Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T17:39:58.080Z Has data issue: false hasContentIssue false

Chapter 6 - Are microarrays ready for prime time?

Published online by Cambridge University Press:  05 November 2015

John M. S. Bartlett
Affiliation:
Ontario Institute for Cancer Research, Toronto
Abeer Shaaban
Affiliation:
Queen Elizabeth Hospital Birmingham
Fernando Schmitt
Affiliation:
University of Porto
Get access
Type
Chapter
Information
Molecular Pathology
A Practical Guide for the Surgical Pathologist and Cytopathologist
, pp. 71 - 87
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 2004; 431(7011): 931–45.Google Scholar
Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J. et al. Initial sequencing and analysis of the human genome. Nature 2001; 409(6822): 860921.Google ScholarPubMed
Fodor, S. P., Read, J. L., Pirrung, M. C., Stryer, L., Lu, A. T. and Solas, D. Light-directed, spatially addressable parallel chemical synthesis. Science 1991; 251(4995): 767–73.CrossRefGoogle ScholarPubMed
Schena, M., Shalon, D., Davis, R. W. and Brown, P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995; 270(5235): 467–70.CrossRefGoogle ScholarPubMed
Alwine, J. C., Kemp, D. J. and Stark, G. R. Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci USA 1977; 74(12): 5350–4.CrossRefGoogle ScholarPubMed
Di Leva, G. and Croce, C. M. miRNA profiling of cancer. Curr Opin Genet Dev 2013; 23(1): 311.CrossRefGoogle ScholarPubMed
Lovf, M., Thomassen, G. O., Bakken, A. C., Celestino, R., Fioretos, T., Lind, G. E. et al. Fusion gene microarray reveals cancer type-specificity among fusion genes. Gene Chromosome Canc 2011; 50(5): 348–57.CrossRefGoogle ScholarPubMed
Kallioniemi, A., Kallioniemi, O. P., Sudar, D., Rutovitz, D., Gray, J. W., Waldman, F. et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 1992; 258(5083): 818–21.CrossRefGoogle ScholarPubMed
Pollack, J. R., Perou, C. M., Alizadeh, A. A., Eisen, M. B., Pergamenschikov, A., Williams, C. F. et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet 1999; 23(1): 41–6.Google ScholarPubMed
Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel, D. et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 1998; 20(2): 207–11.CrossRefGoogle ScholarPubMed
Carter, N. P. Methods and strategies for analyzing copy number variation using DNA microarrays. Nat Genet 2007; 39(7 Suppl.): S16S21.CrossRefGoogle ScholarPubMed
Lupski, J. R. Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet 1998; 14(10): 417–22.CrossRefGoogle ScholarPubMed
Emanuel, B. S. and Saitta, S. C. From microscopes to microarrays: dissecting recurrent chromosomal rearrangements. Nat Rev Genet 2007; 8(11): 869–83.CrossRefGoogle ScholarPubMed
Gitan, R. S., Shi, H., Chen, C. M., Yan, P. S. and Huang, T. H. Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res 2002; 12(1): 158–64.CrossRefGoogle ScholarPubMed
Blat, Y., Protacio, R. U., Hunter, N. and Kleckner, N. Physical and functional interactions among basic chromosome organizational features govern early steps of meiotic chiasma formation. Cell 2002; 111(6): 791802.CrossRefGoogle ScholarPubMed
Ren, B., Robert, F., Wyrick, J. J., Aparicio, O., Jennings, E. G., Simon, I. et al. Genome-wide location and function of DNA binding proteins. Science 2000; 290(5500): 2306–9.CrossRefGoogle ScholarPubMed
Chang, T. W. Binding of cells to matrixes of distinct antibodies coated on solid surface. J Immunol Methods 1983; 65(1–2): 217–23.Google ScholarPubMed
Bertone, P. and Snyder, M. Advances in functional protein microarray technology. FEBS J 2005; 272(21): 5400–11.CrossRefGoogle ScholarPubMed
Zhu, H., Bilgin, M., Bangham, R., Hall, D., Casamayor, A., Bertone, P. et al. Global analysis of protein activities using proteome chips. Science 2001; 293(5537): 2101–5.CrossRefGoogle ScholarPubMed
Speer, R., Wulfkuhle, J. D., Liotta, L. A. and Petricoin, E. F. III. Reverse-phase protein microarrays for tissue-based analysis. Curr Opin Mol Ther 2005; 7(3): 240–5.Google ScholarPubMed
Oliphant, A., Barker, D. L., Stuelpnagel, J. R. and Chee, M. S. BeadArray technology: enabling an accurate, cost-effective approach to high-throughput genotyping. Biotechniques 2002; 56(8): 60–1.Google Scholar
Geiss, G. K., Bumgarner, R. E., Birditt, B., Dahl, T., Dowidar, N., Dunaway, D. L. et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol 2008; 26(3): 317–25.Google ScholarPubMed
Eisen, M. B. and Brown, P. O. DNA arrays for analysis of gene expression. Methods Enzymol 1999; 303: 179205.CrossRefGoogle ScholarPubMed
Richter, A., Schwager, C., Hentze, S., Ansorge, W., Hentze, M. W. and Muckenthaler, M. Comparison of fluorescent tag DNA labeling methods used for expression analysis by DNA microarrays. Biotechniques 2002; 33(3): 620–8, 630.CrossRefGoogle ScholarPubMed
Lockhart, D. J., Dong, H., Byrne, M. C., Follettie, M. T., Gallo, M. V., Chee, M. S. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 1996; 14(13): 1675–80.CrossRefGoogle ScholarPubMed
Thygesen, H. H. and Zwinderman, A. H. Comparing transformation methods for DNA microarray data. BMC Bioinformatics 2004; 5: 77.CrossRefGoogle ScholarPubMed
Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R. et al. Missing value estimation methods for DNA microarrays. Bioinformatics 2001; 17(6): 520–5.CrossRefGoogle ScholarPubMed
Quackenbush, J. Microarray data normalization and transformation. Nat Genet 2002; 32(Suppl.): 496501.CrossRefGoogle ScholarPubMed
Butte, A. The use and analysis of microarray data. Nat Rev Drug Discov 2002; 1(12): 951–60.CrossRefGoogle ScholarPubMed
Butte, A. J., Ye, J., Haring, H. U., Stumvoll, M., White, M. F. and Kohane, I. S. Determining significant fold differences in gene expression analysis. Pac Symp Biocomput 2001; 6: 617.Google Scholar
Raychaudhuri, S., Stuart, J. M. and Altman, R. B. Principal components analysis to summarize microarray experiments: application to sporulation time series. Pac Symp Biocomput 2000; 455–66.Google ScholarPubMed
Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999; 286(5439): 531–7.CrossRefGoogle ScholarPubMed
Toronen, P., Kolehmainen, M., Wong, G. and Castren, E. Analysis of gene expression data using self-organizing maps. FEBS Lett 1999; 451(2): 142–6.CrossRefGoogle ScholarPubMed
Eisen, M. B., Spellman, P. T., Brown, P. O. and Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998; 95(25): 14863–8.CrossRefGoogle ScholarPubMed
Szallasi, Z. and Liang, S. Modeling the normal and neoplastic cell cycle with “realistic Boolean genetic networks”: their application for understanding carcinogenesis and assessing therapeutic strategies. Pac Symp Biocomput 1998; 6676.Google ScholarPubMed
Friedman, N., Linial, M., Nachman, I. and Pe'er, D. Using Bayesian networks to analyze expression data. J Comput Biol 2000; 7(3–4): 601–20.CrossRefGoogle ScholarPubMed
Chia, S. K., Bramwell, V. H., Tu, D., Shepherd, L. E., Jiang, S., Vickery, T. et al. A 50-gene intrinsic subtype classifier for prognosis and prediction of benefit from adjuvant tamoxifen. Clin Cancer Res 2012; 18(16): 4465–72.CrossRefGoogle ScholarPubMed
Nielsen, T. O., Parker, J. S., Leung, S., Voduc, D., Ebbert, M., Vickery, T. et al. A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer. Clin Cancer Res 2010; 16(21): 5222–32.CrossRefGoogle ScholarPubMed
Paik, S., Tang, G., Shak, S., Kim, C., Baker, J., Kim, W. et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 2006; 24(23): 3726–34.CrossRefGoogle ScholarPubMed
Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A. et al. Molecular portraits of human breast tumours. Nature 2000; 406(6797): 747–52.CrossRefGoogle ScholarPubMed
van de Vijver, M. J., He, Y. D., van't Veer, L. J., Dai, H., Hart, A. A., Voskuil, D. W. et al. A gene-expression signature as a predictor of survival in breast cancer. New Engl J Med 2002; 347(25): 19992009.CrossRefGoogle ScholarPubMed
Miller, D. T., Adam, M. P., Aradhya, S., Biesecker, L. G., Brothman, A. R., Carter, N. P. et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 2010; 86(5): 749–64.CrossRefGoogle ScholarPubMed
Shi, L., Reid, L. H., Jones, W. D., Shippy, R., Warrington, J. A., Baker, S. C. et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 2006; 24(9): 1151–61.Google ScholarPubMed
Patterson, T. A., Lobenhofer, E. K., Fulmer-Smentek, S. B., Collins, P. J., Chu, T. M., Bao, W. et al. Performance comparison of one-color and two-color platforms within the MicroArray Quality Control (MAQC) project. Nat Biotechnol 2006; 24(9): 1140–50.CrossRefGoogle ScholarPubMed
Kitchen, R. R., Sabine, V. S., Simen, A. A., Dixon, J. M., Bartlett, J. M. and Sims, A. H. Relative impact of key sources of systematic noise in Affymetrix and Illumina gene-expression microarray experiments. BMC Genomics 2011; 12: 589; doi: 10.1186/1471-2164-12-589.CrossRefGoogle ScholarPubMed
Kitchen, R. R., Sabine, V. S., Sims, A. H., Macaskill, E. J., Renshaw, L., Thomas, J. S. et al. Correcting for intra-experiment variation in Illumina BeadChip data is necessary to generate robust gene-expression profiles. BMC Genomics 2010; 11: 134; doi:10.1186/1471-2164-11-134.CrossRefGoogle ScholarPubMed
Shi, L., Campbell, G., Jones, W. D., Campagne, F., Wen, Z., Walker, S. J. et al. The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nat Biotechnol 2010; 28(8): 827–38.Google ScholarPubMed
Hayes, D. F. Prognostic and predictive factors for breast cancer: translating technology to oncology. J Clin Oncol 2005; 23(8): 1596–7.CrossRefGoogle ScholarPubMed
van't Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A., Mao, M. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415(6871): 530–6.CrossRefGoogle ScholarPubMed
Glas, A. M., Floore, A., Delahaye, L. J., Witteveen, A. T., Pover, R. C., Bakx, N. et al. Converting a breast cancer microarray signature into a high-throughput diagnostic test. BMC Genomics 2006; 7: 278.CrossRefGoogle ScholarPubMed
Galea, M. H., Blamey, R. W., Elston, C. E. and Ellis, I. O. The Nottingham Prognostic Index in primary breast cancer. Breast Cancer Res Treat 1992; 22(3): 207–19.CrossRefGoogle ScholarPubMed
Mook, S., Schmidt, M. K., Viale, G., Pruneri, G., Eekhout, I., Floore, A. et al. The 70-gene prognosis-signature predicts disease outcome in breast cancer patients with 1–3 positive lymph nodes in an independent validation study. Breast Cancer Res Treat 2009; 116(2): 295302.CrossRefGoogle Scholar
Mook, S., Schmidt, M. K., Weigelt, B., Kreike, B., Eekhout, I., van de Vijver, M. J. et al. The 70-gene prognosis signature predicts early metastasis in breast cancer patients between 55 and 70 years of age. Ann Oncol 2010; 21(4): 717–22.CrossRefGoogle Scholar
Knauer, M., Mook, S., Rutgers, E. J., Bender, R. A., Hauptmann, M., van de Vijver, M. J. et al. The predictive value of the 70-gene signature for adjuvant chemotherapy in early breast cancer. Breast Cancer Res Treat 2010; 120(3): 655–61.CrossRefGoogle ScholarPubMed
Drukker, C. A., Bueno-de-Mesquita, J. M., Retel, V. P., van Harten, W. H., van Tinteren, H., Wesseling, J. et al. A prospective evaluation of a breast cancer prognosis signature in the observational RASTER study. Int J Cancer 2013; 133(4): 929–36.CrossRefGoogle ScholarPubMed
Cardoso, F., Van't Veer, L., Rutgers, E., Loi, S., Mook, S. and Piccart-Gebhart, M. J. Clinical application of the 70-gene profile: the MINDACT trial. J Clin Oncol 2008; 26(5): 729–35.CrossRefGoogle ScholarPubMed
Bartlett, J., Canney, P., Campbell, A., Cameron, D., Donovan, J., Dunn, J. et al. Selecting breast cancer patients for chemotherapy: the opening of the UK OPTIMA trial. Clin Oncol (R Coll Radiol) 2013; 25(2): 109–16.CrossRefGoogle ScholarPubMed
Mulligan, J. M., Hill, L. A., Deharo, S., Irwin, G., Boyle, D., Keating, K. E. et al. Identification and validation of an anthracycline/cyclophosphamide-based chemotherapy response assay in breast cancer. J Natl Cancer Inst 2014; 106(1): djt335.CrossRefGoogle ScholarPubMed
Teutsch, S. M., Bradley, L. A., Palomaki, G. E., Haddow, J. E., Piper, M., Calonge, N. et al. The Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Initiative: methods of the EGAPP Working Group. Genet Med 2009; 11(1): 314.CrossRefGoogle ScholarPubMed
McShane, L. M., Altman, D. G., Sauerbrei, W., Taube, S. E., Gion, M. and Clark, G. M. REporting recommendations for tumour MARKer prognostic studies (REMARK). Eur J Cancer 2005; 41(12): 1690–6.CrossRefGoogle ScholarPubMed
Sturgeon, C. M., Hoffman, B. R., Chan, D. W., Ch'ng, S. L., Hammond, E., Hayes, D. F. et al. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines for use of tumor markers in clinical practice: quality requirements. Clin Chem 2008; 54(8): e1e10.CrossRefGoogle ScholarPubMed
Krijgsman, O., Roepman, P., Zwart, W., Carroll, J. S., Tian, S., de Snoo, F. A. et al. A diagnostic gene profile for molecular subtyping of breast cancer associated with treatment response. Breast Cancer Res Treat 2012; 133(1): 3747.CrossRefGoogle ScholarPubMed
Nguyen, B., Cusumano, P. G., Deck, K., Kerlin, D., Garcia, A. A., Barone, J. L. et al. Comparison of molecular subtyping with BluePrint, MammaPrint, and TargetPrint to local clinical subtyping in breast cancer patients. Ann Surg Oncol 2012; 19(10): 3257–63.CrossRefGoogle ScholarPubMed
Maak, M., Simon, I., Nitsche, U., Roepman, P., Snel, M., Glas, A. M. et al. Independent validation of a prognostic genomic signature (ColoPrint) for patients with stage II colon cancer. Ann Surg 2013; 257(6): 1053–8.CrossRefGoogle ScholarPubMed
Northcott, P. A., Shih, D. J., Peacock, J., Garzia, L., Morrissy, A. S., Zichner, T. et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature 2012; 488(7409): 4956.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×