22T09:27:33.481Z Has data issue: false hasContentIssue false

Chapter 10 - Mutational analysis

Published online by Cambridge University Press:  05 November 2015

John M. S. Bartlett
Affiliation:
Ontario Institute for Cancer Research, Toronto
Abeer Shaaban
Affiliation:
Queen Elizabeth Hospital Birmingham
Fernando Schmitt
Affiliation:
University of Porto
Get access
Type
Chapter
Information
Molecular Pathology
A Practical Guide for the Surgical Pathologist and Cytopathologist
, pp. 130 - 146
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Stratton, M. R., Campbell, P. J. and Futreal, P. A. The cancer genome. Nature 2009; 458(7239): 719–24.CrossRefGoogle ScholarPubMed
Vogelstein, B. and Kinzler, K. W. Cancer genes and the pathways they control. Nat Med 2004; 10(8): 789–99.CrossRefGoogle ScholarPubMed
Vogelstein, B., Papadopoulos, N., Velculescu, V. E., Zhou, S., Diaz, L. A. and Kinzler, K. W. Cancer genome landscapes. Science 2013; 339(6127): 1546–58.CrossRefGoogle ScholarPubMed
Land, H., Parada, L. F. and Weinberg, R. A. Cellular oncogenes and multistep carcinogenesis. Science 1983; 222(4625): 771–8.CrossRefGoogle ScholarPubMed
Slamon, D. J., Verma, I. and Cline, M. Expression of cellular oncogenes in human malignancies. Science 1984; 224(4646): 256–62.CrossRefGoogle ScholarPubMed
Rodenhuis, S., van de Wetering, M. L., Mooi, W. J., Evers, S. G., van Zandwijk, N. and Bos, J. L. Mutational activation of the k-ras oncogene. New Engl J Med 1987; 317(15): 929–35.CrossRefGoogle ScholarPubMed
Weinberg, R. A. Tumor suppressor genes. Science 1991; 254(5035): 1138–46.CrossRefGoogle ScholarPubMed
Payne, S. R. and Kemp, C. J. Tumor suppressor genetics. Carcinogenesis 2005; 26(12): 2031–45.CrossRefGoogle ScholarPubMed
Hewitt, C., Wu, C. L., Evans, G., Howell, A., Elles, R. G., Jordan, R. et al. Germline mutation of ARF in a melanoma kindred. Hum Mol Genet 2002; 11(11): 1273–9.CrossRefGoogle Scholar
Petitjean, A., Mathe, E., Kato, S., Ishioka, C., Tavtigian, S. V., Hainaut, P. et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 2007; 28(6): 622–9.CrossRefGoogle ScholarPubMed
Jones, P. A. and Laird, P. W. Cancer-epigenetics comes of age. Nat Genet 1999; 21(2): 163–7.CrossRefGoogle ScholarPubMed
Negrini, S., Gorgoulis, V. G. and Halazonetis, T. D. Genomic instability – an evolving hallmark of cancer. Nat Rev Mol Cell Biol 2010; 11(3): 220–8.CrossRefGoogle ScholarPubMed
King, M.-C., Marks, J. H. and Mandell, J. B. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 2003; 302(5645): 643–6.CrossRefGoogle ScholarPubMed
Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G. et al. The sequence of the human genome. Science 2001; 291(5507): 1304–51.CrossRefGoogle ScholarPubMed
Dancey, J. E., Bedard, P. L., Onetto, N. and Hudson, T. J. The genetic basis for cancer treatment decisions. Cell 2012; 148(3): 409–20.CrossRefGoogle ScholarPubMed
Mok, T. S., Wu, Y.-L., Thongprasert, S., Yang, C.-H., Chu, D.-T., Saijo, N. et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. New Engl J Med 2009; 361(10): 947–57.CrossRefGoogle ScholarPubMed
Chapman, P. B., Hauschild, A., Robert, C., Haanen, J. B., Ascierto, P., Larkin, J. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. New Engl J Med 2011; 364(26): 2507–16.CrossRefGoogle ScholarPubMed
Kwak, E. L., Bang, Y.-J., Camidge, D. R., Shaw, A. T., Solomon, B., Maki, R. G. et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. New Engl J Med 2010; 363(18): 1693–703.CrossRefGoogle ScholarPubMed
Moore, H. M., Compton, C. C., Alper, J. and Vaught, J. B. International approaches to advancing biospecimen science. Cancer Epidemiol Biomarkers Prev 2011; 20(5): 729–32.CrossRefGoogle ScholarPubMed
Tran, B., Dancey, J. E., Kamel-Reid, S., McPherson, J. D., Bedard, P. L., Brown, A. M. K. et al. Cancer genomics: technology, discovery, and translation. J Clin Oncol 2012; 30(6): 647–60.CrossRefGoogle ScholarPubMed
Haibe-Kains, B., El-Hacehm, N., Birkbak, N. J., Jin, A. C., Beck, A. H. et al. Inconsistency in large pharmacogenomic studies. Nature 2013; 504(7480): 389–93.CrossRefGoogle ScholarPubMed
Collins, F. S. and Hamburg, M. A. First FDA authorization for next-generation sequencer. New Engl J Med 2013; 369(25): 2369–71.CrossRefGoogle ScholarPubMed
FDA allows marketing of four “next generation” gene sequencing devices, Silver Spring Maryland: US Food and Drug Administration; November 19, 2013; available at www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm375742.htm.Google Scholar
Gabriel, S., Ziaugra, L. and Tabbaa, D. SNP genotyping using the Sequenom MassARRAY iPLEX platform. Curr Protoc Hum Genet 2009; 212.Google ScholarPubMed
Fumagalli, D., Gavin, P. G., Taniyama, Y., Kim, S.-I., Choi, H.-J., Paik, S. et al. A rapid, sensitive, reproducible and cost-effective method for mutation profiling of colon cancer and metastatic lymph nodes. BMC Cancer 2010; 10(1): 101.CrossRefGoogle ScholarPubMed
Thomas, R. K., Baker, A. C., DeBiasi, R. M., Winckler, W., LaFramboise, T., Lin, W. M. et al. High-throughput oncogene mutation profiling in human cancer. Nat Genet 2007; 39(3): 347–51.Google ScholarPubMed
MacConaill, L. E., Campbell, C. D., Kehoe, S. M., Bass, A. J., Hatton, C., Niu, L. et al. Profiling critical cancer gene mutations in clinical tumor samples. PLoS ONE 2009; 4(11): e7887.CrossRefGoogle ScholarPubMed
Normanno, N., Rachiglio, A. M., Roma, C., Fenizia, F., Esposito, C., Pasquale, R. et al. Molecular diagnostics and personalized medicine in oncology: challenges and opportunities. J Cell Biochem 2013; 114(3): 514–24.CrossRefGoogle Scholar
Baker, M. Digital PCR hits its stride. Nat Methods 2012; 9(6): 541–4.CrossRefGoogle Scholar
Perkins, G., Yap, T. A., Pope, L., Cassidy, A. M., Dukes, J. P., Riisnaes, R. et al. Multi-purpose utility of circulating plasma DNA testing in patients with advanced cancers. PLoS ONE 7(11): e47020.CrossRefGoogle Scholar
Pareek, C. S., Smoczynski, R. and Tretyn, A. Sequencing technologies and genome sequencing. J Appl Genetics 2011; 52(4): 413–35.CrossRefGoogle ScholarPubMed
Quail, M. A., Smith, M., Coupland, P., Otto, T. D., Harris, S. R., Connor, T. R. et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 2012; 13(1): 341.CrossRefGoogle ScholarPubMed
Desai, A. and Jere, A. Next-generation sequencing: ready for the clinics? Clin Genet 2012; 81(6): 503–10.CrossRefGoogle ScholarPubMed
Meldrum, C., Doyle, M. A. and Tothill, R. W. Next-generation sequencing for cancer diagnostics: a practical perspective. Clin Biochem Rev 2011; 32(4): 177–95.Google ScholarPubMed
Wooderchak-Donahue, W. L., O'Fallon, B., Furtado, L. V., Durtschi, J. D., Plant, P., Ridge, P. G. et al. A direct comparison of next generation sequencing enrichment methods using an aortopathy gene panel-clinical diagnostics perspective. BMC Med Genomics 2012; 5(1): 50.CrossRefGoogle Scholar
Loman, N. J., Misra, R. V., Dallman, T. J., Constantinidou, C., Gharbia, S. E., Wain, J. et al. Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotech 2012; 30(5): 434–9.Google ScholarPubMed
Rehm, H. L., Bale, S. J., Bayrak-Toydemir, P., Berg, J. S., Brown, K. K., Deignan, J. L. et al. ACMG clinical laboratory standards for next-generation sequencing. Genet Med 2013; 15(9): 733–47.CrossRefGoogle ScholarPubMed
Hubers, A. J., Heideman, D. A., Yatabe, Y., Wood, M. D., Tull, J., Tarón, M. et al. EGFR mutation analysis in sputum of lung cancer patients: a multitechnique study. Lung Cancer 2013; 82(1): 3843.CrossRefGoogle ScholarPubMed
Do, H., Wong, S. Q., Li, J. and Dobrovic, A. Reducing sequence artifacts in amplicon-based massively parallel sequencing of formalin-fixed paraffin-embedded DNA by enzymatic depletion of uracil-containing templates. Clin Chem 2013; 59(9): 1376–83.CrossRefGoogle ScholarPubMed
Beadling, C., Neff, T. L., Heinrich, M. C., Rhodes, K., Thornton, M., Leamon, J. et al. Combining highly multiplexed PCR with semiconductor-based sequencing for rapid cancer genotyping. J Mol Diagn 2013; 15(2): 171–6.CrossRefGoogle ScholarPubMed
Yousem, S. A., Dacic, S., Nikiforov, Y. E. and Nikiforova, M. Pulmonary Langerhans cell histiocytosis: profiling of multifocal tumors using next-generation sequencing identifies concordant occurrence of BRAF V600E mutations. CHEST Journal 2013; 143(6): 1679–84.CrossRefGoogle ScholarPubMed
Pabinger, S., Dander, A., Fischer, M., Snajder, R., Sperk, M., Efremova, M. et al. A survey of tools for variant analysis of next-generation genome sequencing data. Brief Bioinform 2013; 15(2): 256–78.Google ScholarPubMed
Gargis, A. S., Kalman, L., Berry, M. W., Bick, D. P., Dimmock, D. P., Hambuch, T. et al. Assuring the quality of next-generation sequencing in clinical laboratory practice. Nat Biotech 2012; 30(11): 1033–6.CrossRefGoogle ScholarPubMed
Metzker, M. L. Sequencing technologies – the next generation. Nat Rev Genet 2009; 11(1): 3146.CrossRefGoogle ScholarPubMed
Hudson, T. J., Anderson, W., Aretz, A., Barker, A. D., Bell, C., Bernabé, R. R. et al. International network of cancer genome projects. Nature 2010; 464(7291): 993–8.Google ScholarPubMed
Koboldt, D. C., Fulton, R. S., McLellan, M. D., Schmidt, H., Kalicki-Veizer, J., McMichael, J. F. et al. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490(7418): 6170. Epub 2012/09/25.Google Scholar
Biankin, A. V., Waddell, N., Kassahn, K. S., Gingras, M.-C., Muthuswamy, L. B., Johns, A. L. et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 2012; 491(7424): 399405.CrossRefGoogle ScholarPubMed
McLendon, R., Friedman, A., Bigner, D., Van Meir, E. G., Brat, D. J., Mastrogianakis, G. M. et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455(7216): 1061–8.Google Scholar
Stransky, N., Egloff, A. M., Tward, A. D., Kostic, A. D., Cibulskis, K., Sivachenko, A. et al. The mutational landscape of head and neck squamous cell carcinoma. Science 2011; 333(6046): 1157–60.CrossRefGoogle ScholarPubMed
Taylor, B. S., Schultz, N., Hieronymus, H., Gopalan, A., Xiao, Y., Carver, B. S. et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 2010; 18(1): 1122.CrossRefGoogle ScholarPubMed
Salvesen, H., Carter, S. L., Mannelqvist, M., Dutt, A., Getz, G., Stefansson, I. et al. Integrated genomic profiling of endometrial carcinoma associates aggressive tumors with indicators of PI3 kinase activation. Proc Natl Acad Sci 2009; 106(12): 4834–9.CrossRefGoogle ScholarPubMed
Sawyers, C. L. The cancer biomarker problem. Nature 2008; 452(7187): 548–52.CrossRefGoogle ScholarPubMed
Buttitta, F., Felicioni, L., Del Grammastro, M., Filice, G., Di Lorito, A., Malatesta, S. et al. Effective assessment of egfr mutation status in bronchoalveolar lavage and pleural fluids by next-generation sequencing. Clin Cancer Res 2013; 19(3): 691–8.CrossRefGoogle ScholarPubMed
Kanagal-Shamanna, R., Portier, B. P., Singh, R. R., Routbort, M. J., Aldape, K. D., Handal, B. A. et al. Next-generation sequencing-based multi-gene mutation profiling of solid tumors using fine needle aspiration samples: promises and challenges for routine clinical diagnostics. Mod Pathol 2014; 27(2): 314–27.CrossRefGoogle ScholarPubMed
Young, G., Wang, K., He, J., Otto, G., Hawryluk, M., Zwirco, Z. et al. Clinical next-generation sequencing successfully applied to fine-needle aspirations of pulmonary and pancreatic neoplasms. Cancer Cytopathol 2013; 121(12): 688–94.CrossRefGoogle ScholarPubMed
US Department of Health and Human Services. Medicare, Medicaid and CLIA Programs: regulations implementing the Clinical Laboratory Improvement Amendments of 1988 (CLIA). Final rule. Fed Regist 1992; 57(40): 7002–186.Google Scholar
Roychowdhury, S., Iyer, M. K., Robinson, D. R., Lonigro, R. J., Wu, Y. M., Cao, X. et al. Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci Transl Med 2011; 3(111): 111ra21.CrossRefGoogle ScholarPubMed
Accreditation and Laboratory Improvement, Northfield Illinois: College of American Pathologists, 2013; available at www.cap.org/apps/cap.portal%3F_nfpb=true&_pageLabel=accreditation.Google Scholar
Tran, B., Brown, A. M. K., Bedard, P. L., Winquist, E., Goss, G. D., Hotte, S. J. et al. Feasibility of real time next generation sequencing of cancer genes linked to drug response: results from a clinical trial. Int J Cancer 2013; 132(7): 1547–55.CrossRefGoogle ScholarPubMed
Kopetz, S., Desai, J., Chan, E., Hecht, J., O'dwyer, P., Lee, R. et al. PLX4032 in metastatic colorectal cancer patients with mutant BRAF tumors. J Clin Oncol 2010; 28(15 Suppl.): 3534.CrossRefGoogle Scholar
Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A. A., Kim, S. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012; 483(7391): 603–7.CrossRefGoogle ScholarPubMed
Garnett, M. J., Edelman, E. J., Heidorn, S. J., Greenman, C. D., Dastur, A., Lau, K. W. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 2012; 483(7391): 570–5.CrossRefGoogle ScholarPubMed
Papillon-Cavanagh, S., De Jay, N., Hachem, N., Olsen, C., Bontempi, G., Aerts, H. J. et al. Comparison and validation of genomic predictors for anticancer drug sensitivity. J Am Med Inform Assoc 2013; 20(4): 597602.CrossRefGoogle ScholarPubMed
Begley, C. G. and Ellis, L. M. Drug development: raise standards for preclinical cancer research. Nature 2012; 483(7391): 531–3.CrossRefGoogle ScholarPubMed
Khurana, E., Fu, Y., Colonna, V., Mu, X. J., Kang, H. M., Lappalainen, T. et al. Integrative annotation of variants from 1092 humans: application to cancer genomics. Science 2013; 342(6154): 1235587.CrossRefGoogle ScholarPubMed
Lawrence, M. S., Stojanov, P., Polak, P., Kryukov, G. V., Cibulskis, K., Sivachenko, A. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013; 499(7457): 214–18.CrossRefGoogle ScholarPubMed
Green, R. C., Berg, J. S., Grody, W. W., Kalia, S. S., Korf, B. R., Martin, C. L. et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med 2013; 15(7): 565–74.CrossRefGoogle ScholarPubMed
ACMG Board of Directors. Points to consider in the clinical application of genomic sequencing. Genet Med 2012; 14(8): 759–61.Google Scholar
Roychowdhury, S., Iyer, M. K., Robinson, D. R., Lonigro, R. J., Wu, Y.-M., Cao, X. et al. Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci Transl Med 2011; 3(111): 111ra21.CrossRefGoogle ScholarPubMed
Tran, B., Brown, A. M. K., Bedard, P. L., Winquist, E., Goss, G. D., Hotte, S. J. et al. Feasibility of real time next generation sequencing of cancer genes linked to drug response: results from a clinical trial. Int J Cancer 2013; 132(7): 1547–55.CrossRefGoogle ScholarPubMed
Wang, F., Wang, L., Briggs, C., Sicinska, E., Gaston, S. M., Mamon, H. et al. DNA degradation test predicts success in whole-genome amplification from diverse clinical samples. J Mol Diagn 2007; 9(4): 441–51. Epub 2007/08/11.CrossRefGoogle ScholarPubMed
Roychowdhury, S., Iyer, M. K., Robinson, D. R., Lonigro, R. J., Wu, Y. M., Cao, X. et al. Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci Transl Med 2011; 3(111): 111ra21.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×