Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-22T06:12:32.070Z Has data issue: false hasContentIssue false

Chapter 4 - Dynamics of magma ascent in the volcanic conduit

Published online by Cambridge University Press:  05 March 2013

Sarah A. Fagents
Affiliation:
University of Hawaii, Manoa
Tracy K. P. Gregg
Affiliation:
State University of New York, Buffalo
Rosaly M. C. Lopes
Affiliation:
NASA-Jet Propulsion Laboratory, California
Get access

Summary

Overview

This chapter presents the various mechanisms and processes that come into play within the volcanic conduit for a broad range of effusive and dry explosive volcanic eruptions. Decompression during magma ascent causes volatiles to exsolve and form bubbles containing a supercritical fluid phase. Viscous magmas, such as rhyolite or crystal-rich magmas, do not allow bubbles to ascend buoyantly and may also hinder bubble growth. This can lead to significant gas overpressure and brittle magma fragmentation. During fragmentation in vulcanian, subplinian, and plinian eruptions, gas is released explosively into the atmosphere, carrying with it magma fragments. Alternatively, high viscosity may slow ascent to where permeable outgassing through the vesicular and perhaps fractured magma results in lava effusion to produce domes and flows. In low-viscosity magmas, typically basalts, bubbles may ascend buoyantly, allowing efficient magma outgassing and relatively quiescent magma effusion. Alternatively, bubbles may coalesce and accumulate to form meter-size gas slugs that rupture at the surface during strombolian eruptions. At fast magma ascent rates, even in low-viscosity magmas, melt and exsolved gas remain coupled, allowing for rapid acceleration and hydrodynamic fragmentation in hawaiian eruptions.

Introduction

In the broadest sense, volcanic eruptions are either effusive or explosive. During explosive eruptions magma fragments and eruption intensity is ultimately related to the fragmentation mechanism and associated energy expenditure (Zimanowski et al., 2003). If the cause of fragmentation is the interaction of hot magma with external water, the ensuing eruption is called phreatomagmatic. Eruptions that do not involve external water are called “dry,” in which case the abundance and fate of magmatic volatiles, predominantly H2O and CO2, as well as magma rheology and eruption rate, are the dominant controls on eruption style. Eruption styles are often correlated with magma composition and to some extent this relationship reflects differences in tectonic setting, which also influence magmatic volatile content and magma supply rate.

Type
Chapter
Information
Modeling Volcanic Processes
The Physics and Mathematics of Volcanism
, pp. 55 - 84
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alidibirov, M. (1994). A model for viscous magma fragmentation during volcanic blasts. Bulletin of Volcanology, 56, 459–465.CrossRefGoogle Scholar
Allard, P., Burton, M. and Mure, F. (2005). Spectroscopic evidence for a lava fountain driven by previously accumulated magmatic gas. Nature, 433, 407–410.CrossRefGoogle ScholarPubMed
Arbaret, L., Bystricky, M. and Champallier, R. (2007). Microstructures and rheology of hydrous synthetic magmatic suspensions deformed in torsion at high pressure. Journal of Geophysical Research, 112, doi:.CrossRefGoogle Scholar
Bagdassarov, N. S. and Dingwell, D. B. (1992). A rheological investigation of vesicular rhyolite. Journal of Volcanology and Geothermal Research, 50, 307–322.CrossRefGoogle Scholar
Bagdassarov, N., Dorfman, A. and Dingwell, D. B. (2000). Effect of alkalis, phosphorus, and water on the surface tension of haplogranite melt. American Mineralogist, 85, 33–40.CrossRefGoogle Scholar
Barmin, A., Melnik, O. and Sparks, R. S. J. (2002). Periodic behavior in lava dome eruptions. Earth and Planetary Science Letters, 199, 173–184.CrossRefGoogle Scholar
Batchelor, G. K. (1967). An Introduction to Fluid Dynamics. Cambridge: Cambridge University Press.Google Scholar
Behrens, H. and Zhang, Y. X. (2001). Ar diffusion in hydrous silicic melts: implications for volatile diffusion mechanisms and fractionation. Earth and Planetary Science Letters, 192, 363–376.CrossRefGoogle Scholar
Bird, R. B., Steward, W. E. and Lightfoot, E. N. (1960). Transport Phenomena. New York: John Wiley.Google Scholar
Blank, J. G. and Brooker, R. A. (1994). Experimental studies of carbon-dioxide in silicate melts; solubility, speciation, and stable carbon-isotope behavior. In Volatiles in Magmas, ed. Carroll, M. R. and Holloway, J. R., Reviews in Mineralogy, 30, 157–186.Google Scholar
Bluth, G. J. S., Schnetzler, C. C., Krueger, A. J. and Walter, L. S. (1993). The contribution of explosive volcanism to global atmospheric sulfur-dioxide concentrations. Nature, 366, 327–329.CrossRefGoogle Scholar
Borrell, M. and Leal, L. G. (2008). Viscous coalescence of expanding low-viscosity drops; the dueling drops experiment. Journal of Colloid and Interface Science, 319, 263–269.CrossRefGoogle ScholarPubMed
Boudon, G., Villemant, B., Komorowski, J. C., Ildefonse, P. and Semet, M. P. (1998). The hydrothermal system at Soufriere Hills volcano, Montserrat (West Indies): Characterization and role in the on-going eruption. Geophysical Research Letters, 25, 3693–3696.CrossRefGoogle Scholar
Bourgue, E. and Richet, P. (2001). The effects of dissolved CO2 on the density and viscosity of silicate melts: a preliminary study. Earth and Planetary Science Letters, 193, 57–68.CrossRefGoogle Scholar
Brennen, C. E. (2005). Fundamentals of Multiphase Flow. New York: Cambridge University Press, 2nd edition.CrossRefGoogle Scholar
Bruce, P. M. and Huppert, H. E. (1989). Thermal control of basaltic fissure eruptions. Nature, 342, 665–667.CrossRefGoogle Scholar
Caricchi, L., Burlini, L., Ulmer, P. et al. (2007). Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics. Earth and Planetary Science Letters, 264, 402–419.CrossRefGoogle Scholar
Carman, P. C. (1956). Flow of Gases Through Porous Media. San Diego, CA: Academic Press.Google Scholar
Carmichael, I. S. E. (2002). The andesite aqueduct: perspectives on the evolution of intermediate magmatism in west-central (105–99 degrees W) Mexico. Contributions to Mineralogy Petrology, 143, 641–663.CrossRefGoogle Scholar
Carroll, M. R. and Webster, J. D. (1994). Solubilities of sulfur, noble-gases, nitrogen, chlorine, and fluorine in magmas. In Volatiles in Magmas, ed. M. R. Corroll and J. R. Holloway, Reviews in mineralogy, 30, 231–279.Google Scholar
Clarke, A. B., Stephens, S., Teasdale, R., Sparks, R. S. J. and Diller, K. (2007). Petrologic constraints on the decompression history of magma prior to Vulcanian explosions at the Souffiere Hills volcano, Montserrat. Journal of Volcanology and Geothermal Research, 161, 261–274.CrossRefGoogle Scholar
Collier, L. and Neuberg, J. (2006). Incorporating seismic observations into 2D conduit flow modeling. Journal of Volcanology and Geothermal Research, 152, 331–346.CrossRefGoogle Scholar
Costa, A. and Macedonio, G. (2005). Viscous heating effects in fluids with temperature-dependent viscosity: Triggering of secondary flows. Journal of Fluid Mechanics, 540, 21–38.CrossRefGoogle Scholar
Costa, A., Melnik, O. and Sparks, R. S. J. (2007a). Controls of conduit geometry and wallrock elasticity on lava dome eruptions. Earth and Planetary Science Letters, 260, 137–151.CrossRefGoogle Scholar
Costa, A., Melnik, O., Sparks, R. S. J. and Voight, B. (2007b). Control of magma flow in dykes on cyclic lava dome extrusion. Geophysical Research Letters, 34, doi: .CrossRefGoogle Scholar
Costa, A., Melnik, O. and Vedeneeva, E. (2007c). Thermal effects during magma ascent in conduits. Journal of Geophysical Research, 112, doi:.CrossRefGoogle Scholar
D’Auria, L. and Martini, M. (2009). Slug flow: Modeling in a conduit and associated elastic radiation. In Monitoring and Mitigation of Volcano Hazards, ed. Meyers, R. A.. New York: Springer, pp. 8153–8168.Google Scholar
Degruyter, W., Bachmann, O., Burgisser, A. and Manga, M. (2012). The effects of outgassing on the transition between effusive and explosive silicic eruptions. Earth and Planetary Science Letters, 348–350, 161–170.Google Scholar
Denlinger, R. P. (1997). A dynamic balance between magma supply and eruption rate at Kilauea volcano, Hawaii. Journal of Geophysical Research, 102, 18 091–18 100.CrossRefGoogle Scholar
Denlinger, R. P. and Hoblitt, R. P. (1999). Cyclic eruptive behavior of silicic volcanoes. Geology, 27, 459–462.2.3.CO;2>CrossRefGoogle Scholar
Dixon, J. E. (1997). Degassing of alkalic basalts. American Mineralogist, 82, 368–378.CrossRefGoogle Scholar
Dobran, F. (1992). Nonequilibrium flow in volcanic conduits and application to the eruptions of Mt. St. Helens on May 18, 1980, and Vesuvius in A.D. 79. Journal of Volcanology and Geothermal Research, 49, 285–311.CrossRefGoogle Scholar
Dobran, F. (2001). Volcanic Processes: Mechanisms in Material Transport. New York, NY: Kluwer Academic / Plenum Publishers.CrossRefGoogle Scholar
Dufek, J. and Bergantz, G. W. (2005). Transient two-dimensional dynamics in the upper conduit of a rhyolitic eruption: A comparison of closure models for the granular stress. Journal of Volcanology and Geothermal Research, 143, 113–132.CrossRefGoogle Scholar
Edmonds, M., Oppenheimer, C., Pyle, D. M., Herd, R. A. and Thompson, G. (2003). SO2 emissions from Soufriere Hills Volcano and their relationship to conduit permeability, hydrothermal interaction and degassing regime. Journal of Volcanology and Geothermal Research, 124, 23–43.CrossRefGoogle Scholar
Eichelberger, J. C. (1995). Silicic volcanism. Annual Reviews in Earth and Planetary Science, 23, 41–63.CrossRefGoogle Scholar
Eichelberger, J. C., Carrigan, C. R., Westrich, H. R. and Price, R. H. (1986). Non-explosive silicic volcanism. Nature, 323, 598–602.CrossRefGoogle Scholar
Esposti Ongaro, T., Papale, P., Neri, A. and Del Seppia, D. (2006). Influence of carbon dioxide on the large-scale dynamics of magmatic eruptions at Phlegrean Fields (Italy). Geophysical Research Letters, 33, doi:.CrossRefGoogle Scholar
Gardner, J. E. (2007). Heterogeneous bubble nucleation in highly viscous silicate melts during instantaneous decompression from high pressure. Chemical Geology, 236, 1–12.CrossRefGoogle Scholar
Gardner, J. E. and Denis, M. H. (2004). Heterogeneous bubble nucleation on Fe-Ti oxide crystals in high-silica rhyolitic melts. Geochimica et Cosmochimica Acta, 68, 3587–3597.CrossRefGoogle Scholar
Ghiaasiaan, S. M. (2008). Two-Phase Flow, Boiling, and Condensation in Conventional and Miniature Systems. New York: Cambridge University Press.Google Scholar
Giberti, G. and Wilson, L. (1990). The influence of geometry on the ascent of magma in open fissures. Bulletin of Volcanology, 52, 515–521.CrossRefGoogle Scholar
Giberti, G., Jaupart, C. and Sartoris, G. (1992). Steady-state operation of Stromboli Volcano, Italy: constraints on the feeding system. Bulletin of Volcanology, 54, 535–541.CrossRefGoogle Scholar
Giordano, D. and Dingwell, D. B. (2003). Viscosity of hydrous Etna basalt: implications for Plinian-style basaltic eruptions. Bulletin of Volcanology, 65, 8–14.Google Scholar
Giordano, D., Russell, J. K. and Dingwell, D. B. (2008). Viscosity of magmatic liquids: A model. Earth and Planetary Science Letters, 271, 123–134.CrossRefGoogle Scholar
Gonnermann, H. M. and Manga, M. (2003). Explosive volcanism may not be an inevitable consequence of magma fragmentation. Nature, 426, 432–435.CrossRefGoogle Scholar
Gonnermann, H. M. and Manga, M. (2005a). Flow banding in obsidian: A record of evolving textural heterogeneity during magma deformation. Earth and Planetary Science Letters, 236, 135–147.CrossRefGoogle Scholar
Gonnermann, H. M. and Manga, M. (2005b). Nonequilibrium magma degassing: Results from modeling of the ca.1340 AD eruption of Mono Craters, California. Earth and Planetary Science Letters, 238, 1–16.CrossRefGoogle Scholar
Gonnermann, H. M. and Manga, M. (2007). The fluid mechanics inside a volcano. Annual Reviews in Fluid Mechanics, 39, 321–356.CrossRefGoogle Scholar
Gonnermann, H. M. and Mukhopadhyay, S. (2007). Non-equilibrium degassing and a primordial source for helium in ocean-island volcanism. Nature, 449, 1037–1040.CrossRefGoogle Scholar
Goto, A. (1999). A new model for volcanic earthquake at Unzen Volcano: Melt rupture model. Geophysical Research Letters, 26, 2541–2544.CrossRefGoogle Scholar
Guet, S. and Ooms, G. (2006). Fluid mechanical aspects of the gas-lift technique. Annual Reviews in Fluid Mechanics, 38, 225–249.CrossRefGoogle Scholar
Hale, A. J. (2007). Magma flow instabilities in a volcanic conduit: Implications for long-period seismicity. Physics of the Earth and Planetary Interiors, 163, 163–178.CrossRefGoogle Scholar
Hale, A. J. and Muehlhaus, H. B. (2007). Modelling shear bands in a volcanic conduit: Implications for over-pressures and extrusion-rates. Earth and Planetary Science Letters, 263, 74–87.CrossRefGoogle Scholar
Hammer, J. E. (2004). Crystal nucleation in hydrous rhyolite: Experimental data applied to classical theory. American Mineralogist, 89, 1673–1679.CrossRefGoogle Scholar
Hauri, E. (2002). SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions. Chemical Geology, 183, 115–141.CrossRefGoogle Scholar
Hinze, J. O. (1955). Fundamentals of the hydrodynamic mechanisms of splitting in dispersion processes. American Institute of Chemical Engineers Journal, 1, 289–295.CrossRefGoogle Scholar
Hirth, J. P., Pound, G. M. and St. Pierre, G. R. (1970). Bubble nucleation. Metallurgical and Materials Transactions B, 1, 939–945.Google Scholar
Houghton, B. F. and Gonnermann, H. M. (2008). Basaltic explosive volcanism: constraints from deposits and models. Chemie der Erde – Geochemistry, 68, 117–140.CrossRefGoogle Scholar
Hui, H. J. and Zhang, Y. X. (2007). Toward a general viscosity equation for natural anhydrous and hydrous silicate melts. Geochimica et Cosmochimica Acta, 71, 403–416.CrossRefGoogle Scholar
Huppert, H. E. and Woods, A. W. (2002). The role of volatiles in magma chamber dynamics. Nature, 420, 493–495.CrossRefGoogle ScholarPubMed
Hurwitz, S. and Navon, O. (1994). Bubble nucleation in rhyolitic melts: Experiments at high-pressure, temperature, and water content. Earth and Planetary Science Letters, 122, 267–280.CrossRefGoogle Scholar
Ittai, K., Lyakhovsky, V. and Navon, O. (2010). Bubble growth in visco-elastic magma: Implications to magma fragmentation and bubble nucleation. Bulletin of Volcanology, 73, 39–54.CrossRefGoogle Scholar
Iverson, R. M., Dzurisin, D., Gardner, C. A. et al. (2006). Dynamics of seismogenic volcanic extrusion at Mount St Helens in 2004–05. Nature, 444, 439–443.CrossRefGoogle ScholarPubMed
James, M. R., Lane, S. J. and Corder, S. B. (2008). Modelling the rapid near-surface expansion of gas slugs in low viscosity magmas. In Fluid Motion in Volcanic Conduits: A Source of Seismic and Acoustic Signals, ed. Lane, S. J. and Gilbert, J. S.. Geological Society of London Special Publication, 307, 147–167.Google Scholar
James, M. R., Lane, S. J., Wilson, L. and Corder, S. B. (2009). Degassing at low magma-viscosity volcanoes: Quantifying the transition between passive bubble-burst and Strombolian eruption. Journal of Volcanology and Geothermal Research, 180, 81–88.CrossRefGoogle Scholar
James, P. F. (1985). Kinetics of crystal nucleation in silicate glasses. Journal of Non-Crystalline Solids, 73, 517–540.CrossRefGoogle Scholar
Jaupart, C. and Allegre, C. J. (1991). Gas content, eruption rate and instabilities of eruption regime in silicic volcanoes. Earth and Planetary Science Letters, 102, 413–429.CrossRefGoogle Scholar
Jaupart, C. and Vergniolle, S. (1988). Laboratory models of Hawaiian and Strombolian eruptions. Nature, 331, 58–60.CrossRefGoogle Scholar
Johnson, M. C., Anderson, A. T. and Rutherford, M. J. (1994). Pre-eruptive volatile contents of magmas. In Volatiles In Magmas, ed. Carroll, M. R. and Holloway, J. R., Reviews In Mineralogy, 30, 281–330.Google Scholar
Kennedy, B., Spieler, O., Scheu, B. et al. (2005). Conduit implosion during Vulcanian eruptions. Geology, 33, 581–584.CrossRefGoogle Scholar
Kerrick, D. M. and Jacobs, G. K. (1981). A modified Redlich-Kwong Equation for H2O, CO2, and H2O-CO2 mixtures at elevated pressures and temperatures. American Journal of Science, 281, 735–767.CrossRefGoogle Scholar
Klug, C. and Cashman, K. V. (1996). Permeability development in vesiculating magmas: implications for fragmentation. Bulletin of Volcanology, 58, 87–100.CrossRefGoogle Scholar
Koyaguchi, T. (2005). An analytical study for 1-dimensional steady flow in volcanic conduits. Journal of Volcanology and Geothermal Research, 143, 29–52.CrossRefGoogle Scholar
Lange, R. A. (1994). The effect of H2O, CO2 and F on the density and viscosity of silicate melts. Reviews in Mineralogy, 30, 331–369.Google Scholar
Lavallee, Y., Hess, K. U., Cordonnier, B. and Dingwell, D. B. (2007). Non-Newtonian rheological law for highly crystalline dome lavas. Geology, 35, 843–846.CrossRefGoogle Scholar
Lejeune, A. M. and Richet, P. (1995). Rheology of crystal-bearing silicate melts – An experimental study at high viscosities. Journal of Geophysical Research, 100, 4215–4229.CrossRefGoogle Scholar
Lejeune, A. M., Bottinga, Y., Trull, T. W. and Richet, P. (1999). Rheology of bubble-bearing magmas. Earth and Planetary Science Letters, 166, 71–84.CrossRefGoogle Scholar
Lensky, N. G., Navon, O. and Lyakhovsky, V. (2004). Bubble growth during decompression of magma: experimental and theoretical investigation. Journal of Volcanology and Geothermal Research, 129, 7–22.CrossRefGoogle Scholar
Liu, Y., Zhang, Y. X. and Behrens, H. (2005). Solubility of H2O in rhyolitic melts at low pressures and a new empirical model for mixed H2O-CO2 solubility in rhyolitic melts. Journal of Volcanology and Geothermal Research, 143, 219–235.CrossRefGoogle Scholar
Llewellin, E. W. and Manga, A. (2005). Bubble suspension rheology and implications for conduit flow. Journal of Volcanology and Geothermal Research, 143, 205–217.CrossRefGoogle Scholar
Macedonio, G., Dobran, F. and Neri, A. (1994). Erosion processes in volcanic conduits and application to the AD 79 eruption of Vesuvius. Earth and Planetary Science Letters, 121, 137–152.CrossRefGoogle Scholar
Macedonio, G., Neri, A., Marti, J. and Folch, A. (2005). Temporal evolution of flow conditions in sustained magmatic explosive eruptions. Journal of Volcanology and Geothermal Research, 143, 153–172.CrossRefGoogle Scholar
Manga, M. and Stone, H. A. (1994). Interactions between bubbles in magmas and lavas: Effects of bubble deformation. Journal of Volcanology and Geothermal Research, 63, 267–279.CrossRefGoogle Scholar
Manga, M., Castro, J., Cashman, K. V. and Loewenberg, M. (1998). Rheology of bubble-bearing magmas: Theoretical results. Journal of Volcanology and Geothermal Research, 87, 15–28.CrossRefGoogle Scholar
Mangan, M. and Sisson, T. (2000). Delayed, disequilibrium degassing in rhyolite magma: Decompression experiments and implications for explosive volcanism. Earth and Planetary Science Letters, 183, 441–455.CrossRefGoogle Scholar
Mangan, M. and Sisson, T. (2005). Evolution of melt-vapor surface tension in silicic volcanic systems: Experiments with hydrous melts. Journal of Geophysical Research, 110, doi:.CrossRefGoogle Scholar
Marsh, B. D. (1998). On the interpretation of crystal size distributions in magmatic systems. Journal of Petrology, 39, 553–599.CrossRefGoogle Scholar
Marti, J., Soriano, C. and Dingwell, D. B. (1999). Tube pumices as strain markers of the ductile-brittle transition during magma fragmentation. Nature, 402, 650–653.CrossRefGoogle Scholar
Martula, D. S., Hasegawa, T., Lloyd, D. R. and Bonnecaze, R. T. (2000). Coalescence-induced coalescence of inviscid droplets in a viscous fluid. Journal of Colloid and Interface Science, 232, 241–253.CrossRefGoogle Scholar
Massol, H. and Jaupart, C. (1999). The generation of gas overpressure in volcanic eruptions. Earth and Planetary Science Letters, 166, 57–70.CrossRefGoogle Scholar
Massol, H. and Koyaguchi, T. (2005). The effect of magma flow on nucleation of gas bubbles in a volcanic conduit. Journal of Volcanology and Geothermal Research, 143, 69–88.CrossRefGoogle Scholar
Massol, H., Jaupart, C. and Pepper, D. W. (2001). Ascent and decompression of viscous vesicular magma in a volcanic conduit. Journal of Geophysical Research, 106, 16 223–16 240.CrossRefGoogle Scholar
Mastin, L. G. (1995). Thermodynamics of gas and steam-blast eruptions. Bulletin of Volcanology, 57, 85–98.CrossRefGoogle Scholar
Mastin, L. G. (2005). The controlling effect of viscous dissipation on magma flow in silicic conduits. Journal of Volcanology and Geothermal Research, 143, 17–28.CrossRefGoogle Scholar
Mastin, L. G. and Ghiorso, M. S. (2000). A numerical program for steady-state flow of magma-gas mixtures through vertical eruptive conduits. United States Geological Survey, Open-File Report 00–209, 56 pp.
McMillan, P. F. (1994). Water solubility and speciation models. In Volatiles in Magmas, ed. Carroll, M. R. and Holloway, J. R., Reviews in Mineralogy, 30, 131–156.Google Scholar
Melnik, O. and Sparks, R. S. J. (1999). Nonlinear dynamics of lava dome extrusion. Nature, 402, 37–41.CrossRefGoogle Scholar
Melnik, O. and Sparks, R. S. J. (2005). Controls on conduit magma flow dynamics during lava dome building eruptions. Journal of Geophysical Research, 110, doi: .CrossRefGoogle Scholar
Melnik, O., Barmin, A. A. and Sparks, R. S. J. (2005). Dynamics of magma flow inside volcanic conduits with bubble overpressure buildup and gas loss through permeable magma. Journal of Volcanology and Geothermal Research, 143, 53–68.CrossRefGoogle Scholar
Meriaux, C. and Jaupart, C. (1995). Simple fluid dynamic models of volcanic rift zones. Earth and Planetary Science Letters, 136, 223–240.CrossRefGoogle Scholar
Mitchell, K. L. (2005). Coupled conduit flow and shape in explosive volcanic eruptions. Journal of Volcanology and Geothermal Research, 143, 187–203.CrossRefGoogle Scholar
Moynihan, C. T. (1995). Structural relaxation and the glass transition. Reviews in Mineralogy and Geochemistry, 32, 1–19.Google Scholar
Mueller, S., Scheu, B., Spieler, O. and Dingwell, D. B. (2008). Permeability control on magma fragmentation. Geology, 36, 399–402.CrossRefGoogle Scholar
Muller, R., Zanotto, E. D. and Fokin, V. M. (2000). Surface crystallization of silicate glasses: nucleation sites and kinetics. Journal of Non-Crystalline Solids, 274, 208–231.CrossRefGoogle Scholar
Namiki, A. and Manga, M. (2005). Response of a bubble bearing viscoelastic fluid to rapid decompression: Implications for explosive volcanic eruptions. Earth and Planetary Science Letters, 236, 269–284.CrossRefGoogle Scholar
Namiki, A. and Manga, M. (2008). Transition between fragmentation and permeable outgassing of low viscosity magmas. Journal of Volcanology and Geothermal Research, 169, 48–60.CrossRefGoogle Scholar
Newman, S. and Lowenstern, J. B. (2002). VOLATILECALC: A siliate melt-H2O-CO2 solution model written in Visual Basic for Excel. Computers and Geoscience, 28, 597–604.CrossRefGoogle Scholar
Nowak, M., Schreen, D. and Spickenbom, K. (2004). Argon and CO2 on the race track in silicate melts: A tool for the development of a CO2 speciation and diffusion model. Geochimica et Cosmochimica Acta, 68, 5127–5138.CrossRefGoogle Scholar
O’Brian, G. S. and Bean, C. J. (2008). Seismicity on volcanoes generated by gas slug ascent. Geophysical Research Letters, 35, L16308, doi: .Google Scholar
Okumura, S., Nakamura, M., Tsuchiyama, K., Nakano, T. and Uesugi, K. (2008). Evolution of bubble microstructure in sheared rhyolite: Formation of a channel-like bubble network. Journal of Geophysical Research, 113, doi:.CrossRefGoogle Scholar
Okumura, S., Nakamura, M., Nakano, T., Uesugi, K. and Tsuchiyama, K. (2010). Shear deformation experiments on vesicular rhyolite: Implications for brittle fracturing, degassing, and compaction of magmas in volcanic conduits. Journal of Geophysical Research, 115, doi:.CrossRefGoogle Scholar
Pal, R. (2003). Rheological behavior of bubble-bearing magmas. Earth and Planetary Science Letters, 207, 165–179.CrossRefGoogle Scholar
Papale, P. (1999). Strain-induced magma fragmentation in explosive eruptions. Nature, 397, 425–428.CrossRefGoogle ScholarPubMed
Papale, P. (2001). Dynamics of magma flow in volcanic conduits with variable fragmentation efficiency and nonequilibrium pumice degassing. Journal of Geophysical Research, 106, 11 043–11 065.CrossRefGoogle Scholar
Papale, P. (2005). Determination of total H2O and CO2 budgets in evolving magmas from melt inclusion data. Journal of Geophysical Research, 110, doi:.CrossRefGoogle Scholar
Papale, P. and Dobran, F. (1993). Modeling of the ascent of magma during the Plinian eruption of Vesuvius in AD 79. Journal of Volcanology and Geothermal Research, 58, 101–132.CrossRefGoogle Scholar
Papale, P. and Dobran, F. (1994). Magma flow along the volcanic conduit during the Plinian and pyroclastic flow phases of the May 18, 1980, Mount St. Helens eruption. Journal of Geophysical Research, 99, 4355–4373.CrossRefGoogle Scholar
Papale, P. and Polacci, M. (1999). Role of carbon dioxide in the dynamics of magma ascent in explosive eruptions. Bulletin of Volcanology, 60, 583–594.CrossRefGoogle Scholar
Papale, P., Neri, A. and Macedonio, G. (1998). The role of magma composition and water content in explosive eruptions – 1. Conduit ascent dynamics. Journal of Volcanology and Geothermal Research, 87, 75–93.CrossRefGoogle Scholar
Papale, P., Moretti, R. and Barbato, D. (2006). The compositional dependence of the saturation surface of H2O+CO2 fluids in silicate melts. Chemical Geology, 229, 78–95.CrossRefGoogle Scholar
Parfitt, E. A. (2004). A discussion of the mechanisms of explosive basaltic eruptions. Journal of Volcanology and Geothermal Research, 134, 77–107.CrossRefGoogle Scholar
Parfitt, E. A. and Wilson, L. (1995). Explosive volcanic eruptions – IX. The transition between Hawaiian-style lava fountaining and Strombolian explosive activity. Geophysical Journal International, 121, 226–232.CrossRefGoogle Scholar
Parfitt, E. A., Wilson, L. and Neal, C. A. (1995). Factors influencing the height of Hawaiian lava fountains: Implications for the use of fountain height as an indicator of magma gas content. Bulletin of Volcanology, 57, 440–450.CrossRefGoogle Scholar
Pioli, L., Azzopardi, B. J. and Cashman, K. V. (2009). Controls on the explosivity of scoria cone eruptions: Magma segregation at conduit junctions. Journal of Volcanology and Geothermal Research, 186, 407–415.CrossRefGoogle Scholar
Polacci, M., Papale, P., Del Seppia, D., Giordano, D. and Romano, C. (2004). Dynamics of magma ascent and fragmentation in trachytic versus rhyolitic eruptions. Journal of Volcanology and Geothermal Research, 131, 93–108.CrossRefGoogle Scholar
Polacci, M., Rosi, M., Landi, P., Di Muro, A. and Papale, P. (2005). Novel interpretation for shift between eruptive styles in some volcanoes. Eos, Transactions, American Geophysical Union, 86, 333–336.CrossRefGoogle Scholar
Polacci, M., Corsaro, R. A. and Andronico, D. (2006). Coupled textural and compositional characterization of basaltic scoria: Insights into the transition from Strombolian to fire fountain activity at Mount Etna, Italy. Geology, 34, 201–204.CrossRefGoogle Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (1992). Numerical Recipes in C: The Art of Scientific Computing. Cambridge: Cambridge University Press.Google Scholar
Proussevitch, A. A. and Sahagian, D. L. (1998). Dynamics and energetics of bubble growth in magmas: Analytical formulation and numerical modeling. Journal of Geophysical Research, 103, 18 223–18 251.CrossRefGoogle Scholar
Proussevitch, A. A., Sahagian, D. L. and Anderson, A. (1993a). Dynamics of diffusive bubble growth in magmas: Isothermal case. Journal of Geophysical Research, 98, 22 283–22 307.CrossRefGoogle Scholar
Proussevitch, A. A., Sahagian, D. L. and Kutolin, V. A. (1993b). Stability of foams in silicate melts. Journal of Volcanology and Geothermal Research, 59, 161–178.CrossRefGoogle Scholar
Pyle, D. M. (2000). Sizes of volcanic eruptions. In Encyclopedia of Volcanoes, ed. Houghton, B. F., Rymer, H., Stix, J., McNutt, S. and Sigurdsson, H.. San Diego: Academic Press, pp. 263–269.Google Scholar
Pyle, D. M. and Pyle, D. L. (1995). Bubble migration and the initiation of volcanic eruptions. Journal of Volcanology and Geothermal Research, 67, 227–232.CrossRefGoogle Scholar
Richardson, J. F. and Zaki, W. N. (1954). The sedimentation of a suspension of uniform spheres under conditions of viscous flow. Chemical Engineering Science, 3, 65–73.CrossRefGoogle Scholar
Rosi, M., Landi, P., Polacci, M., Di Muro, A. and Zandomeneghi, D. (2004). Role of conduit shear on ascent of the crystal-rich magma feeding the 800-year-BP Plinian eruption of Quilotoa Volcano (Ecuador). Bulletin of Volcanology, 66, 307–321.Google Scholar
Rosner, D. E. and Epstein, M. (1972). Effects of interface kinetics, capillarity and solute diffusion on bubble growth rates in highly supersaturated liquids. Chemical Engineering Science, 27, 69–88.CrossRefGoogle Scholar
Rust, A. C. and Cashman, K. V. (2004). Permeability of vesicular silicic magma: Inertial and hysteresis effects. Earth and Planetary Science Letters, 228, 93–107.CrossRefGoogle Scholar
Rust, A. C., Manga, M. and Cashman, K. V. (2003). Determining flow type, shear rate and shear stress in magmas from bubble shapes and orientations. Journal of Volcanology and Geothermal Research, 122, 111–132.CrossRefGoogle Scholar
Saar, M. O. and Manga, M. (1999). Permeability-porosity relationship in vesicular basalts. Geophysical Research Letters, 26, 111–114.CrossRefGoogle Scholar
Sahagian, D. (2005). Volcanic eruption mechanisms: Insights from intercomparison of models of conduit processes. Journal of Volcanology and Geothermal Research, 143, 1–15.CrossRefGoogle Scholar
Sahagian, D. L. and Proussevitch, A. A. (1996). Thermal effects of magma degassing. Journal of Volcanology and Geothermal Research, 74, 19–38.CrossRefGoogle Scholar
Scriven, L. E. (1959). On the dynamics of phase growth. Chemical Engineering Science, 10, 1–13.CrossRefGoogle Scholar
Seyfried, R. and Freundt, A. (2000). Experiments on conduit flow and eruption behavior of basaltic volcanic eruptions. Journal of Geophysical Research, 105, 23 727–23 740.CrossRefGoogle Scholar
Shimozuru, D. (1994). Physical parameters governing the formation of Pele’s hair and tears. Bulletin of Volcanology, 56, 217–219.CrossRefGoogle Scholar
Slezin, Y. B. (2003). The mechanism of volcanic eruptions (a steady state approach). Journal of Volcanology and Geothermal Research, 122, 7–50.CrossRefGoogle Scholar
Sparks, R. S. J. (1978). The dynamics of bubble formation and growth in magmas: A review and analysis. Journal of Volcanology and Geothermal Research, 3, 1–37.CrossRefGoogle Scholar
Sparks, R. S. J. (1997). Causes and consequences of pressurisation in lava dome eruptions. Earth and Planetary Science Letters, 150, 177–189.CrossRefGoogle Scholar
Sparks, R. S. J., Barclay, J., Jaupart, C., Mader, H. M. and Phillips, J. C. (1994). Physical aspects of magmatic degassing I. Experimental and theoretical constraints on vesiculation. In Volatiles in Magmas, ed. Carroll, M. R. and Holloway, J. R., Reviews in Mineralogy, 30, 415–445.Google Scholar
Spieler, O., Kennedy, B., Kueppers, U. et al. (2004). The fragmentation threshold of pyroclastic rocks. Earth and Planetary Science Letters, 226, 139–148.CrossRefGoogle Scholar
Spohn, T., Hort, M. and Fischer, H. (1988). Numerical simulation of the crystallization of multicomponent melts in thin dikes or sills. 1. The liquidus phase. Journal of Geophysical Research, 93, 4880–4894.CrossRefGoogle Scholar
Starostin, A. B., Barmin, A. A. and Melnik, O. E. (2005). A transient model for explosive and phreatomagmatic eruptions. Journal of Volcanology and Geothermal Research, 143, 133–151.CrossRefGoogle Scholar
Stein, D. J. and Spera, F. J. (2002). Shear viscosity of rhyolite-vapor emulsions at magmatic temperatures by concentric cylinder rheometry. Journal of Volcanology and Geothermal Research, 113, 243–258.CrossRefGoogle Scholar
Stevenson, R. J., Dingwell, D. B., Webb, S. L. and Sharp, T. G. (1996). Viscosity of microlite-bearing rhyolitic obsidians: An experimental study. Bulletin of Volcanology, 58, 298–309.CrossRefGoogle Scholar
Tait, S., Jaupart, C. and Vergniolle, S. (1989). Pressure, gas content and eruption periodicity of a shallow, crystallizing magma chamber. Earth and Planetary Science Letters, 92, 107–123.CrossRefGoogle Scholar
Takeuchi, S., Nakashima, S., Tomiya, A. and Shinohara, H. (2005). Experimental constraints on the low gas permeability of vesicular magma during decompression. Geophysical Research Letters, 32. L10312, doi:.CrossRefGoogle Scholar
Taylor, G. I. (1932). The viscosity of a fluid containing small drops of another fluid. Proceedings of the Royal Society of London A, 138, 41–48.CrossRefGoogle Scholar
Thies, M. (2002). Herstellung und rheologische Eigenschaften von porösen Kalk-Natron-Silicatschmelzen. PhD dissertation, Technische Universität Berlin.
Thomas, N., Jaupart, C. and Vergniolle, S. (1994). On the vesicularity of pumice. Journal of Geophysical Research, 99, 15 633–15 644.CrossRefGoogle Scholar
Toramaru, A. (1989). Vesiculation process and bubble-size distributions in ascending magmas with constant velocities. Journal of Geophysical Research, 94, 17 523–17 542.CrossRefGoogle Scholar
Tuffen, H., Dingwell, D. B. and Pinkerton, H. (2003). Repeated fracture and healing of silicic magma generate flow banding and earthquakes?Geology, 31, 1089–1092.CrossRefGoogle Scholar
Vedeneeva, E. A., Melnik, O. E., Barmin, A. A. and Sparks, R. S. J. (2005). Viscous dissipation in explosive volcanic flows. Geophysical Research Letters, 32, doi:.CrossRefGoogle Scholar
Verhoogen, J. (1951). Mechanics of ash formation. American Journal of Science, 249, 729–739.CrossRefGoogle Scholar
Villermaux, E. (2007). Fragmentation. Annual Reviews in Fluid Mechanics, 39, 419–446.CrossRefGoogle Scholar
Wallace, P. J. (2005). Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. Journal of Volcanology and Geothermal Research, 140, 217–240.CrossRefGoogle Scholar
Wallace, P. J., Carn, S. A. R., William, I., Bluth, G. J. S. and Gerlach, T. M. (2003). Integrating petrologic and remote sensing perspectives on magmatic volatiles and volcanic degassing. Eos, Transactions, American Geophysical Union, 84, 446–447.CrossRefGoogle Scholar
Wallis, G. B. (1969). One-Dimensional Two-phase Flow. McGraw–Hill.Google Scholar
Watson, E. B. (1994). Diffusion in volatile-bearing magmas. Reviews in Mineralogy, 30, 371–411.Google Scholar
Webb, S. (1997). Silicate melts: Relaxation, rheology, and the glass transition. Reviews of Geophysics, 35, 191–218.CrossRefGoogle Scholar
Wilson, L. and Head, J. W. (1981). Ascent and eruption of basaltic magma on the Earth and Moon. Journal of Geophysical Research, 86, 2971–3001.CrossRefGoogle Scholar
Wilson, L., Sparks, R. S. J. and Walker, G. P. L. (1980). Explosive volcanic eruptions – IX. The control of magma properties and conduit geometry on eruption column behavior. Geophysical Journal of the Royal Astronomical Society, 63, 117–148.CrossRefGoogle Scholar
Wolfe, E. W., Garcia, M. O., Jackson, D. B. et al. (1987). The Pu’u O’o eruption of Kilauea Volcano, episodes 1–20, January 3, 1983, to June 8, 1984. In Volcanism in Hawaii, ed. Decker, R. W., Wright, T. L. and Stauffer, P. H.. United States Geological Survey Professional Paper, 1350, 471–508.Google Scholar
Woods, A. W. and Cardoso, S. S. S. (1997). Triggering basaltic volcanic eruptions by bubble-melt separation. Nature, 385, 518–520.CrossRefGoogle Scholar
Woods, A. W. and Koyaguchi, T. (1994). Transitions between explosive and effusive eruption of silicic magmas. Nature, 370, 641–644.CrossRefGoogle Scholar
Woods, A. W., Bokhove, O., de Boer, A. and Hill, B. E. (2006). Compressible magma flow in a two-dimensional elastic-walled dike. Earth and Planetary Science Letters, 246, 241–250.CrossRefGoogle Scholar
Wright, H. M. N., Cashman, K. V., Gottesfeld, E. H. and Roberts, J. J. (2009). Pore structure of volcanic clasts: Measurements of permeability and electrical conductivity. Earth and Planetary Science Letters, 280, 93–104.CrossRefGoogle Scholar
Wylie, J. J. and Lister, J. R. (1995). The effects of temperature-dependent viscosity on flow in a cooled channel with application to basaltic fissure eruptions. Journal of Fluid Mechanics, 305, 239–261.CrossRefGoogle Scholar
Wylie, J. J., Voight, B. and Whitehead, J. A. (1999). Instability of magma flow from volatile-dependent viscosity. Science, 285, 1883–1885.CrossRefGoogle ScholarPubMed
Zenit, R., Koch, D. L. and Sangani, A. S. (2001). Measurements of the average properties of a suspension of bubbles rising in a vertical channel. Journal of Fluid Mechanics, 429, 307–342.CrossRefGoogle Scholar
Zhang, Y. X. (1999). A criterion for the fragmentation of bubbly magma based on brittle failure theory. Nature, 402, 648–650.CrossRefGoogle Scholar
Zhang, Y. X. and Behrens, H. (2000). H2O diffusion in rhyolitic melts and glasses. Chemical Geology, 169, 243–262.CrossRefGoogle Scholar
Zhang, Y. X., Xu, Z. J., Zhu, M. F. and Wang, H. Y. (2007). Silicate melt properties and volcanic eruptions. Reviews of Geophysics, 45, doi:.CrossRefGoogle Scholar
Zimanowski, B., Buttner, R., Lorenz, V. and Hafele, H. G. (1997). Fragmentation of basaltic melt in the course of explosive volcanism. Journal of Geophysical Research, 102, 803–814.CrossRefGoogle Scholar
Zimanowski, B., Wohletz, K., Dellino, P. and Buttner, R. (2003). The volcanic ash problem. Journal of Volcanology and Geothermal Research, 122, 1–5.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×