Skip to main content Accessibility help
×
  • Cited by 8
  • Roustem N. Miftahof, Pohang University of Science and Technology, Republic of Korea, Hong Gil Nam, Pohang University of Science and Technology, Republic of Korea
Publisher:
Cambridge University Press
Online publication date:
July 2010
Print publication year:
2010
Online ISBN:
9780511711961

Book description

Mathematical modelling of physiological systems promises to advance our understanding of complex biological phenomena and pathophysiology of diseases. In this book, the authors adopt a mathematical approach to characterize and explain the functioning of the gastrointestinal system. Using the mathematical foundations of thin shell theory, the authors patiently and comprehensively guide the reader through the fundamental theoretical concepts, via step-by-step derivations and mathematical exercises, from basic theory to complex physiological models. Applications to nonlinear problems related to the biomechanics of abdominal viscera and the theoretical limitations are discussed. Special attention is given to questions of complex geometry of organs, effects of boundary conditions on pellet propulsion, as well as to clinical conditions, e.g. functional dyspepsia, intestinal dysrhythmias and the effect of drugs to treat motility disorders. With end of chapter problems, this book is ideal for bioengineers and applied mathematicians.

Reviews

‘Biomedical engineers, gastrointestinal physiologists, medical physicists, and experts in drug discovery will find the insights and comprehensiveness of this mathematical modeling framework to have breakthrough potential … this book introduces a model that explains drug effects, their interactions, and reveals the mechanism for pathophysiological consequences of common disorders.’

Michael W. Vannier - University of Chicago Medical Center

‘This is the first book on the comprehensive modern solid mechanics of the digestive tract. … It will benefit students of later PhD courses and young investigators who are interested in the mechanics of digestive organs.’

Takami Yamaguchi - Tohoku University

‘The book is well written to meet the needs of modern topics on biomechanics of soft shells. … The presentation of material is rich in content, concise and straightforward.’

Vladimir Kasyanov - Riga Technical University

‘It provides a coherent framework for existing but fragmentary experimental and clinical observations, and it will surely lead to advances in pharmaceutical medicine, and ultimately in clinical diagnosis and therapy. … I predict that this will come to be seen as a landmark in this area of biomedicine.’

David Wingate - Queen Mary University of London

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Abell, T. L., Malagelada, J. R., Lucas, A. R.et al. (1987). Gastric electromechanical and neurohormonal function in anorexia nervosa. Gastroenterology, 93, 958–965.
Akbarali, H. I. (2005). Signal-transduction pathways that regulate smooth muscle function II. Receptor–ion channel coupling mechanisms in gastrointestinal smooth muscle. American Journal of Physiology, Cell Physiology, 288, C598–C602.
Alan, E., Lomax, A. E. and Furness, J. B. (2000). Neurochemical classification of enteric neurons in the guinea-pig distal colon. Cell Tissue Research, 302, 59–72.
Aliev, R. R., Richards, W. and Wikswo, J. P. (2000). A simple nonlinear model of electrical activity in the intestine. Journal of Theoretical Biology, 204, 21–28.
Alvarez, W. C. and Zimmermann, A. (1928). Movements of the stomach. American Journal of Physiology, 84, 261–270.
Amaris, M. A., Rashev, P. Z., Mintchev, M. P. and Bowes, K. L. (2002). Micro-processor controlled movement of solid colonic content using sequential neural electrical stimulation. Gut, 50, 475–479.
Bampton, P. A., Dinning, P. G., Kennedy, M. L.et al. (2000). Spatial and temporal organization of pressure patterns throughout the unprepared colon during spontaneous defecation. American Jouranl of Gastroenterology, 95, 1027–1035.
Bayguinov, O., Ward, S. M., Kenyon, J. L. and Sanders, K. M. (2007). Voltage-gated Ca2+ currents are necessary for slow-wave propagation in the canine gastric antrum. American Journal of Physiology, Cell Physiology, 293, C1645–C1659.
Bernstein, C. N., Frankenstein, U. N., Rawsthorne, P.et al. (2002). Cortical mapping of visceral pain in patients with GI disorders using functional magnetic resonance imaging. American Journal of Gastroenterology, 97(2), 319–327.
Bertuzzi, A., Marcinelli, R., Ronzoni, G. and Salinari, S. (1983). Peristaltic transport of a solid bolus. Journal of Biomechanics, 16, 459–464.
Betz, U. A., Farquhar, R. and Ziegelbauer, K. (2005). Genomics: success or failure to deliver drug targets? Current Opinion in Chemical Biology, 9, 387–391.
Blackshaw, L. A. and Gebhart, G. F. (2002). The pharmacology of gastrointestinal nociceptive pathways. Current Opinion in Pharmacology, 2, 642–649.
Brookes, S. J. (2001). Classes of enteric nerve cells in the guinea-pig small intestine. Anatomy Research, 262, 58–70.
Butcher, E. C. (2005). Can cell systems biology rescue drug discovery? Nature Review: Drug Discovery, 4, 461–467.
Callahan, M. J. (2002). Irritable bowel syndrome neuropharmacology. Journal of Clinical Gastroenterology, 35, S58–S67.
Camborova, P., Hubka, P., Sulkova, I. and Hulin, I. (2003). The pacemaker activity of interstitial cells of Cajal and gastric electrical activity. Physiological Research, 52, 275–284.
Carniero, A. A., Baffa, O. and Oliveira, R. B. (1999). Study of stomach motility using relaxation of magnetic tracers. Physics and Medical Biology, 44, 1691–1697.
Casey, K. L., Morrow, T. J., Lorenz, J. and Minoshima, S. (2001). Temporal and spatial dynamics of human forebrain activity during heat pain: analysis of positron emission tomography. Journal of Neurophysioogy, 85, 951–959.
Cheng, L., Komuro, R., Austin, T. M., Buist, M. L. and Pullan, A. J. (2007). Anatomically realistic multiscale models of normal and abnormal gastrointestinal electrical activity. World Journal of Gastroenterology, 7 (March), 1378–1383.
Corrias, A. and Buist, M. L. (2007). A quantitative model of gastric smooth muscle cellular activation. Annals of Biomedical Engineering, 35, 1595–1607.
Cowin, S. C. (2000). How is a tissue built?Transactions of the ASME, Journal of Biomechanical Engineering, 122, 553–559.
Daniel, E. E., Bardakjian, B. L., Huizinga, J. D. and Diamant, N. E. (1994). Relaxation oscillator and core conduction models are needed for understanding of GI electrical activities. American Journal of Physiology, 266, G339–G349.
D'Antona, G., Hennig, G. W., Costa, M., Humphreys, C. M. and Brookes, S. J. H. (2001). Analysis of motor patterns in the isolated guinea-pig large intestine by spatiotemporal maps. Neurogastroenterology and Motility, 13, 483–492.
Dickens, E. J., Edwards, F. R. and Hirst, G. D. S. (2001). Selective knockout of intramuscular interstitial cells reveals their role in the generation of slow waves in mouse stomach. Journal of Physiology, 531, 827–833.
Fox, E. A., Phillips, R. J. and Baronowsky, E. A. (2001). Neurotrophin-4 deficient mice have a loss of vagal intraganglionic mechanoreceptors from the small intestine and a disruption of short-term satiety. Journal of Neuroscience, 21, 8602–8615.
Fung, Y. C. (1993). Biomechanics: Material Properties of Living Tissues. Berlin: Springer.
Furness, J. and Sanger, G. J. (2002). Intrinsic nerve circuits of the gastrointestinal tract: identification of drug targets. Current Opinion in Pharmacology, 2, 612–622.
Furness, J. B. (2000). Novel gut afferents: intrinsic afferent neurons and intestinofugal neurons. Autonomic Neuroscience: Basic and Clinical, 125, 81–85.
Furness, J. B. (2006). The Enteric Nervous System. New York: Wiley–Blackwell.
Galimov, K. Z. (1975). Foundations of the Nonlinear Theory of Thin Shells. Kazan: Kazan University Publisher.
Galimov, K. Z., Paimushin, V. N. and Teregulov, I. G. (1996). Foundations of the Nonlinear Theory of Shells. Kazan: ФЭН (FÉN).
Galligan, J. J. (2004). Enteric P2X receptors as potential targets for drug treatment of the irritable bowel syndrome. British Journal of Pharmacology, 141, 1294–1302.
Gao, C., Petersen, P., Liu, W., Arendt-Nielsen, L., Drewes, A. M. and Gregersen, H. (2002). Sensory motor responses to volume controlled duodenal distension. Neurogastroenterology and Motility, 14, 365–374.
Gaudreu, G.-A. and Plourde, V. (2004). Involvement of N-methyl-d-aspartate (NMDA) receptors in a rat model of visceral hypersensitivity. Behavioral Brain Research, 150, 185–189.
Gibbins, I. L., Hiok, E. E., Jobling, P. and Morris, J. L. (2003). Synaptic density, convergence, and dendritic complexity of prevertebral sympathetic neurons. Journal of Comparative Neurology, 455, 285–298.
Grundy, D. and Schemann, M. (2005). Enteric nervous system. Current Opinion in Gastroenterology, 21, 176–182.
Gunput, M. D. (2001). Clinical pharmacology of alosetron. Alimentary Pharmacology and Therapeutics, 13 (2), 70–76.
Hardy, L. W. and Peet, N. P. (2004). The multiple orthogonal tools approach to define molecular causation in the validation of druggable targets. Drug Discovery Today, 9, 117–126.
Hashitani, H., Garcia-Londoño, A., Hirst, G. D. S. and Edwards, F. R. (2005). Atypical slow waves generated in gastric corpus dominant pacemaker activity in guinea pig stomach. Journal of Physiology, 569, 459–465.
Hennig, G. W., Hirst, G. D. S., Park, K. J.et al. (2004). Propagation of pacemaker activity in the guinea-pig antrum. Journal of Physiology, 556, 585–599.
Hens, J., Vanderwinden, J.-M., Laet, M.-H., Scheuermann, D. W. and Timmermans, J.-P. (2001). Morphological and neurochemical identification of enteric neurones with mucosal projections in the human small intestine. Journal of Neurochemistry, 76, 464–471.
Hirst, D. G. S. and Suzuki, H. (2006). Involvement of interstitial cells of Cajal in the control of smooth muscle excitability. Journal of Physiology, 576, 651–652.
Hirst, G. D. and Edwards, F. R. (2004). Role of interstitial cells of Cajal in the control of gastric motility. Journal of Pharmacological Science, 96, 1–10.
Hirst, G. D. S., Garcia-Londoño, A. P. and Edwards, F. R. (2006). Propagation of slow waves in the guinea-pig gastric antrum. Journal of Physiology, 571, 165–177.
Hodgkin, A. and Huxley, A. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology (London), 117, 500–544.
Holle, G. E., Steinbach, E. and Forth, W. (1992). Effects of erythromycin in the dog upper gastrointestinal tract. American Journal of Physiology, 263, G52–G59.
Holzapfel, G. A., Stadler, M. and Schulze-Bauer, C. A. J. (2002). A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. European Journal of Mechanics, A21, 441–463.
Holzer, P., Michl, T., Danzer, M.et al. (2001). Surveillance of the gastrointestinal mucosa by sensory neurons. Journal of Physiological Pharmacology, 52(4), 505–521.
Humphrey, P. P. A., Bountra, C., Clayton, N. and Kozlowski, K. (2001). The therapeutic potential of 5-HT3 receptor antagonists in the treatment of irritable bowel syndrome. Alimentary Pharmacology and Therapeutics, 13 (2), 31–38.
Hunt, R. (2002). Evolving concepts in functional gastrointestinal disorders: promising directions for novel pharmaceutical treatments. Best Practice & Research in Clinical Gastroenterology, 16(6), 869–883.
Ishiguchi, T., Itoh, H. and Ichinose, M. (2003). Gastrointestinal motility and the brain–gut axis. Digestive Endoscopy, 15, 81–86.
Jobling, P. and Gibbins, I. L. (1999). Electrophysiological and morphological diversity of mouse sympathetic neurons. Journal of Neurophysiology, 82, 2747–2764.
Johnson, G. A., Livesay, G. A., Woo, S. L. Y. and Rajagopal, K. R. (1996). A single integral finite-strain viscoelastic model of ligaments and tendons. ASME Journal of Biomechanical Engineering, 118, 221–226.
Koch, K. L., Stern, R. M., Steward, W. R. and Vasey, M. W. (1989). Gastric emptying and gastric myoelectrical activtiy in patients with diabetic gastroparesis: effect of long-term domperidone treatment. American Journal of Gastroenterology, 84, 1069–1075.
Koh, S. D., Ward, S. M., Tamas, O., Sanders, K. M. and Horowitz, B. (2003). Conductances responsible for slow wave generation and propagation in interstitial cells of Cajal. Current Opinion in Pharmacology, 3, 579–582.
Krevsky, B. L., Malmud, L. S., D'Ercole, F., Maurer, A. H. and Fisher, R. S. (1986). Colonic transit scintigraphy: a physiologic approach to the quantitative measurement of colonic transit in humans. Gastroenterologia, 91, 1102–1112.
Kuramoto, H and Furness, J. B. (1989). Distribution of enteric nerve cells that project from the small intestine to the coeliac ganglion in the guinea-pig. Journal of the Autonomous Nervous System, 27, 241–248.
Lacy, B. E. and Yu, S. (2002). Tegaserod. A new 5-HT4 agonist. Journal of Clinical Gastroenterology, 34 (1), 27–33.
Lammers, W. J. E. P. (2000). Propagation of individual spikes as “patches” of activation in the isolated feline duodenum. American Journal of Physiology, Gastrointestinal and Liver Physiology, 278, G297–G307.
Lammers, W. J. E. P. and Slack, J. R. (2001). Of slow waves and spike patches. News in Physiological Sciences, 16, 138–144.
Lammers, W. J. E. P., al-Kais, A., Singh, S., Arafat, K. and el-Sharkawy, T. Y. (1993). Multielectrode mapping of slow-wave activity in the isolated rabbit duodenum. Journal of Applied Physiology, 74, 1454–1461.
Lammers, W. J. E. P., Dhanasekaran, S., Slack, J. R. and Stephen, B. (2001). Two-dimensional high-resolution motility mapping in the isolated feline duodenum: methodology and initial results. Neurogastroenterology and Motility, 13, 309–323.
Lammers, W. J. E. P., el-Kays, A., Manefield, G. W., Arafat, K. and El-Sharkawy, T. Y. (1997). Disturbances in the propagation of the slow wave during acute local ischemia in the feline small intestine. European Journal of Gastroenterology and Hepatology, 9, 381–388.
Lammers, W. J. E. P., Slack, J. R., Stephen, B. and Pozzan, O. (2000). The spatial behaviour of spike patches in the feline gastroduodenal junction in vitro. Neurogastroenterology and Motility, 12, 467–473.
Liao, D., Gregersen, H., Hausken, T.et al. (2004). Analysis of surface geometry of the human stomach using real-time 3-D ultrasonography in vivo. Neurogastroenterology and Motility, 16, 315–324.
Libai, A. and Simmonds, J. G. (2005). The Nonlinear Theory of Elastic Shells. Cambridge: Cambridge University Press.
Liu, M.-T., Rothstein, J. D., Gershon, M. D. and Kirchgessner, A. L. (1997). Glutamatergic enteric neurons. Journal of Neurosciences, 17(2), 4764–4784.
Lomax, A. E., Sharkey, K. A., Bertrand, P. P.et al. (1999). Correlation of morphology, electrophysiology and chemistry of neurons in the myenteric plexus of the guinea-pig distal colon. Journal of the Autonomous Nervous System, 76, 45–61.
Lomax, A. E., Zhang, J. Y. and Furness, J. B. (2000). Origins of cholinergic inputs to the cell bodies of intestinofugal neurons in the guinea pig distal colon. Journal of Comparative Neurology, 416, 451–460.
Lyford, G. L. and Farrugia, G. (2003). Ion channels in gastrointestinal smooth muscle and interstitial cells of Cajal. Current Opinion in Pharamcology, 3, 583–587.
Lyford, G. L., Strege, P. R., Shepard, A.et al. (2002). Alpha 1C (Cav1.2) L-type calcium channel mediates mechanosensitive calcium regulation. American Journal of Physiology, Cell Physiology, 283, C1001–C1008.
Macarron, R. (2006). Critical review of the role of HTS in drug discovery. Drug Discovery Today, 11, 277–279.
Marciani, L., Young, P., Wright, J.et al. (2001). Antral motility measurements by magnetic resonance imaging. Neurogastroenterology and Motility, 13, 511–518.
May, R. M. (2007). Uses and abuses of mathematics in biology. Science, 303, 790–793.
Mayo, C. R., Brookes, S. J. H. and Costa, M. (1992). A computer simulation of intestinal motor activity, in Proceedings of the Third Australian Conference on Neural Networks '92 (ACNN '92), ed. Leong, P. and Jabri, M., pp. 48–51.
Miftahof, R. and Akhmadeev, N. (2007). Dynamics of intestinal propulsion. Journal of Theoretical Biology, 246, 377–393.
Miftahof, R. and Fedotov, E. M. (2005). Intestinal propulsion of a solid non-deformable bolus. Journal of Theoretical Biology, 235, 57–70.
Miftahof, R. N., Nam, H. G. and Wingate, D. L. (2009). Mathematical Modeling and Simulation in Enteric Neurobiology. Singapore: World Scientific Publishing Company.
Miftakhov, R. and Abdusheva, G. (1993). Small bowel propulsion: transit of a solid bolus, in Biophysics and Life Sciences, ed. Ghista, D.. Munich: Springer, pp. 253–260.
Miftakhov, R. and Fedotov, E. (2004). The concept of the functional unit of the gut, in Advances in Fluid Mechanics IV, ed. Mendes, A., Rahman, M. and Brebbia, C. A.. Southampton: WIT Press, pp. 353–361.
Miftakhov, R. and Vannier, M. V. (2002). Nonlinear dynamic waves in electromechanical excitable biological media, in Advances in Fluid Mechanics V, ed. Rahman, M., Verhoeven, R. and Brebbia, C. A.. Southampton: WIT Press, pp. 725–735.
Miftakhov, R. N., Abdusheva, G. R. and Wingate, D. L. (1996). Model predictions of myoelectrical activity of the small bowel. Biological Cybernetics, 74, 167–179.
Miftakhov, R. N. (1981). Micromechanics of tissue fracture in uniaxial elongation, in Shell Interactions with Fluids. Moscow: Academy of Sciences of the USSR, pp. 205–214.
Miftakhov, R. N. (1983a) Investigation of the human stomach tissue in uniaxial loading, in Hydroelasticity of Shells. Moscow: Academy of Sciences of the USSR, pp. 163–171.
Miftakhov, R. N. (1983b) Experimental investigations of the stomach under complex loading, in Hydroelasticvity of shells. Moscow: Academy of Sciences of the USSR, pp. 172–181.
Miftakhov, R. N. (1983c). Experimental and numerical investigations of soft shells. Unpublished Ph.D. thesis, Kazan State University.
Miftakhov, R. N. (1985). Experimental investigation of the stomach tissue in biaxial loading, in Investigations in the Theory of Plates and Shells. Kazan: Kazan University Press, pp. 35–46.
Miftakhov, R. N. (1988). Applications of the theory of soft thin shells in problems of biomechanics, in Biomechanics: Problems and Investigations, vol. VI. Riga: Zinatne, pp. 51–56.
Muraki, K., Imaizumi, Y. and Watanabe, M. (1991). Sodium currents in smooth muscle cells freshly isolated from stomach fundus of the rat and ureter of the guinea-pig. Journal of Physiology, 442, 351–375.
Nikitin, N. L. (1980). A model of the muscle tissue with alternating number of contracting fibers. Mechanics of Composite Materials, 1, 113–120.
Nishi, S. and North, R. A. (1973). Intracellular recording from the myenteric plexus of the guinea-pig ileum. Journal of Physiology (London), 231, 471–491.
Oprea, T. I. and Matter, H. (2004). Integrating virtual screening in lead discovery. Current Opinion in Chemical Biology, 8, 349–358.
Ou, Y., Strege, P., Miller, S. M.et al. (2003). Syntrophin gamma 2 regulates SCN5A gating by a PDZ domain-mediated interaction. Journal of Biological Chemistry, 278, 1915–1923.
Pal, A., Brasseur, J. and Abrahamsson, B. (2007). A stomach road or «Magenstrasse» for gastric emptying. Journal of Biomechanics, 40, 1202–1210.
Pal, A., Indireshkumar, K., Schwizer, W.et al. (2004). Gastric flow and mixing studied using computer simulation. Proceedings of the Royal Society of London, Series B, 271, 2587–2594.
Parsons, C. G. (2001). NMDA receptors as targets for drug action in neuropathic pain. European Journal of Pharmacology, 429, 71–78.
Plonsey, R. L. and Barr, R. G. (1984). Current flow patterns in two-dimensional anisotropic bisyncytia with normal and extreme conductivities. Biophysical Journal, 43, 557–571.
Porter, A. J., Wattchow, D. A., Brookes, S. J. H. and Costa, M. (2002). Cholinergic and nitrergic interneurones in the myenteric plexus of the human colon. Gut, 51, 70–75.
Provenzano, P. P., Lakes, R. S., Corr, D. T. and VanderbyJr, R. (2002). Application of nonlinear viscoelastic models to describe ligament behavior. Biomechanical Modeling Mechanobiology, 1, 45–57.
Publicover, N. G. and Sanders, K. M. (1989). Are relaxation oscillators an appropriate model of gastrointestinal electrical activity?American Journal of Physiology, 256, G256–G274.
Pullan, A., Cheng, L., Yassi, R. and Buist, M. (2004). Modelling gastrointestinal bioelectric activity. Progress in Biophysics & Molecular Biology, 85, 523–550.
Rachev, P. Z., Amaris, M., Bowes, K. L. and Mintchev, M. P. (2002). Micro-processor-controlled colonic peristalsis: dynamic parametric modeling in dogs. Digestive Diseases, 47, 1034–1048.
Ramon, F., Anderson, N. C., Joyner, R. W. and Moore, J. W. (1976). A model for propagation of action potentials in smooth muscle. Journal of Theoretical Biology, 59, 381–408.
Ridel, V. V. and Gulin, B. V. (1990). Dynamics of Soft Shells. Moscow: Nauka.
Sanders, K. M. (1984). Role of prostaglandins in regulating gastric motility. American Journal of Physiology, 247, G117–G126.
Sanger, G. J. and Hicks, G. (2002). Drugs targeting functional bowel disorders: insights from animal studies. Current Opinion in Pharmacology, 2, 678–683.
Sarna, S. K., Daniel, E. E. and Kingma, Y. J. (1971). Simulation of slow-wave electrical activity of small intestine. American Journal of Physiology, 221, 166–175.
Scapin, G. (2006). Structural biology and drug discovery. Current Pharmacological Design, 12, 2087–2097.
Sharkey, K. A., Lomax, A. E. and Bertrand, P. P. (1998). Electrophysiology, shape, and chemistry of neurons that project from guinea pig colon to inferior mesenteric ganglia. Gastroenterology, 115, 909–918.
Shoichet, B. K. (2004). Virtual screening of chemical libraries. Nature, 432, 862–865.
Silverman, L., Campbell, R. and Broach, J. R. (1998). New assay technologies for high-throughput screening. Current Opinion in Chemical Biology, 2, 397–403.
Spencer, N. J. and Smith, T. K. (2001). Simultaneous intracellular recordings from longitudinal and circular muscle during the peristaltic reflex in guinea-pig distal colon. American Journal of Physiology, 533, 787–799.
Spiller, R. (2004). Irritable bowel syndrome. British Medical Bulletin, 72, 15–29.
Suzuki, H. (2000). Cellular mechanisms of myogenic activity in gastric smooth muscle. Japanese Journal of Physiology, 50, 289–301.
Szurszewski, J. H. (1969). A migrating electric complex of the canine small intestine. American Journal of Physiology, 217, 1757–1763.
Szurszewski, J. H., Ermilov, L. G. and Miller, S. M. (2002). Prevertebral ganglia and intestinofugal afferent neurons. Gut, 51, i6–i10.
Taber, L. A. (2004). Nonlinear Theory of Elasticity: Applications in Biomechanics. Singapore: World Scientific Publishing Company.
Terence, K., Smith, T. K. and Lunam, C. A. (1998). Electrical characteristics and responses to jejunal distension of neurons in Remak's juxta-jejunal ganglia of the domestic fowl. Journal of Physiology, 510(2), 563–575.
Thielecke, F., Maxion-Bergemann, S., Abel, F. and Gonschior, A. K. (2004). Update in the pharmaceutical therapy of the irritable bowel syndrome. International Journal of Clinical Practice, 58(4), 374–381.
Usik, P. I. (1973). Continual mechanochemical model of muscular tissue. Journal of Applied Mathematics and Mechanics (Trans. Prikladnaya Mathematika i Mehanika) 37(3), 428–439.
Greef, J. and McBurney, R. N. (2005). Innovation: rescuing drug discovery: in vivo systems pathology and systems pharmacology. Nature Reviews: Drug Discovery, 4, 961–967.
Ventsel, E. and Krauthammer, T. (2001). Thin Plates and Shells: Theory, Analysis and Applications. Boca Raton, FL: CRC Press.
Willert, R. P., Woolf, C. J., Hobson, A. R.et al. (2006). The development and maintenance of human hypersensitivity is dependent on the N-methyl-d-aspartate receptor. Gastroenterology, 126, 683–692.
Won, K. J., Sanders, K. M. and Ward, S. M. (2005). Interstitial cells of Cajal mediate mechanosensitive responses in the stomach. The Proceedings of the National Academy of Sciences of the USA, 102, 14 913–14 918.
Wood, J. D. (1973). Electrical discharge of single enteric neurons of guinea pig small intestine. American Journal of Physiology, 225, 1107–1113.
Wood, J. D. (1989). Electrical and synaptic behavior of enteric neurons, in Handbook of Physiology, ed. Wood, J.. Washington: American Physiological Society, pp. 465–517.
Wood, J. D. and Mayer, C. J. (1978). Intracellular study of electrical activity of Auerbach's plexus in the guinea-pig small intestine. Pflügers Archiv, 374, 225–275.
Yin, J. and Chen, J. D. Z. (2008). Roles of interstitial cells of Cajal in regulating gastrointestinal motility: in vitro versus in vivo studies. Journal of Cellular and Molecular Medicine, 12(4), 1118–1129.
Zambrowicz, B. P. and Sands, A. T. (2003). Knockouts model the 100 best-selling drugs – will they model the next 100?Nature Reviews: Drug Discovery, 2, 38–51.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.