Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-22T09:05:25.087Z Has data issue: false hasContentIssue false

Chapter 4 - Fluorescent and non-fluorescent in situ hybridization

Published online by Cambridge University Press:  05 November 2015

John M. S. Bartlett
Affiliation:
Ontario Institute for Cancer Research, Toronto
Abeer Shaaban
Affiliation:
Queen Elizabeth Hospital Birmingham
Fernando Schmitt
Affiliation:
University of Porto
Get access
Type
Chapter
Information
Molecular Pathology
A Practical Guide for the Surgical Pathologist and Cytopathologist
, pp. 29 - 54
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boveri, T. Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Harris, H.. J Cell Sci 2008; 121(Suppl. 1): 184.CrossRefGoogle ScholarPubMed
Trask, B. J. Human cytogenetics: 46 chromosomes, 46 years and counting. Nat Rev Genet 2002; 3(10): 769–78.CrossRefGoogle ScholarPubMed
Speicher, M. R. and Carter, N. P. The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet 2005; 6(10): 782–92.CrossRefGoogle ScholarPubMed
Nowell, P.C. and Hungerford, D. A. Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst 1960; 25(1): 85109.Google ScholarPubMed
Rowley, J. D. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973; 243(5405): 290–3.CrossRefGoogle Scholar
Gall, J. G. and Pardue, M. L. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci USA 1969; 63(2): 378–83.CrossRefGoogle ScholarPubMed
Bauman, J. G., Wiegant, J., Borst, P. and van Duijn, P. A new method for fluorescence microscopical localization of specific DNA sequences by in situ hybridization of fluorochromelabelled RNA. Exp Cell Res 1980; 128(2): 485–90.CrossRefGoogle ScholarPubMed
Landegent, J. E., Jansen in de Wal, N., van Ommen, G. J., Baas, F., de Vijlder, J. J., van, D. P. et al.Chromosomal localization of a unique gene by non-autoradiographic in situ hybridization. Nature 1985; 317(6033): 175–7.CrossRefGoogle ScholarPubMed
Kallioniemi, A., Kallioniemi, O. P., Sudar, D., Rutovitz, D., Gray, J. W., Waldman, F. et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 1992; 258(5083): 818–21.CrossRefGoogle ScholarPubMed
Bayani, J. and Squire, J. A. Application and interpretation of FISH in biomarker studies. Cancer Lett 2007; 249(1): 97109.CrossRefGoogle ScholarPubMed
Alba, J., Gutierrez, J., Coupe, V. M., Fernandez, B., Vazquez-Boquete, A., Alba, J. et al. HER2 status determination using RNA-ISH – a rapid and simple technique showing high correlation with FISH and IHC in 141 cases of breast cancer. Histol Histopathol 2012; 27(8): 1021–7.Google ScholarPubMed
Summersgill, B., Clark, J. and Shipley, J. Fluorescence and chromogenic in situ hybridization to detect genetic aberrations in formalin-fixed paraffin embedded material, including tissue microarrays. Nat Protoc 2008; 3(2): 220–34.CrossRefGoogle ScholarPubMed
Tubbs, R., Pettay, J., Skacel, M., Powell, R., Stoler, M., Roche, P. et al. Gold-facilitated in situ hybridization: a bright-field autometallographic alternative to fluorescence in situ hybridization for detection of Her-2/neu gene amplification. Am J Pathol 2002; 160(5): 1589–95.CrossRefGoogle ScholarPubMed
Bayani, J. and Squire, J. A. Fluorescence in situ hybridization (FISH). Curr Protoc Cell Biol 2004; Chapter 22: Unit 22.4.CrossRefGoogle ScholarPubMed
Egholm, M., Buchardt, O., Christensen, L., Behrens, C., Freier, S. M. and Driver, D. A. et al. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 1993; 365(6446): 566–8.CrossRefGoogle ScholarPubMed
Watters, A. D. and Bartlett, J. M. S. Fluorescence in situ hybridization in paraffin tissue sections – pretreatment protocol. Mol Biotechnol 2002; 21(3): 217–20.CrossRefGoogle ScholarPubMed
Bartlett, J. M., Campbell, F. M., Ibrahim, M., Wencyk, P., Ellis, I., Kay, E. et al. Chromogenic in situ hybridization: a multicenter study comparing silver in situ hybridization with FISH. Am J Clin Pathol 2009; 132(4): 514–20.CrossRefGoogle ScholarPubMed
Brugmann, A., Lelkaitis, G., Nielsen, S., Jensen, K. G. and Jensen, V. Testing HER2 in breast cancer: a comparative study on BRISH, FISH, and IHC. Appl Immunohistochem Mol Morphol 2011; 19(3): 203–11.CrossRefGoogle ScholarPubMed
Mollerup, J., Henriksen, U., Muller, S. and Schonau, A. Dual color chromogenic in situ hybridization for determination of HER2 status in breast cancer: a large comparative study to current state of the art fluorescence in situ hybridization. BMC Clin Pathol 2012; 12: 3.CrossRefGoogle ScholarPubMed
Penault-Llorca, F., Bilous, M., Dowsett, M., Hanna, W., Osamura, R. Y., Ruschoff, J. et al. Emerging technologies for assessing HER2 amplification. Am J Clin Pathol 2009; 132(4): 539–48.CrossRefGoogle ScholarPubMed
Arnould, L., Roger, P., Macgrogan, G., Chenard, M. P., Balaton, A., Beauclair, S. et al. Accuracy of HER2 status determination on breast core-needle biopsies (immunohistochemistry, FISH, CISH and SISH vs FISH). Mod Pathol 2012; 25(5): 675–82.CrossRefGoogle ScholarPubMed
Bartlett, J. M., Campbell, F. M., Ibrahim, M., O'Grady, A., Kay, E., Faulkes, C. et al. A UK NEQAS ISH multicenter ring study using the Ventana HER2 dual-color ISH assay. Am J Clin Pathol 2011; 135(1): 157–62.CrossRefGoogle ScholarPubMed
Garcia-Caballero, T., Grabau, D., Green, A. R., Gregory, J., Schad, A., Kohlwes, E. et al. Determination of HER2 amplification in primary breast cancer using dual-colour chromogenic in situ hybridization is comparable to fluorescence in situ hybridization: a European multicentre study involving 168 specimens. Histopathol 2010; 56(4): 472–80.CrossRefGoogle ScholarPubMed
Bayani, J. and Squire, J. Multi-color FISH techniques. Curr Protoc Cell Biol 2004; Chapter 22: Unit 22.5.CrossRefGoogle ScholarPubMed
Bartlett, J. M. S., Going, J. J., Mallon, E. A., Watters, A. D., Reeves, J. R., Stanton, P. et al. Evaluating HER2 amplification and overexpression in breast cancer. J Pathol 2001; 195(4): 422–8.CrossRefGoogle ScholarPubMed
Bartlett, J., Mallon, E. and Cooke, T. The clinical evaluation of HER-2 status: which test to use? J Pathol 2003; 199(4):411–7.CrossRefGoogle ScholarPubMed
Bartlett, J. M. S., Mallon, E. A. and Cooke, T. G. Molecular diagnostics for determination of HER2 status. Curr Diagn Pathol 2003; 9(1): 4855.CrossRefGoogle Scholar
Dowsett, M., Bartlett, J., Ellis, I. O., Salter, J., Hills, M., Mallon, E. et al. Correlation between immunohistochemistry (HercepTest) and fluorescence in situ hybridization (FISH) for HER-2 in 426 breast carcinomas from 37 centres. J Pathol 2003; 199(4): 418–23.CrossRefGoogle ScholarPubMed
Ellis, I. O., Bartlett, J., Dowsett, M., Humphreys, S., Jasani, B., Miller, K. et al. Updated recommendations for HER2 testing in the UK. J Clin Pathol 2004; 57(3): 233–7.CrossRefGoogle ScholarPubMed
Bartlett, J. M. S., Ibrahim, M., Jasani, B., Morgan, J. M., Ellis, I., Kay, E. et al. External quality assurance of HER2 fluorescence in situ hybridisation testing: results of a UK NEQAS pilot scheme. J Clin Pathol 2007; 60(7): 816–19.Google ScholarPubMed
Piccart, M., Lohrisch, C., Di Leo, A. and Larsimont, D. The predictive value of HER2 in breast cancer. Oncology 2001; 61(Suppl. 2): 7382.CrossRefGoogle ScholarPubMed
Perez, E. A., Roche, P. C., Jenkins, R. B., Reynolds, C. A., Halling, K. C., Ingle, J. N. et al. HER2 testing in patients with breast cancer: poor correlation between weak positivity by immunohistochemistry and gene amplification by fluorescence in situ hybridization. Mayo Clinic Proceedings 2002; 77(2): 148–54.CrossRefGoogle ScholarPubMed
Romond, E. H., Perez, E. A., Bryant, J., Suman, V. J., Geyer, C. E., Davidson, N. E. et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. New Engl J Med 2005; 353(16): 1673–84.CrossRefGoogle ScholarPubMed
Wolff, A. C., Hammond, M. E., Schwartz, J. N., Hagerty, K. L., Allred, D. C., Cote, R. J. et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 2007; 25(1): 118–45.CrossRefGoogle Scholar
Bartlett, J. M. S., Starczynski, J., Atkey, N., Kay, E., O'Grady, A., Gandy, M. et al. HER2 testing in the UK: recommendations for breast and gastric in-situ hybridisation methods. J Clin Pathol 2011; 64(8): 649–53.CrossRefGoogle ScholarPubMed
Vita, M. and Henriksson, M. The Myc oncoprotein as a therapeutic target for human cancer. Semin Cancer Biol 2006; 16(4): 318–30.CrossRefGoogle ScholarPubMed
Perez, E. A., Jenkins, R. B., Dueck, A. C., Wiktor, A. E., Bedroske, P. P., Anderson, S. K. et al. C-MYC alterations and association with patient outcome in early-stage HER2-positive breast cancer from the north central cancer treatment group N9831 adjuvant trastuzumab trial. J Clin Oncol 2011; 29(6): 651–9.CrossRefGoogle ScholarPubMed
Peled, N., Yoshida, K., Wynes, M. W. and Hirsch, F. R. Predictive and prognostic markers for epidermal growth factor receptor inhibitor therapy in non-small cell lung cancer. Ther Adv Med Oncol 2009; 1(3): 137–44.CrossRefGoogle ScholarPubMed
Di, F. F., Sesboue, R., Michel, P., Sabourin, J. C. and Frebourg, T. Molecular determinants of anti-EGFR sensitivity and resistance in metastatic colorectal cancer. Br J Cancer 2010; 103(12): 1765–72.Google Scholar
Lindeman, N. I., Cagle, P. T., Beasley, M. B., Chitale, D. A., Dacic, S., Giaccone, G. et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Thorac Oncol 2013; 8(7): 823–59.CrossRefGoogle Scholar
Ji, H., Zhao, X., Yuza, Y., Shimamura, T., Li, D., Protopopov, A. et al. Epidermal growth factor receptor variant III mutations in lung tumorigenesis and sensitivity to tyrosine kinase inhibitors. Proc Natl Acad Sci USA 2006; 103(20): 7817–22.CrossRefGoogle ScholarPubMed
Taylor, T. E., Furnari, F. B. and Cavenee, W. K. Targeting EGFR for treatment of glioblastoma: molecular basis to overcome resistance. Curr Cancer Drug Targets 2012; 12(3): 197209.CrossRefGoogle ScholarPubMed
Press, M. F., Sauter, G., Buyse, M., Bernstein, L., Guzman, R., Santiago, A. et al. Alteration of topoisomerase II-alpha gene in human breast cancer: association with responsiveness to anthracycline-based chemotherapy. J Clin Oncol 2011; 29(7): 859–67.CrossRefGoogle ScholarPubMed
Bartlett, J. M., Munro, A., Cameron, D. A., Thomas, J., Prescott, R., Twelves, and C. J. Type 1 receptor tyrosine kinase profiles identify patients with enhanced benefit from anthracyclines in the BR9601 adjuvant breast cancer chemotherapy trial. J Clin Oncol 2008; 26(31): 5027–35.CrossRefGoogle ScholarPubMed
Fountzilas, G., Dafni, U., Bobos, M., Kotoula, V., Batistatou, A., Xanthakis, I. et al. Evaluation of the prognostic role of centromere 17 gain and HER2/topoisomerase II alpha gene status and protein expression in patients with breast cancer treated with anthracycline-containing adjuvant chemotherapy: pooled analysis of two Hellenic Cooperative Oncology Group (HeCOG) phase III trials. BMC Cancer 2013; 13: 163.CrossRefGoogle ScholarPubMed
Huttner, A. J., Kieran, M. W., Yao, X., Cruz, L., Ladner, J., Quayle, K. et al. Clinicopathologic study of glioblastoma in children with neurofibromatosis type 1. Pediatr Blood Cancer 2010; 54(7): 890–6.CrossRefGoogle ScholarPubMed
Hayry, V., Tanner, M., Blom, T., Tynninen, O., Roselli, A., Ollikainen, M. et al. Copy number alterations of the polycomb gene BMI1 in gliomas. Acta Neuropathol 2008; 116(1): 97102.CrossRefGoogle ScholarPubMed
Begnami, M. D., Rushing, E. J., Santi, M. and Quezado, M. Evaluation of NF2 gene deletion in pediatric meningiomas using chromogenic in situ hybridization. Int J Surg Pathol 2007; 15(2): 110–15.CrossRefGoogle ScholarPubMed
Begnami, M. D., Palau, M., Rushing, E. J., Santi, M. and Quezado, M. Evaluation of NF2 gene deletion in sporadic schwannomas, meningiomas, and ependymomas by chromogenic in situ hybridization. Hum Pathol 2007; 38(9): 1345–50.CrossRefGoogle ScholarPubMed
Hopman, A. H., Moesker, O., Smeets, A. W., Pauwels, R. P., Vooijs, G. P. and Ramaekers, F. C. Numerical chromosome 1, 7, 9, and 11 aberrations in bladder cancer detected by in situ hybridization. Cancer Res 1991; 51(2): 644–51.Google ScholarPubMed
Bartlett, J. M. S., Watters, A. D., Ballantyne, S. A., Going, J. J., Grigor, K. M. and Cooke, T. G. Is chromosome 9 loss a marker of disease recurrence in transitional cell carcinoma of the urinary bladder? Br J Cancer 1998; 77(12): 2193–8.CrossRefGoogle Scholar
Edwards, J., Duncan, P., Going, J. J., Watters, A. D. and Bartlett, J. M. S. Loss of heterozygosity on chromosome 9 as a potential marker of recurrence and progression in bladder cancer. Br J Cancer 2000; 83(12): 190.Google Scholar
Edwards, J., Duncan, P., Going, J. J., Grigor, K. M., Watters, A. D. and Bartlett, J. M. S. Loss of heterozygosity on chromosomes 11 and 17 are markers of recurrence in TCC of the bladder. Br J Cancer 2001; 85(12): 1894–9.CrossRefGoogle ScholarPubMed
Edwards, J., Duncan, P., Going, J. J., Watters, A. D. and Bartlett, J. M. S. Loss of heterozygosity on chromosome 11 is a marker of recurrence in TCC of the bladder cancer. Br J Cancer 2001; 85(12): 74.CrossRefGoogle Scholar
Watters, A. D., Stacey, M. W., Going, J. J., GRIGOR, K. M., Cooke, T. G., Sim, E. et al. Genetic aberrations of NAT2 and chromosome 8: their association with progression in transitional cell carcinoma of the urinary bladder. Urol Int 2001; 67(3): 235–9.CrossRefGoogle ScholarPubMed
Latif, Z., Watters, A., Dunn, I., Grigor, K., Underwood, M. and Bartlett, J. HER2 abnormalities in transitional cell carcinomas of the bladder with detrusor muscle invasion at presentation compared with carcinomas progressing to detrusor muscle invasion. J Urol 2002; 167(4): 110.Google Scholar
Watters, A. D., Latif, Z., Forsyth, A., Dunn, I., Underwood, M. A., Grigor, K. M. et al. Genetic aberrations of c-myc and CCND1 in the development of invasive bladder cancer. Br J Cancer 2002; 87(6): 654–8.CrossRefGoogle ScholarPubMed
Watters, A. D., Going, J. J., Grigor, K. M. and Bartlett, J. M. S. Progression to detrusor-muscle invasion in bladder carcinoma is associated with polysomy of chromosomes 1 and 8 in recurrent pTa/pT1 tumours. Eur J Cancer 2002; 38(12): 1593–9.CrossRefGoogle ScholarPubMed
Watters, A. D., Ballantyne, S. A., Going, J. J., Grigor, K. M. and Bartlett, J. Aneusomy of chromosomes 7 and 17 predicts the recurrence of transitional cell carcinoma of the urinary bladder. BJU Int 2004; 85(1): 42–7.Google Scholar
Bayani, J. M. and Squire, J. A. Applications of SKY in cancer cytogenetics. Cancer Invest 2002; 20(3): 373–86.CrossRefGoogle ScholarPubMed
Chin, L. and Gray, J. W. Translating insights from the cancer genome into clinical practice. Nature 2008; 452(7187): 553–63.CrossRefGoogle ScholarPubMed
Schrock, E., du Manoir, S., Veldman, T., Schoell, B., Wienberg, J., Ferguson-Smith, M. A. et al. Multicolor spectral karyotyping of human chromosomes. Science 1996; 273(5274): 494–7.CrossRefGoogle ScholarPubMed
Speicher, M. R., Gwyn, B. S. and Ward, D. C. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 1996; 12(4): 368–75.CrossRefGoogle ScholarPubMed
Tanke, H. J., Wiegant, J., van Gijlswijk, R. P., Bezrookove, V., Pattenier, H., Heetebrij, R. J. et al. New strategy for multi-colour fluorescence in situ hybridisation: COBRA: COmbined Binary RAtio labelling. Eur J Hum Genet 1999; 7(1): 211.CrossRefGoogle ScholarPubMed
Bayani, J., Brenton, J. D., Macgregor, P. F., Beheshti, B., Albert, M., Nallainathan, D. et al. Parallel analysis of sporadic primary ovarian carcinomas by spectral karyotyping, comparative genomic hybridization, and expression microarrays. Cancer Res 2002; 62(12): 3466–76.Google ScholarPubMed
Bayani, J., Marrano, P., Graham, C., Zheng, Y., Li, L., Katsaros, D. et al. Genomic instability and copy-number heterogeneity of chromosome 19q, including the kallikrein locus, in ovarian carcinomas. Mol Oncol 2011; 5(1): 4860.CrossRefGoogle ScholarPubMed
Pandita, A., Bayani, J., Paderova, J., Marrano, P., Graham, C., Barrett, M. et al. Integrated cytogenetic and high-resolution array CGH analysis of genomic alterations associated with MYCN amplification. Cytogenet Genome Res 2011; 134(1): 2739.CrossRefGoogle ScholarPubMed
Chudoba, I., Hickmann, G., Friedrich, T., Jauch, A., Kozlowski, P. and Senger, G. mBAND: a high resolution multicolor banding technique for the detection of complex intrachromosomal aberrations. Cytogenet Genome Res 2004; 104(1–4): 390–3.CrossRefGoogle ScholarPubMed
Bayani, J., Selvarajah, S., Maire, G., Vukovic, B., Al-Romaih, K., Zielenska, M. et al. Genomic mechanisms and measurement of structural and numerical instability in cancer cells. Semin Cancer Biol 2007; 17(1): 518.CrossRefGoogle ScholarPubMed
Bartlett, J. M., Campbell, F. M. and Mallon, E. A. Determination of HER2 amplification by in situ hybridization: when should chromosome 17 also be determined? Am J Clin Pathol 2008; 130(6): 920–6.CrossRefGoogle ScholarPubMed
Bartlett, J. M., Munro, A. F., Dunn, J. A., McConkey, C., Jordan, S., Twelves, C. J. et al. Predictive markers of anthracycline benefit: a prospectively planned analysis of the UK National Epirubicin Adjuvant Trial (NEAT/BR9601). Lancet Oncol 2010; 11(3): 266–74.CrossRefGoogle ScholarPubMed
Aubert, G., Hills, M. and Lansdorp, P. M. Telomere length measurement-caveats and a critical assessment of the available technologies and tools. Mutat Res 2012; 730(1–2): 5967.CrossRefGoogle Scholar
Wang, Z., Portier, B. P., Gruver, A. M., Bui, S., Wang, H., Su, N. et al. Automated quantitative RNA in situ hybridization for resolution of equivocal and heterogeneous ERBB2 (HER2) status in invasive breast carcinoma. J Mol Diagn 2013; 15(2): 210–19.CrossRefGoogle ScholarPubMed
Reisenbichler, E. S., Horton, D., Rasco, M., Andea, A. and Hameed, O. Evaluation of dual immunohistochemistry and chromogenic in situ hybridization for HER2 on a single section. Am J Clin Pathol 2012; 137(1): 102–10.CrossRefGoogle ScholarPubMed
Sachs, R. K., Chen, A. M. and Brenner, D. J. Review: proximity effects in the production of chromosome aberrations by ionizing radiation. Int J Radiat Biol 1997; 71(1): 119.Google ScholarPubMed
Hoff, K., Jorgensen, J. T., Muller, S., Rongaard, E., Rasmussen, O. and Schonau, A. Visualization of FISH probes by dual-color chromogenic in situ hybridization. Am J Clin Pathol 2010; 133(2): 205–11.CrossRefGoogle ScholarPubMed
Wolff, A. C., Hammond, M. E., Schwartz, J. N., Hagerty, K. L., Allred, D. C., Cote, R. J. et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Med 2007; 131(1): 1843.CrossRefGoogle Scholar
Bayani, J., Paderova, J., Murphy, J., Rosen, B., Zielenska, M. and Squire, J. A. Distinct patterns of structural and numerical chromosomal instability characterize sporadic ovarian cancer. Neoplasia 2008; 10(10): 1057–65.CrossRefGoogle ScholarPubMed
Watters, A. D., Going, J. J., Cooke, T. G. and Bartlett, J. M. Chromosome 17 aneusomy is associated with poor prognostic factors in invasive breast carcinoma. Breast Cancer Res Treat 2003; 77(2): 109–14.CrossRefGoogle ScholarPubMed
Bartlett, J. M. Pharmacodiagnostic testing in breast cancer: focus on HER2 and trastuzumab therapy. Am J Pharmacogenomics 2005; 5(5): 303–15.CrossRefGoogle ScholarPubMed
Rosa, F. E., Santos, R. M., Rogatto, S. R. and Domingues, M. A. Chromogenic in situ hybridization compared with other approaches to evaluate HER2/neu status in breast carcinomas. Braz J Med Biol Res 2013; 46(3): 207–16.CrossRefGoogle ScholarPubMed
Mansfield, A. S., Sukov, W. R., Eckel-Passow, J. E., Sakai, Y., Walsh, F. J., Lonzo, M. et al. Comparison of fluorescence in situ hybridization (FISH) and dual-ISH (DISH) in the determination of HER2 status in breast cancer. Am J Clin Pathol 2013; 139(2): 144–50.CrossRefGoogle Scholar
Schildhaus, H. U., Deml, K. F., Schmitz, K., Meiboom, M., Binot, E., Hauke, S. et al. Chromogenic in situ hybridization is a reliable assay for detection of ALK rearrangements in adenocarcinomas of the lung. Mod Pathol 2013; 26(1): 1468–77.CrossRefGoogle ScholarPubMed
van Rijk, A., Svenstroup-Poulsen, T., Jones, M., Cabecadas, J., Cigudosa, J. C., Leoncini, L. et al. Double-staining chromogenic in situ hybridization as a useful alternative to split-signal fluorescence in situ hybridization in lymphoma diagnostics. Haematologica 2010; 95(2): 247–52.CrossRefGoogle ScholarPubMed
Lass, U., Hartmann, C., Capper, D., Herold-Mende, C., von Deimling, A., Meiboom, M. et al. Chromogenic in situ hybridization is a reliable alternative to fluorescence in situ hybridization for diagnostic testing of 1p and 19q loss in paraffin-embedded gliomas. Brain Pathol 2013; 23(3): 311–18.CrossRefGoogle ScholarPubMed
Santi, M., Quezado, M., Ronchetti, R. and Rushing, E. J. Analysis of chromosome 7 in adult and pediatric ependymomas using chromogenic in situ hybridization. J Neurooncol 2005; 72(1): 25–8.CrossRefGoogle ScholarPubMed
Walter, B. A., Begnami, M., Valera, V. A., Santi, M., Rushing, E. J. and Quezado, M. Gain of chromosome 7 by chromogenic in situ hybridization (CISH) in chordomas is correlated to c-MET expression. J Neurooncol 2011; 101(2): 199206.CrossRefGoogle ScholarPubMed
Gerdes, M. J., Sevinsky, C. J., Sood, A., Adak, S., Bello, M. O., Bordwell, A. et al. Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue. Proc Natl Acad Sci USA 2013; 110(29): 11982–7.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×