Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-20T01:44:23.353Z Has data issue: false hasContentIssue false

Chapter 7 - Unsteady explosive activity

Vulcanian eruptions

Published online by Cambridge University Press:  05 March 2013

Sarah A. Fagents
Affiliation:
University of Hawaii, Manoa
Tracy K. P. Gregg
Affiliation:
State University of New York, Buffalo
Rosaly M. C. Lopes
Affiliation:
NASA-Jet Propulsion Laboratory, California
Get access

Summary

Overview

Vulcanian eruptions are named for the 1888–90 eruptions of Vulcano, Aeolian Islands, Italy (Mercalli, 1907), and are defined here as short-lived, discrete explosions resulting from sudden decompression of a volcanic conduit caused by disruption of a sealing plug or dome. Resulting eruptions characteristically last only seconds to minutes and may produce buoyant columns, pyroclastic density currents, or both. They may occur as single events or in a sequence of discrete explosions. The short duration and unsteady vent conditions of vulcanian eruptions make them distinct from sustained plinian or subplinian eruptions. Pre-eruption pressures can reach 10 MPa, vent velocities may approach 400 m s−1, eruption plumes typically rise to < 10 km, but in some cases may reach nearly 20 km, and the amount of magma erupted is typically < 1011 kg. This chapter reviews mechanisms associated with vulcanian eruptions and discusses several relevant conceptual and quantitative models. Topics include plug formation and disruption, magma fragmentation, calculation of vent flux, the production and propagation of shock waves, the dynamics of pyroclastic jets and plumes ascending from unsteady sources, and ballistic analysis. This chapter also addresses important questions regarding controls on the scale and duration of such short-lived explosions, as well as transitions in eruptive style.

Type
Chapter
Information
Modeling Volcanic Processes
The Physics and Mathematics of Volcanism
, pp. 129 - 152
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alidibirov, M. A. (1994). A model for viscous magma fragmentation during volcanic blasts. Bulletin of Volcanology, 56(6–7), 459–465.CrossRefGoogle Scholar
Belousov, A., Voight, B., Belousova, M. and Petukhin, A. (2002). Pyroclastic surges and flows from the 8–10 May 1997 explosive eruption of Bezymianny volcano, Kamchatka, Russia. Bulletin of Volcanology, 64, 455–471.CrossRefGoogle Scholar
Carn, S. A. and Oppenheimer, C. (2000). Remote monitoring of Indonesian volcanoes using satellite data from the Internet. International Journal of Remote Sensing, 21, 873–910.CrossRefGoogle Scholar
Cas, R. A. F. and Wright, J. V. (1987). Volcanic Successions: Modern and Ancient. London: Unwin Hyman Ltd.CrossRefGoogle Scholar
Cashman, K. and Blundy, J. (2000). Degassing and crystallization of ascending andesite and dacite. Philosophical Transactions of the Royal Society, 358, 1487–1513.CrossRefGoogle Scholar
Cashman, K. V. and McConnell, S. M. (2005). Multiple levels of magma storage during the 1980 summer eruptions of Mount St. Helens, WA. Bulletin of Volcanology, 68, 57–75.CrossRefGoogle Scholar
Chojnicki, K., Clarke, A. B. and Phillips, J. C. (2006). A shock-tube investigation of the dynamics of gas–particle mixtures: Implications for explosive volcanic eruptions. Geophysical Research Letters, 33, L15309, doi:.CrossRefGoogle Scholar
Clarke, A. B., Neri, A., Macedonio, G., Voight, B. and Druitt, T. H. (2002a). Computational modeling of the transient dynamics of August 1997 Vulcanian explosions at Soufrière Hills volcano, Montserrat: Influence of initial conduit conditions on near-vent pyroclastic dispersal. In The Eruption of Soufrière Hills Volcano, Monsterrat, from 1995 to 1999, ed. Druitt, T. H. and Kokelaar, B. P.. Geological Society, London, Memoir 21, pp. 319–348Google Scholar
Clarke, A. B., Neri, A., Macedonio, G. and Voight, B. (2002b). Transient dynamics of Vulcanian explosions and column collapse. Nature, 415, 897–901.CrossRefGoogle ScholarPubMed
Clarke, A. B., Stephens, S., Teasdale, R., Sparks, R. S. J. and Diller, K. (2007). Petrological constraints on the decompression history of magma prior to Vulcanian explosions at the Soufrière Hills volcano, Montserrat. Journal of Volcanology and Geothermal Research, 161, 261–274.CrossRefGoogle Scholar
Clarke, A. B., Phillips, J. C., and Chojnicki, K. N. (2009). An investigation of the dynamics of vulcanian eruptions using laboratory analogue experiments and scaling analysis. In Studies in Volcanology: The Legacy of George Walker, ed. Thordarson, T., Self, S., Larsen, G., Rowland, S. K. and Hoskuldsson, A.. Geological Society, London. Special Publications of IAVCEI, 1, pp. 155–166.
de’ Michieli Vitturi, M., Neri, A., Esposti Ongaro, T. Lo Savio, S. and Boschi, E. (2010). Lagrangian modeling of large volcanic particles: Application to Vulcanian explosions. Journal of Geophysical Research, 115, B08206, doi:.CrossRefGoogle Scholar
Diller, K. D., Clarke, A. B., Voight, B. and Neri, A. (2006). Mechanisms for conduit plug formation: implications for Vulcanian explosions. Geophysical Research Letters, 33, L20302, doi:.CrossRefGoogle Scholar
Dingwell, D. B. (1996). Volcanic dilemma: flow or blow?Science, 273, 1054–1055.CrossRefGoogle Scholar
Dingwell, D. B. (2001). Magma degassing and fragmentation: Recent experimental advances. In From Magma to Tephra, ed. Freundt, A. and Rosi, M.. Amsterdam: Elsevier, pp. 1–23.Google Scholar
Dobran, F., Neri, A. and Macedonio, G. (1993). Numerical simulation of collapsing volcanic volumns. Journal of Geophysical Research, 98, 4231–4259.CrossRefGoogle Scholar
D’Oriano, C., Poggianti, E., Bertagnini, A. et al. (2005). Changes in eruptive style during the A.D. 1538 Monte Nuovo eruption (Phlegrean Fields, Italy): The role of syn-eruptive crystallization. Bulletin of Volcanology, 67, 601–621.CrossRefGoogle Scholar
Druitt, T. H., Young, S. R., Baptie, B. et al. (2002). Episodes of cyclic Vulcanian explosive activity with fountain collapse at Soufrière Hills volcano, Montserrat. In The Eruption of Soufrière Hills Volcano, Monsterrat, from 1995 to 1999, ed. Druitt, T. H. and Kokelaar, B. P.. Geological Society, London, Memoir 21, pp. 281–306.Google Scholar
Dufek, J. and Bergantz, G. W. (2005). Transient two-dimensional dynamics in the upper conduit of a rhyolitic eruption: A comparison of closure models for the granular stress. Journal of Volcanology and Geothermal Research, 143, 113–132.CrossRefGoogle Scholar
Edmonds, M. and Herd, R. A. (2007). A volcanic degassing event at the explosive-effusive transition. Geophysical Research Letters, 34, L21310, doi:.CrossRefGoogle Scholar
Eichelberger, J. C., Carrigan, C. R., Westrich, H. R. and Price, R. H. (1986). Non-explosive silicic volcanism. Nature, 323, 598–602.CrossRefGoogle Scholar
Fagents, S. A. and Wilson, L. (1993). Explosive volcanic eruptions – VII. The ranges of pyroclasts ejected in transient volcanic explosions. Geophysical Journal International, 113, 359–370.CrossRefGoogle Scholar
Formenti, Y. and Druitt, T. H. (2003). Vesicle connectivity in pyroclasts and implications for the fluidization of fountain-collapse pyroclastic flows, Montserrat (West Indies). Earth and Planetary Science Letters, 214, 561–574.CrossRefGoogle Scholar
Formenti, Y., Druitt, T. H. and Kelfoun, K. (2003). Characterization of the 1997 Vulcanian explosions of Soufrière Hills Volcano, Montserrat, by video analysis, I. Bulletin of Volcanology, 65, 587–605.CrossRefGoogle Scholar
Fox, R. W., McDonald, A. T. and Pritchard, P. J. (2006), Introduction to Fluid Mechanics, 6th edn. Hoboken, NJ: John Wiley and Sons.Google Scholar
Geschwind, C. H. and Rutherford, M. J. (1995). Crystallization of microlites during magma ascent: the fluid mechanics of 1980–1986 eruptions at Mount St. Helens. Bulletin of Volcanology, 57, 356–370.CrossRefGoogle Scholar
Giachetti, T., Druitt, T. H., Burgisser, A., Arbaret, L. and Galven, C. (2010). Bubble nucleation, growth and coalescence during the 1997 Vulcanian explosions of Soufrière Hills Volcano, Montserrat. Journal of Volcanology and Geothermal Research, 193(3–4), 215–231.CrossRefGoogle Scholar
Glaze, L. S., Francis, P., Self, S. and Rothery, D. A. (1989). The 16 September 1986 eruption of Lascar volcano, north Chile: satellite investigations. Bulletin of Volcanology, 51, 149–160.CrossRefGoogle Scholar
Gonnermann, H. M. and Manga, M. (2003). Explosive volcanism may not be an inevitable consequence of magma fragmentation. Nature, 426, 432–435, doi:.CrossRefGoogle Scholar
Hammer, J. E., Cashman, K. V., Hoblitt, R. P. and Newman, S. (1999). Degassing and microlite crystallization during pre-climactic events of the 1991 eruption of Mt. Pinatubo, Philippines. Bulletin of Volcanology, 60, 355–380.CrossRefGoogle Scholar
Hess, K. U. and Dingwell, D. B. (1996). Viscosities of hydrous leucogranitic melts: A non-Arrhenian model. American Mineralogist, 81, 1297–1300.Google Scholar
Hoblitt, R. (1986). Observations of the Eruptions of July 22 and August 7, 1980, at Mount St. Helens, Washington. United States Geological Survey Professional Paper 1335, 44 pp.
Hoblitt, R. P., Wolfe, E. W., Scott, W. E. et al. (1996). The preclimactic eruptions of Mount Pinatubo, June 1991. In Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines, ed. Newhall, C. G. and Punongbayan, R. S.. Seattle, WA: University of Washington Press, pp. 457–511.Google Scholar
Ishihara, K. (1985). Dynamical analysis of volcanic explosion. Journal of Geodynamics, 3, 327–349.CrossRefGoogle Scholar
Kaminski, E., Tait, S. and Carazzo, G. (2005). Turbulent entrainment into jets with arbitrary buoyancy. Journal of Fluid Mechanics, 526, 361–376.CrossRefGoogle Scholar
Koyaguchi, T. (2005). An analytical study for 1-dimensional steady flow in volcanic conduits. Journal of Volcanology and Geothermal Research, 143, 29–52.CrossRefGoogle Scholar
Koyaguchi, T. and Mitani, N. K. (2005). A theoretical model for fragmentation of viscous bubbly magmas in shock tubes. Journal of Geophysical Research, 110, B10202, doi:.CrossRefGoogle Scholar
Kieffer, S. W. (1981). Blast dynamics at Mount St. Helens on 18 May 1980. Nature, 291, 568–570.CrossRefGoogle Scholar
Lejeune, A.-M. and Richet, P. (1995). Rheology of crystal-bearing silicate melts; an experimental study at high viscosities. Journal of Geophysical Research, 100(3), 4215–4229.CrossRefGoogle Scholar
Mason, R. M., Starostin, A. B., Melnik, O. E. and Sparks, R. S. J. (2006). From Vulcanian explosions to sustained explosive eruptions: the role of diffusive mass transfer in conduit flow dynamics. Journal of Volcanology and Geothermal Research, 153, 148–165.CrossRefGoogle Scholar
Mastin, L. G. (2001). A simple calculator of ballistic trajectories for blocks ejected during volcanic eruptions. United States Geological Survey Open-File Report 01–45, 16pp., available at .
McBirney, A. R. and Murase, T. (1971). Factors governing the formation of pyroclastic rocks, Bulletin Volcanologique, 34(2), 372–384.CrossRefGoogle Scholar
Melnik, O. and Sparks, R. S. J. (1999). Nonlinear dynamics of lava dome extrusion. Nature, 402, 37–41.CrossRefGoogle Scholar
Melnik, O. and Sparks, R. S. J. (2002). Modelling of conduit flow dynamics during explosive activity at Soufriere Hills Volcano, Montserrat. In The Eruption of Soufrière Hills Volcano, Monsterrat, from 1995 to 1999, ed. Druitt, T. H. and Kokelaar, B. P.. Geological Society, London, Memoir 21, pp. 307–317.Google Scholar
Melnik, O., Barmin, A. A. and Sparks, R. S. J. (2005). Dynamics of magma flow inside volcanic conduits with bubble overpressure buildup and gas loss through permeable magma. Journal of Volcanology and Geothermal Research, 143, 53–68.CrossRefGoogle Scholar
Mercalli, G. (1907). I Volcani Attivi della Terra. Milano: Ulrico Hoepli.Google Scholar
Moore, G. and Carmichael, I. S. E. (1998). The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growth. Contributions to Mineralogy and Petrology, 130, 304–319.CrossRefGoogle Scholar
Morrissey, M. M. and Chouet, B. A. (1997). Burst conditions of explosive volcanic eruptions recorded on microbarographs. Science, 275, 1290–1293.CrossRefGoogle ScholarPubMed
Morrissey, M. M. and Mastin, L. G. (2000). Vulcanian Eruptions. In Encyclopedia of Volcanoes, ed. Sigurdsson, H.. San Diego, CA: Academic Press, pp. 463–475.Google Scholar
Morton, B. R. (1959). Forced plumes. Journal of Fluid Mechanics, 5, 151–163.CrossRefGoogle Scholar
Mueller, S., Scheu, B., Spieler, O. and Dingwell, D. B. (2008). Permeability control on magma fragmentation. Geology, 36(5), 399–402. doi:.CrossRefGoogle Scholar
Nairn, I. A. (1976). Atmospheric shock waves and condensation clouds from Ngauruhoe explosive eruptions. Nature, 259, 190–192.CrossRefGoogle Scholar
Nairn, I. A. and Self, S. (1978). Explosive eruptions and pyroclastic avalanches from Ngauruhoe in February 1975. Journal of Volcanology and Geothermal Research, 3, 39–60.CrossRefGoogle Scholar
Navon, O. and Lyakhovsky, V. (1998). Vesiculation processes in silicic magmas. In The Physics of Explosive Volcanic Eruptions, ed. Gilbert, J. S. and Sparks, R. S. J.. Cambridge, UK: Cambridge University Press, pp. 27–50.Google Scholar
Papale, P. (1999). Strain-induced magma fragmentation in explosive eruptions. Nature, 397, 425–428.CrossRefGoogle ScholarPubMed
Proussevitch, A. A. and Sahagian, D. L. (1996). Dynamics of coupled diffusive and decompressive bubble growth in magmatic systems. Journal of Geophysical Research, 101, 17,156–17,447.CrossRefGoogle Scholar
Proussevitch, A. and Sahagian, D. (2005). Bubbledrive-1: A numerical model of volcanic eruption mechanisms driven by disequilibrium magma degassing. Journal of Volcanology and Geothermal Research, 143, 89–111.CrossRefGoogle Scholar
Rose, W. I. (1980). Gas and hydrogen isotopic analyses of volcanic eruptions clouds in Guatemala sampled by aircraft. Journal of Volcanology and Geothermal Research, 7, 1–10.CrossRefGoogle Scholar
Rose, W. I., Anderson, A. T., Woodruff, L. G. and Bonis, S. B. (1978). The October 1974 basaltic tephra from Fuego Volcano: description and history of the magma body. Journal of Volcanology and Geothermal Research, 4, 3–53.CrossRefGoogle Scholar
Saad, M. A. (1985). Compressible Fluid Flow. Upper Saddle River, NJ: Prentice-Hall, Inc.Google Scholar
Schmincke, H.-U. (1977). Eifel-Vulkanismus östlich des Gebiets Rieden-Mayen. Fortschritte der Mineralogie, 55, 1–31.Google Scholar
Scott, W. E., Hoblitt, R. P., Torres, R. C. et al. (1996). Pyroclastic flows of the June 15, 1991, climactic eruption of Mount Pinatubo. In Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines, ed. Newhall, C. G. and Punongbayan, R. S.. Seattle, WA: University of Washington Press, pp. 545–570.Google Scholar
Self, S., Wilson, L. and Nairn, I. A. (1979). Vulcanian eruption mechanisms. Nature, 277, 440–443.CrossRefGoogle Scholar
Self, S., Kienle, J. and Huot, J. -P. (1980). Ukinrek Maars, Alaska, II. Deposits and formation of the 1977 craters. Journal of Volcanology and Geothermal Research, 7, 39–65.CrossRefGoogle Scholar
Solovitz, S. A. and Mastin, L. A. (2009). Experimental study of near-field air entrainment by subsonic volcanic jets. Journal of Geophysical Research, 114, B10203, doi:.CrossRefGoogle Scholar
Sparks, R. S. J. (1978). The dynamics of bubble formation and growth in magmas: a review and analysis. Journal of Volcanology and Geothermal Research, 3, 1–37.CrossRefGoogle Scholar
Sparks, R. S. J. (1997). Causes and consequences of pressurization in lave dome eruptions. Earth and Planetary Science Letters, 150, 177–189.CrossRefGoogle Scholar
Sparks, R. S. J. and Wilson, L. (1982). Explosive volcanic eruptions – V. Observations of plume dynamics during the 1979 Soufrière eruptions, St. Vincent. Geophysical Journal of the Royal Astronomical Society, 69, 551–570.CrossRefGoogle Scholar
Sparks, R. S. J., Bursik, M. I., Carey, S. N. et al. (1997). Volcanic Plumes. New York, NY: John Wiley and Sons.Google Scholar
Spieler, O., Dingwell, D. B. and Alidibirov, M. (2004a). Magma fragmentation speed: an experimental determination. Journal of Volcanology and Geothermal Research, 129, 109–123.CrossRefGoogle Scholar
Spieler, O., Kennedy, B., Kueppers, U. et al. (2004b). The fragmentation threshold of pyroclastic rocks. Earth and Planetary Science Letters, 226, 139–148.CrossRefGoogle Scholar
Stix, J., Torres, R. C., Narváez M., L. et al. (1997). A model of Vulcanian eruptions at Galeras volcano, Colombia. Journal of Volcanology and Geothermal Research, 77, 285–303.CrossRefGoogle Scholar
Taddeucci, J., Pompilio, M. and Scarlato, P. (2004). Conduit processes during the July–August 2001 explosive activity of Mt. Etna (Italy): Inferences from glass chemistry and crystal size distribution of ash particles. Journal of Volcanology and Geothermal Research, 137, 33–54.CrossRefGoogle Scholar
Tait, S. R., Jaupart, C. and Vergniolle, S. (1989). Pressure, gas content and eruptive periodicity of a shallow crystallizing magma chamber. Earth and Planetary Science Letters, 92, 107–123.CrossRefGoogle Scholar
Takeuchi, S., Nakashima, S., Tomiya, A. and Shinohara, H. (2005). Experimental constraints on the low gas permeability of vesicular magma during decompression. Geophysical Research Letters, 32, L10312, doi:.CrossRefGoogle Scholar
Tuffen, H., Dingwell, D. B. and Pinkerton, H. (2003). Repeated fracture and healing of silicic magma generate flow banding and earthquakes?Geology, 31(12), 1089–1092.CrossRefGoogle Scholar
Turcotte, D. L., Ockendon, H., Ockendon, J. R. and Cowley, S. J. (1990). A mathematical model of vulcanian eruptions. Geophysical Journal International, 103, 211–217.CrossRefGoogle Scholar
Turner, J. S. (1973). Buoyancy Effects in Fluids. New York: Cambridge University Press.CrossRefGoogle Scholar
Voight, B., Sparks, R. S. J., Miller, A. D. et al. (1999). Magma flow instability and cyclic activity at Soufrière Hills Volcano, Montserrat. Science, 283(5405), 1138–1142.CrossRefGoogle ScholarPubMed
Waitt, R. B., Mastin, L. G. and Miller, T. P. (1995). Ballistic showers during Crater Peak eruptions of Mount Spurr Volcano, summer 1992. United States Geological Survey Bulletin, 2139, 89–106.Google Scholar
Walker, G. P. L. (1973). Explosive volcanic eruptions – a new classification scheme. Geologische Rundschau, 62(2), 431–446.CrossRefGoogle Scholar
Wilson, L. (1972). Explosive volcanic eruptions – II. The atmospheric trajectories of pyroclasts. Geophysical Journal of the Royal Astronomical Society, 30, 381–392.CrossRefGoogle Scholar
Wilson, L. and Head, J. (1981). Ascent and erupton of basaltic magma on the Earth and Moon. Journal of Geophysical Research, 86, 2971–3001.CrossRefGoogle Scholar
Wilson, L., Sparks, R. S. J., Huang, T. C. and Watkins, N. D. (1978). The control of volcanic eruption column heights by eruption energetics and dynamics. Journal of Geophysical Research, 83, 1829–1836.CrossRefGoogle Scholar
Wilson, L., Sparks, R. S. J. and Walker, G. P. L. (1980). Explosive volcanic eruptions – IV. The control of magma properties and conduit geometry on eruption column behaviour. Geophysical Journal of the Royal Astronomical Society, 63, 117–148.CrossRefGoogle Scholar
Wohletz, K. H. (2001). Pyroclastic surges and two-phase compressible flows. In From Magma to Tephra, ed. Freundt, A. and Rosi, M.. Amsterdam: Elsevier, pp. 247–312.Google Scholar
Wohletz, K. H. and Valentine, G. A. (1990). Computer simulations of explosive volcanic eruptions. In Magma Transport and Storage, ed. Ryan, M. P.. London: John Wiley and Sons, pp. 113–135.Google Scholar
Woods, A. W. (1995). A model of vulcanian explosions. Nuclear Engineering and Design, 155, 345–357.CrossRefGoogle Scholar
Wright, H. M. N., Cashman, K. V., Rosi, M. and Cioni, R. (2007). Breadcrust bombs as indicators of Vulcanian eruption dynamics at Guagua Pichincha volcano, Ecuador. Bulletin of Volcanology, 69, 281–300, doi:.CrossRefGoogle Scholar
Yamamoto, H., Watson, I. M., Phillips, J. C. and Bluth, G. J. S. (2008). Rise dynamics and relative ash distribution in Vulcanian eruption plumes at Santiaguito Volcano, Guatemala, revealed using an ultraviolet imaging camera. Geophysical Research Letters, 35, L08314, doi:.CrossRefGoogle Scholar
Yüceil, K. B. and Ötügen, M. V. (2002). Scaling parameters for underexpanded supersonic jets, Physics of Fluids, 14, 4206–4215.CrossRefGoogle Scholar
Zhang, Y. (1998). Experimental simulations of gas-driven eruptions: kinetics of bubble growth and effect of geometry. Bulletin of Volcanology 59, 281–290.CrossRefGoogle Scholar
Zhang, Y. (1999). A criterion for the fragmentation of bubbly magma based on brittle failure theory. Nature, 402, 648–650.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×