Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T13:57:22.342Z Has data issue: false hasContentIssue false

13 - Optimal interception and deflection of Earth-approaching asteroids using low-thrust electric propulsion

Published online by Cambridge University Press:  12 October 2009

Bruce A. Conway
Affiliation:
University of Illinois at Urbana–Champaign
Michael J. S. Belton
Affiliation:
Belton Space Exploration Initiatives
Thomas H. Morgan
Affiliation:
National Aeronautics and Space Administration, Washington DC
Nalin H. Samarasinha
Affiliation:
National Optical Astronomy Observatory
Donald K. Yeomans
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology
Get access

Summary

Introduction

The spectacular collision of the Shoemaker-Levy 9 comet with Jupiter in July 1994 was a dramatic reminder of the fact that the Earth has and will continue to experience such catastrophic events. While the frequency of such massive collisions is very low, smaller objects collide with the Earth regularly and do damage that would be intolerable in any populated region. As an example, the Tunguska (Siberia) event of 1908 is estimated to have involved a 60-m object exploding at a height of 8 km and produced devastation over an area almost the same as that devastated by the eruption of Mt. St. Helens (Morrison et al. 1994). The famous 1-km Meteor Crater in Arizona was made by the impact of an even smaller body only 30 m in diameter (Adushkin and Nemchinov 1994). Human casualties due to direct meteorite strikes are rare but known (Yau 1994). The greater danger is due to the fact that the time between large impacts, such as the Tunguska impact which released tens of megatons of TNT equivalent energy, is significant compared to a human lifetime and there is a small chance that any impact will be in a populated area. The relative scarcity of such areas on the Earth may not offer the protection one might think as recent calculations suggest that larger bodies might do more damage if they didn't hit land; predicting that an impact anywhere in the Atlantic Ocean by a 400-m asteroid would devastate the (well-populated) coasts on both sides of the ocean with tsunamis over 60 m high (Hills et al. 1994).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×