Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-26T02:24:31.284Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  06 July 2010

Roustem N. Miftahof
Affiliation:
Pohang University of Science and Technology, Republic of Korea
Hong Gil Nam
Affiliation:
Pohang University of Science and Technology, Republic of Korea
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abell, T. L., Malagelada, J. R., Lucas, A. R.et al. (1987). Gastric electromechanical and neurohormonal function in anorexia nervosa. Gastroenterology, 93, 958–965.CrossRefGoogle ScholarPubMed
Akbarali, H. I. (2005). Signal-transduction pathways that regulate smooth muscle function II. Receptor–ion channel coupling mechanisms in gastrointestinal smooth muscle. American Journal of Physiology, Cell Physiology, 288, C598–C602.Google ScholarPubMed
Alan, E., Lomax, A. E. and Furness, J. B. (2000). Neurochemical classification of enteric neurons in the guinea-pig distal colon. Cell Tissue Research, 302, 59–72.Google Scholar
Aliev, R. R., Richards, W. and Wikswo, J. P. (2000). A simple nonlinear model of electrical activity in the intestine. Journal of Theoretical Biology, 204, 21–28.CrossRefGoogle ScholarPubMed
Alvarez, W. C. and Zimmermann, A. (1928). Movements of the stomach. American Journal of Physiology, 84, 261–270.Google Scholar
Amaris, M. A., Rashev, P. Z., Mintchev, M. P. and Bowes, K. L. (2002). Micro-processor controlled movement of solid colonic content using sequential neural electrical stimulation. Gut, 50, 475–479.CrossRefGoogle Scholar
Bampton, P. A., Dinning, P. G., Kennedy, M. L.et al. (2000). Spatial and temporal organization of pressure patterns throughout the unprepared colon during spontaneous defecation. American Jouranl of Gastroenterology, 95, 1027–1035.CrossRefGoogle ScholarPubMed
Bayguinov, O., Ward, S. M., Kenyon, J. L. and Sanders, K. M. (2007). Voltage-gated Ca2+ currents are necessary for slow-wave propagation in the canine gastric antrum. American Journal of Physiology, Cell Physiology, 293, C1645–C1659.CrossRefGoogle ScholarPubMed
Bernstein, C. N., Frankenstein, U. N., Rawsthorne, P.et al. (2002). Cortical mapping of visceral pain in patients with GI disorders using functional magnetic resonance imaging. American Journal of Gastroenterology, 97(2), 319–327.CrossRefGoogle ScholarPubMed
Bertuzzi, A., Marcinelli, R., Ronzoni, G. and Salinari, S. (1983). Peristaltic transport of a solid bolus. Journal of Biomechanics, 16, 459–464.CrossRefGoogle ScholarPubMed
Betz, U. A., Farquhar, R. and Ziegelbauer, K. (2005). Genomics: success or failure to deliver drug targets? Current Opinion in Chemical Biology, 9, 387–391.CrossRefGoogle ScholarPubMed
Blackshaw, L. A. and Gebhart, G. F. (2002). The pharmacology of gastrointestinal nociceptive pathways. Current Opinion in Pharmacology, 2, 642–649.CrossRefGoogle ScholarPubMed
Brookes, S. J. (2001). Classes of enteric nerve cells in the guinea-pig small intestine. Anatomy Research, 262, 58–70.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Butcher, E. C. (2005). Can cell systems biology rescue drug discovery? Nature Review: Drug Discovery, 4, 461–467.Google ScholarPubMed
Callahan, M. J. (2002). Irritable bowel syndrome neuropharmacology. Journal of Clinical Gastroenterology, 35, S58–S67.CrossRefGoogle ScholarPubMed
Camborova, P., Hubka, P., Sulkova, I. and Hulin, I. (2003). The pacemaker activity of interstitial cells of Cajal and gastric electrical activity. Physiological Research, 52, 275–284.Google ScholarPubMed
Carniero, A. A., Baffa, O. and Oliveira, R. B. (1999). Study of stomach motility using relaxation of magnetic tracers. Physics and Medical Biology, 44, 1691–1697.CrossRefGoogle Scholar
Casey, K. L., Morrow, T. J., Lorenz, J. and Minoshima, S. (2001). Temporal and spatial dynamics of human forebrain activity during heat pain: analysis of positron emission tomography. Journal of Neurophysioogy, 85, 951–959.CrossRefGoogle ScholarPubMed
Cheng, L., Komuro, R., Austin, T. M., Buist, M. L. and Pullan, A. J. (2007). Anatomically realistic multiscale models of normal and abnormal gastrointestinal electrical activity. World Journal of Gastroenterology, 7 (March), 1378–1383.CrossRefGoogle Scholar
Corrias, A. and Buist, M. L. (2007). A quantitative model of gastric smooth muscle cellular activation. Annals of Biomedical Engineering, 35, 1595–1607.CrossRefGoogle ScholarPubMed
Cowin, S. C. (2000). How is a tissue built?Transactions of the ASME, Journal of Biomechanical Engineering, 122, 553–559.CrossRefGoogle Scholar
Daniel, E. E., Bardakjian, B. L., Huizinga, J. D. and Diamant, N. E. (1994). Relaxation oscillator and core conduction models are needed for understanding of GI electrical activities. American Journal of Physiology, 266, G339–G349.Google Scholar
D'Antona, G., Hennig, G. W., Costa, M., Humphreys, C. M. and Brookes, S. J. H. (2001). Analysis of motor patterns in the isolated guinea-pig large intestine by spatiotemporal maps. Neurogastroenterology and Motility, 13, 483–492.CrossRefGoogle Scholar
Dickens, E. J., Edwards, F. R. and Hirst, G. D. S. (2001). Selective knockout of intramuscular interstitial cells reveals their role in the generation of slow waves in mouse stomach. Journal of Physiology, 531, 827–833.CrossRefGoogle ScholarPubMed
Fox, E. A., Phillips, R. J. and Baronowsky, E. A. (2001). Neurotrophin-4 deficient mice have a loss of vagal intraganglionic mechanoreceptors from the small intestine and a disruption of short-term satiety. Journal of Neuroscience, 21, 8602–8615.CrossRefGoogle Scholar
Fung, Y. C. (1993). Biomechanics: Material Properties of Living Tissues. Berlin: Springer.CrossRefGoogle Scholar
Furness, J. and Sanger, G. J. (2002). Intrinsic nerve circuits of the gastrointestinal tract: identification of drug targets. Current Opinion in Pharmacology, 2, 612–622.CrossRefGoogle ScholarPubMed
Furness, J. B. (2000). Novel gut afferents: intrinsic afferent neurons and intestinofugal neurons. Autonomic Neuroscience: Basic and Clinical, 125, 81–85.CrossRefGoogle Scholar
Furness, J. B. (2006). The Enteric Nervous System. New York: Wiley–Blackwell.Google Scholar
Galimov, K. Z. (1975). Foundations of the Nonlinear Theory of Thin Shells. Kazan: Kazan University Publisher.Google Scholar
Galimov, K. Z., Paimushin, V. N. and Teregulov, I. G. (1996). Foundations of the Nonlinear Theory of Shells. Kazan: ФЭН (FÉN).Google Scholar
Galligan, J. J. (2004). Enteric P2X receptors as potential targets for drug treatment of the irritable bowel syndrome. British Journal of Pharmacology, 141, 1294–1302.CrossRefGoogle ScholarPubMed
Gao, C., Petersen, P., Liu, W., Arendt-Nielsen, L., Drewes, A. M. and Gregersen, H. (2002). Sensory motor responses to volume controlled duodenal distension. Neurogastroenterology and Motility, 14, 365–374.CrossRefGoogle ScholarPubMed
Gaudreu, G.-A. and Plourde, V. (2004). Involvement of N-methyl-d-aspartate (NMDA) receptors in a rat model of visceral hypersensitivity. Behavioral Brain Research, 150, 185–189.CrossRefGoogle Scholar
Gibbins, I. L., Hiok, E. E., Jobling, P. and Morris, J. L. (2003). Synaptic density, convergence, and dendritic complexity of prevertebral sympathetic neurons. Journal of Comparative Neurology, 455, 285–298.CrossRefGoogle ScholarPubMed
Grundy, D. and Schemann, M. (2005). Enteric nervous system. Current Opinion in Gastroenterology, 21, 176–182.CrossRefGoogle ScholarPubMed
Gunput, M. D. (2001). Clinical pharmacology of alosetron. Alimentary Pharmacology and Therapeutics, 13 (2), 70–76.CrossRefGoogle Scholar
Hardy, L. W. and Peet, N. P. (2004). The multiple orthogonal tools approach to define molecular causation in the validation of druggable targets. Drug Discovery Today, 9, 117–126.CrossRefGoogle ScholarPubMed
Hashitani, H., Garcia-Londoño, A., Hirst, G. D. S. and Edwards, F. R. (2005). Atypical slow waves generated in gastric corpus dominant pacemaker activity in guinea pig stomach. Journal of Physiology, 569, 459–465.CrossRefGoogle ScholarPubMed
Hennig, G. W., Hirst, G. D. S., Park, K. J.et al. (2004). Propagation of pacemaker activity in the guinea-pig antrum. Journal of Physiology, 556, 585–599.CrossRefGoogle ScholarPubMed
Hens, J., Vanderwinden, J.-M., Laet, M.-H., Scheuermann, D. W. and Timmermans, J.-P. (2001). Morphological and neurochemical identification of enteric neurones with mucosal projections in the human small intestine. Journal of Neurochemistry, 76, 464–471.CrossRefGoogle ScholarPubMed
Hirst, D. G. S. and Suzuki, H. (2006). Involvement of interstitial cells of Cajal in the control of smooth muscle excitability. Journal of Physiology, 576, 651–652.CrossRefGoogle Scholar
Hirst, G. D. and Edwards, F. R. (2004). Role of interstitial cells of Cajal in the control of gastric motility. Journal of Pharmacological Science, 96, 1–10.CrossRefGoogle ScholarPubMed
Hirst, G. D. S., Garcia-Londoño, A. P. and Edwards, F. R. (2006). Propagation of slow waves in the guinea-pig gastric antrum. Journal of Physiology, 571, 165–177.CrossRefGoogle ScholarPubMed
Hodgkin, A. and Huxley, A. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology (London), 117, 500–544.CrossRefGoogle ScholarPubMed
Holle, G. E., Steinbach, E. and Forth, W. (1992). Effects of erythromycin in the dog upper gastrointestinal tract. American Journal of Physiology, 263, G52–G59.Google ScholarPubMed
Holzapfel, G. A., Stadler, M. and Schulze-Bauer, C. A. J. (2002). A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. European Journal of Mechanics, A21, 441–463.CrossRefGoogle Scholar
Holzer, P., Michl, T., Danzer, M.et al. (2001). Surveillance of the gastrointestinal mucosa by sensory neurons. Journal of Physiological Pharmacology, 52(4), 505–521.Google ScholarPubMed
Humphrey, P. P. A., Bountra, C., Clayton, N. and Kozlowski, K. (2001). The therapeutic potential of 5-HT3 receptor antagonists in the treatment of irritable bowel syndrome. Alimentary Pharmacology and Therapeutics, 13 (2), 31–38.CrossRefGoogle Scholar
Hunt, R. (2002). Evolving concepts in functional gastrointestinal disorders: promising directions for novel pharmaceutical treatments. Best Practice & Research in Clinical Gastroenterology, 16(6), 869–883.CrossRefGoogle ScholarPubMed
Ishiguchi, T., Itoh, H. and Ichinose, M. (2003). Gastrointestinal motility and the brain–gut axis. Digestive Endoscopy, 15, 81–86.CrossRefGoogle Scholar
Jobling, P. and Gibbins, I. L. (1999). Electrophysiological and morphological diversity of mouse sympathetic neurons. Journal of Neurophysiology, 82, 2747–2764.CrossRefGoogle ScholarPubMed
Johnson, G. A., Livesay, G. A., Woo, S. L. Y. and Rajagopal, K. R. (1996). A single integral finite-strain viscoelastic model of ligaments and tendons. ASME Journal of Biomechanical Engineering, 118, 221–226.CrossRefGoogle ScholarPubMed
Koch, K. L., Stern, R. M., Steward, W. R. and Vasey, M. W. (1989). Gastric emptying and gastric myoelectrical activtiy in patients with diabetic gastroparesis: effect of long-term domperidone treatment. American Journal of Gastroenterology, 84, 1069–1075.Google Scholar
Koh, S. D., Ward, S. M., Tamas, O., Sanders, K. M. and Horowitz, B. (2003). Conductances responsible for slow wave generation and propagation in interstitial cells of Cajal. Current Opinion in Pharmacology, 3, 579–582.CrossRefGoogle ScholarPubMed
Krevsky, B. L., Malmud, L. S., D'Ercole, F., Maurer, A. H. and Fisher, R. S. (1986). Colonic transit scintigraphy: a physiologic approach to the quantitative measurement of colonic transit in humans. Gastroenterologia, 91, 1102–1112.CrossRefGoogle ScholarPubMed
Kuramoto, H and Furness, J. B. (1989). Distribution of enteric nerve cells that project from the small intestine to the coeliac ganglion in the guinea-pig. Journal of the Autonomous Nervous System, 27, 241–248.CrossRefGoogle ScholarPubMed
Lacy, B. E. and Yu, S. (2002). Tegaserod. A new 5-HT4 agonist. Journal of Clinical Gastroenterology, 34 (1), 27–33.CrossRefGoogle ScholarPubMed
Lammers, W. J. E. P. (2000). Propagation of individual spikes as “patches” of activation in the isolated feline duodenum. American Journal of Physiology, Gastrointestinal and Liver Physiology, 278, G297–G307.CrossRefGoogle Scholar
Lammers, W. J. E. P. and Slack, J. R. (2001). Of slow waves and spike patches. News in Physiological Sciences, 16, 138–144.Google ScholarPubMed
Lammers, W. J. E. P., al-Kais, A., Singh, S., Arafat, K. and el-Sharkawy, T. Y. (1993). Multielectrode mapping of slow-wave activity in the isolated rabbit duodenum. Journal of Applied Physiology, 74, 1454–1461.CrossRefGoogle ScholarPubMed
Lammers, W. J. E. P., Dhanasekaran, S., Slack, J. R. and Stephen, B. (2001). Two-dimensional high-resolution motility mapping in the isolated feline duodenum: methodology and initial results. Neurogastroenterology and Motility, 13, 309–323.CrossRefGoogle ScholarPubMed
Lammers, W. J. E. P., el-Kays, A., Manefield, G. W., Arafat, K. and El-Sharkawy, T. Y. (1997). Disturbances in the propagation of the slow wave during acute local ischemia in the feline small intestine. European Journal of Gastroenterology and Hepatology, 9, 381–388.CrossRefGoogle ScholarPubMed
Lammers, W. J. E. P., Slack, J. R., Stephen, B. and Pozzan, O. (2000). The spatial behaviour of spike patches in the feline gastroduodenal junction in vitro. Neurogastroenterology and Motility, 12, 467–473.CrossRefGoogle ScholarPubMed
Liao, D., Gregersen, H., Hausken, T.et al. (2004). Analysis of surface geometry of the human stomach using real-time 3-D ultrasonography in vivo. Neurogastroenterology and Motility, 16, 315–324.CrossRefGoogle ScholarPubMed
Libai, A. and Simmonds, J. G. (2005). The Nonlinear Theory of Elastic Shells. Cambridge: Cambridge University Press.Google Scholar
Liu, M.-T., Rothstein, J. D., Gershon, M. D. and Kirchgessner, A. L. (1997). Glutamatergic enteric neurons. Journal of Neurosciences, 17(2), 4764–4784.Google ScholarPubMed
Lomax, A. E., Sharkey, K. A., Bertrand, P. P.et al. (1999). Correlation of morphology, electrophysiology and chemistry of neurons in the myenteric plexus of the guinea-pig distal colon. Journal of the Autonomous Nervous System, 76, 45–61.CrossRefGoogle ScholarPubMed
Lomax, A. E., Zhang, J. Y. and Furness, J. B. (2000). Origins of cholinergic inputs to the cell bodies of intestinofugal neurons in the guinea pig distal colon. Journal of Comparative Neurology, 416, 451–460.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Lyford, G. L. and Farrugia, G. (2003). Ion channels in gastrointestinal smooth muscle and interstitial cells of Cajal. Current Opinion in Pharamcology, 3, 583–587.CrossRefGoogle ScholarPubMed
Lyford, G. L., Strege, P. R., Shepard, A.et al. (2002). Alpha 1C (Cav1.2) L-type calcium channel mediates mechanosensitive calcium regulation. American Journal of Physiology, Cell Physiology, 283, C1001–C1008.CrossRefGoogle Scholar
Macarron, R. (2006). Critical review of the role of HTS in drug discovery. Drug Discovery Today, 11, 277–279.CrossRefGoogle ScholarPubMed
Marciani, L., Young, P., Wright, J.et al. (2001). Antral motility measurements by magnetic resonance imaging. Neurogastroenterology and Motility, 13, 511–518.CrossRefGoogle ScholarPubMed
May, R. M. (2007). Uses and abuses of mathematics in biology. Science, 303, 790–793.CrossRefGoogle Scholar
Mayo, C. R., Brookes, S. J. H. and Costa, M. (1992). A computer simulation of intestinal motor activity, in Proceedings of the Third Australian Conference on Neural Networks '92 (ACNN '92), ed. Leong, P. and Jabri, M., pp. 48–51.
Miftahof, R. and Akhmadeev, N. (2007). Dynamics of intestinal propulsion. Journal of Theoretical Biology, 246, 377–393.CrossRefGoogle ScholarPubMed
Miftahof, R. and Fedotov, E. M. (2005). Intestinal propulsion of a solid non-deformable bolus. Journal of Theoretical Biology, 235, 57–70.CrossRefGoogle ScholarPubMed
Miftahof, R. N., Nam, H. G. and Wingate, D. L. (2009). Mathematical Modeling and Simulation in Enteric Neurobiology. Singapore: World Scientific Publishing Company.CrossRefGoogle Scholar
Miftakhov, R. and Abdusheva, G. (1993). Small bowel propulsion: transit of a solid bolus, in Biophysics and Life Sciences, ed. Ghista, D.. Munich: Springer, pp. 253–260.Google Scholar
Miftakhov, R. and Fedotov, E. (2004). The concept of the functional unit of the gut, in Advances in Fluid Mechanics IV, ed. Mendes, A., Rahman, M. and Brebbia, C. A.. Southampton: WIT Press, pp. 353–361.Google Scholar
Miftakhov, R. and Vannier, M. V. (2002). Nonlinear dynamic waves in electromechanical excitable biological media, in Advances in Fluid Mechanics V, ed. Rahman, M., Verhoeven, R. and Brebbia, C. A.. Southampton: WIT Press, pp. 725–735.Google Scholar
Miftakhov, R. N., Abdusheva, G. R. and Wingate, D. L. (1996). Model predictions of myoelectrical activity of the small bowel. Biological Cybernetics, 74, 167–179.CrossRefGoogle ScholarPubMed
Miftakhov, R. N. (1981). Micromechanics of tissue fracture in uniaxial elongation, in Shell Interactions with Fluids. Moscow: Academy of Sciences of the USSR, pp. 205–214.Google Scholar
Miftakhov, R. N. (1983a) Investigation of the human stomach tissue in uniaxial loading, in Hydroelasticity of Shells. Moscow: Academy of Sciences of the USSR, pp. 163–171.Google Scholar
Miftakhov, R. N. (1983b) Experimental investigations of the stomach under complex loading, in Hydroelasticvity of shells. Moscow: Academy of Sciences of the USSR, pp. 172–181.Google Scholar
Miftakhov, R. N. (1983c). Experimental and numerical investigations of soft shells. Unpublished Ph.D. thesis, Kazan State University.
Miftakhov, R. N. (1985). Experimental investigation of the stomach tissue in biaxial loading, in Investigations in the Theory of Plates and Shells. Kazan: Kazan University Press, pp. 35–46.Google Scholar
Miftakhov, R. N. (1988). Applications of the theory of soft thin shells in problems of biomechanics, in Biomechanics: Problems and Investigations, vol. VI. Riga: Zinatne, pp. 51–56.Google Scholar
Muraki, K., Imaizumi, Y. and Watanabe, M. (1991). Sodium currents in smooth muscle cells freshly isolated from stomach fundus of the rat and ureter of the guinea-pig. Journal of Physiology, 442, 351–375.CrossRefGoogle ScholarPubMed
Nikitin, N. L. (1980). A model of the muscle tissue with alternating number of contracting fibers. Mechanics of Composite Materials, 1, 113–120.Google Scholar
Nishi, S. and North, R. A. (1973). Intracellular recording from the myenteric plexus of the guinea-pig ileum. Journal of Physiology (London), 231, 471–491.CrossRefGoogle ScholarPubMed
Oprea, T. I. and Matter, H. (2004). Integrating virtual screening in lead discovery. Current Opinion in Chemical Biology, 8, 349–358.CrossRefGoogle ScholarPubMed
Ou, Y., Strege, P., Miller, S. M.et al. (2003). Syntrophin gamma 2 regulates SCN5A gating by a PDZ domain-mediated interaction. Journal of Biological Chemistry, 278, 1915–1923.CrossRefGoogle ScholarPubMed
Pal, A., Brasseur, J. and Abrahamsson, B. (2007). A stomach road or «Magenstrasse» for gastric emptying. Journal of Biomechanics, 40, 1202–1210.CrossRefGoogle ScholarPubMed
Pal, A., Indireshkumar, K., Schwizer, W.et al. (2004). Gastric flow and mixing studied using computer simulation. Proceedings of the Royal Society of London, Series B, 271, 2587–2594.CrossRefGoogle ScholarPubMed
Parsons, C. G. (2001). NMDA receptors as targets for drug action in neuropathic pain. European Journal of Pharmacology, 429, 71–78.CrossRefGoogle ScholarPubMed
Plonsey, R. L. and Barr, R. G. (1984). Current flow patterns in two-dimensional anisotropic bisyncytia with normal and extreme conductivities. Biophysical Journal, 43, 557–571.CrossRefGoogle Scholar
Porter, A. J., Wattchow, D. A., Brookes, S. J. H. and Costa, M. (2002). Cholinergic and nitrergic interneurones in the myenteric plexus of the human colon. Gut, 51, 70–75.CrossRefGoogle ScholarPubMed
Provenzano, P. P., Lakes, R. S., Corr, D. T. and VanderbyJr, R. (2002). Application of nonlinear viscoelastic models to describe ligament behavior. Biomechanical Modeling Mechanobiology, 1, 45–57.CrossRefGoogle ScholarPubMed
Publicover, N. G. and Sanders, K. M. (1989). Are relaxation oscillators an appropriate model of gastrointestinal electrical activity?American Journal of Physiology, 256, G256–G274.Google ScholarPubMed
Pullan, A., Cheng, L., Yassi, R. and Buist, M. (2004). Modelling gastrointestinal bioelectric activity. Progress in Biophysics & Molecular Biology, 85, 523–550.CrossRefGoogle ScholarPubMed
Rachev, P. Z., Amaris, M., Bowes, K. L. and Mintchev, M. P. (2002). Micro-processor-controlled colonic peristalsis: dynamic parametric modeling in dogs. Digestive Diseases, 47, 1034–1048.Google Scholar
Ramon, F., Anderson, N. C., Joyner, R. W. and Moore, J. W. (1976). A model for propagation of action potentials in smooth muscle. Journal of Theoretical Biology, 59, 381–408.CrossRefGoogle ScholarPubMed
Ridel, V. V. and Gulin, B. V. (1990). Dynamics of Soft Shells. Moscow: Nauka.Google Scholar
Sanders, K. M. (1984). Role of prostaglandins in regulating gastric motility. American Journal of Physiology, 247, G117–G126.Google ScholarPubMed
Sanger, G. J. and Hicks, G. (2002). Drugs targeting functional bowel disorders: insights from animal studies. Current Opinion in Pharmacology, 2, 678–683.CrossRefGoogle ScholarPubMed
Sarna, S. K., Daniel, E. E. and Kingma, Y. J. (1971). Simulation of slow-wave electrical activity of small intestine. American Journal of Physiology, 221, 166–175.Google ScholarPubMed
Scapin, G. (2006). Structural biology and drug discovery. Current Pharmacological Design, 12, 2087–2097.CrossRefGoogle ScholarPubMed
Sharkey, K. A., Lomax, A. E. and Bertrand, P. P. (1998). Electrophysiology, shape, and chemistry of neurons that project from guinea pig colon to inferior mesenteric ganglia. Gastroenterology, 115, 909–918.CrossRefGoogle ScholarPubMed
Shoichet, B. K. (2004). Virtual screening of chemical libraries. Nature, 432, 862–865.CrossRefGoogle ScholarPubMed
Silverman, L., Campbell, R. and Broach, J. R. (1998). New assay technologies for high-throughput screening. Current Opinion in Chemical Biology, 2, 397–403.CrossRefGoogle ScholarPubMed
Spencer, N. J. and Smith, T. K. (2001). Simultaneous intracellular recordings from longitudinal and circular muscle during the peristaltic reflex in guinea-pig distal colon. American Journal of Physiology, 533, 787–799.CrossRefGoogle ScholarPubMed
Spiller, R. (2004). Irritable bowel syndrome. British Medical Bulletin, 72, 15–29.CrossRefGoogle ScholarPubMed
Suzuki, H. (2000). Cellular mechanisms of myogenic activity in gastric smooth muscle. Japanese Journal of Physiology, 50, 289–301.CrossRefGoogle ScholarPubMed
Szurszewski, J. H. (1969). A migrating electric complex of the canine small intestine. American Journal of Physiology, 217, 1757–1763.Google ScholarPubMed
Szurszewski, J. H., Ermilov, L. G. and Miller, S. M. (2002). Prevertebral ganglia and intestinofugal afferent neurons. Gut, 51, i6–i10.CrossRefGoogle Scholar
Taber, L. A. (2004). Nonlinear Theory of Elasticity: Applications in Biomechanics. Singapore: World Scientific Publishing Company.CrossRefGoogle Scholar
Terence, K., Smith, T. K. and Lunam, C. A. (1998). Electrical characteristics and responses to jejunal distension of neurons in Remak's juxta-jejunal ganglia of the domestic fowl. Journal of Physiology, 510(2), 563–575.Google Scholar
Thielecke, F., Maxion-Bergemann, S., Abel, F. and Gonschior, A. K. (2004). Update in the pharmaceutical therapy of the irritable bowel syndrome. International Journal of Clinical Practice, 58(4), 374–381.CrossRefGoogle ScholarPubMed
Usik, P. I. (1973). Continual mechanochemical model of muscular tissue. Journal of Applied Mathematics and Mechanics (Trans. Prikladnaya Mathematika i Mehanika) 37(3), 428–439.CrossRefGoogle Scholar
Greef, J. and McBurney, R. N. (2005). Innovation: rescuing drug discovery: in vivo systems pathology and systems pharmacology. Nature Reviews: Drug Discovery, 4, 961–967.Google ScholarPubMed
Ventsel, E. and Krauthammer, T. (2001). Thin Plates and Shells: Theory, Analysis and Applications. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
Willert, R. P., Woolf, C. J., Hobson, A. R.et al. (2006). The development and maintenance of human hypersensitivity is dependent on the N-methyl-d-aspartate receptor. Gastroenterology, 126, 683–692.CrossRefGoogle Scholar
Won, K. J., Sanders, K. M. and Ward, S. M. (2005). Interstitial cells of Cajal mediate mechanosensitive responses in the stomach. The Proceedings of the National Academy of Sciences of the USA, 102, 14 913–14 918.Google ScholarPubMed
Wood, J. D. (1973). Electrical discharge of single enteric neurons of guinea pig small intestine. American Journal of Physiology, 225, 1107–1113.Google ScholarPubMed
Wood, J. D. (1989). Electrical and synaptic behavior of enteric neurons, in Handbook of Physiology, ed. Wood, J.. Washington: American Physiological Society, pp. 465–517.Google Scholar
Wood, J. D. and Mayer, C. J. (1978). Intracellular study of electrical activity of Auerbach's plexus in the guinea-pig small intestine. Pflügers Archiv, 374, 225–275.CrossRefGoogle ScholarPubMed
Yin, J. and Chen, J. D. Z. (2008). Roles of interstitial cells of Cajal in regulating gastrointestinal motility: in vitro versus in vivo studies. Journal of Cellular and Molecular Medicine, 12(4), 1118–1129.CrossRefGoogle ScholarPubMed
Zambrowicz, B. P. and Sands, A. T. (2003). Knockouts model the 100 best-selling drugs – will they model the next 100?Nature Reviews: Drug Discovery, 2, 38–51.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Roustem N. Miftahof, Pohang University of Science and Technology, Republic of Korea, Hong Gil Nam, Pohang University of Science and Technology, Republic of Korea
  • Book: Mathematical Foundations and Biomechanics of the Digestive System
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511711961.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Roustem N. Miftahof, Pohang University of Science and Technology, Republic of Korea, Hong Gil Nam, Pohang University of Science and Technology, Republic of Korea
  • Book: Mathematical Foundations and Biomechanics of the Digestive System
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511711961.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Roustem N. Miftahof, Pohang University of Science and Technology, Republic of Korea, Hong Gil Nam, Pohang University of Science and Technology, Republic of Korea
  • Book: Mathematical Foundations and Biomechanics of the Digestive System
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511711961.014
Available formats
×