Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T04:17:23.864Z Has data issue: false hasContentIssue false

17 - Towards a national program to remove the threat of hazardous NEOs

Published online by Cambridge University Press:  12 October 2009

Michael J. S. Belton
Affiliation:
Belton Space Exploration Initiatives, LLC
Michael J. S. Belton
Affiliation:
Belton Space Exploration Initiatives
Thomas H. Morgan
Affiliation:
National Aeronautics and Space Administration, Washington DC
Nalin H. Samarasinha
Affiliation:
National Optical Astronomy Observatory
Donald K. Yeomans
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology
Get access

Summary

Introduction

It is a demonstrable fact that asteroids of all sizes and less frequently cometary nuclei suffer collisions with the Earth's surface. The impact hazard, which is defined in Morrison et al. (2002) as “… the probability for an individual of premature death as a consequence of impact,” has undergone considerable analysis with the conclusion that the greatest risk is from the very rare collisions of relatively large asteroids that can create a global scale catastrophe in the biosphere (Chapman and Morrison 1994). In the last decade, the question of how to deal with the hazard has led to considerable activity and advocacy on the part of the interested scientific community, and activity at government level has been stimulated in the United States, Europe, and Japan (a detailed overview is given by Morrison et al. 2002): there are now survey programs to search for objects that could be potentially hazardous; there are high-level calls for increased observational efforts to characterize the physical and compositional nature of near-Earth objects (NEOs) (e.g., The UK NEO Task Force report: Atkinson et al. 2000); an impact hazard scale has been invented to provide the public with an assessment of the magnitude of the hazard from a particular object; there have been considerable advances in the accuracy of orbit determination and impact probability.

Nevertheless, it seems that the question of how governments should go about preparing to mitigate the hazard needs some further attention.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×