Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T01:05:36.447Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  18 December 2014

Mher Ghulinyan
Affiliation:
Fondazione Bruno Kessler
Lorenzo Pavesi
Affiliation:
Università degli Studi di Trento, Italy
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Light Localisation and Lasing
Random and Pseudo-random Photonic Structures
, pp. 215 - 242
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Abrahams, E. (eds). 2010. 50 Years of Anderson Localization. World Scientific Publishing Co. Pte. Ltd.
[2] Abrahams, E., Anderson, P. W., Licciardello, D. C., and Ramakrishnan, T. V. 1979. Scaling theory of localization: Absence of quantum diffusion in two dimensions. Phys. Rev. Lett., 42, 673–676.CrossRefGoogle Scholar
[3] Abrikosov, A. A. and Ryzhkin, I. A. 1978. Conductivity of quasi-one-dimensional metal systems. Adv. Phys., 27, 147–230.CrossRefGoogle Scholar
[4] Adar, R., Henry, C. H., Milbrodt, M. A., and Kistler, R. C. 1994. Phase coherence of optical waveguides. J. Lightwave Technol., 12(4), 603–606.CrossRefGoogle Scholar
[5] Agarwal, V., Soto-Urueta, J. A., Becerra, D., and Mora-Ramos, M. E. 2005. Light propagation in polytype Thue–Morse structures made of porous silicon. Photonics and Nanostructures – Fundamentals and Applications, 3(2-3), 155–161. The Sixth International Symposium on Photonic and Electromagnetic Crystal Structures (PECS-VI) – PECS-VI.CrossRefGoogle Scholar
[6] Akkermans, E. and Montambaux, G. 2007. Mesoscopic Physics of Electrons and Photons. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
[7] Akkermans, E., Wolf, P. E., and Maynard, R. 1986. Coherent backscattering of light by disordered media: Analysis of the peak lineshape. Phys. Rev. Lett., 56, 1471–1474.CrossRefGoogle Scholar
[8] Altshuler, B. L. 1985. Pis'ma Zh. Eksp. Teor. Fiz., 41, 530.
[9] Altshuler, B. L., Lee, P. A., and Webb, R. A. (eds). 1991. Mesoscopic Phenomena in Solids. Elsevier, Amsterdam.
[10] Ambartsumyan, R. V., Basov, N. G., Kryukov, P. G., and Letokhov, V. S. 1966. Laser with a nonresonant feedback. JETP Lett., 3, 167–169.Google Scholar
[11] Anderson, P. W. 1958. Absence of diffusion in certain random lattices. Phys. Rev., 109, 1492–1505.CrossRefGoogle Scholar
[12] Anderson, P. W., Thouless, D. J., Abrahams, E., and Fisher, D. S. 1980. New method for a scaling theory of localization. Phys. Rev. B, 22, 3519–3526.CrossRefGoogle Scholar
[13] Andreasen, J., Asatryan, A. A., Botten, L. C., et al. 2011. Modes of random lasers. Adv. Opt. Photonics, 3(1), 88–127.CrossRefGoogle Scholar
[14] Angelani, L., Conti, C., Ruocco, G., and Zamponi, F. 2006. Glassy behavior of light. Phys. Rev. Lett., 96(6), 065702.CrossRefGoogle Scholar
[15] Antonoyiannakis, M. I. and Pendry, J. B. 1999. Electromagnetic forces in photonic crystals. Phys.Rev.B, 60, 2363–2374.CrossRefGoogle Scholar
[16] Aoki, K., Guimard, D., Nishioka, M., et al. 2008. Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity. Nature Photon., 2, 688–692.CrossRefGoogle Scholar
[17] Apalkov, V. M., Raikh, M. E., and Shapiro, B. 2004. Anomalously localized states in the Anderson model. Phys. Rev. Lett., 92, 066601.CrossRefGoogle ScholarPubMed
[18] Armitage, A., Skolnick, M. S., Kavokin, A. V., et al. 1998. Polariton-induced optical asymmetry in semiconductor microcavities. Phys. Rev. B, 58, 15367–15370.CrossRefGoogle Scholar
[19] Ashcroft, N. W. and Mermin, N. D. 1976. Solid State Physics. Holt, Rinehart, and Winston, USA.Google Scholar
[20] Astratov, V. N., Franchak, J. P., and Ashili, S. P. 2004. Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder. Appl. Phys. Lett., 85, 5508–5510.CrossRefGoogle Scholar
[21] Aulbach, J., Gjonaj, B., Johnson, P. M., Mosk, A. P., and Lagendijk, A. 2011. Control of light transmission through opaque scattering media in space and time. Phys. Rev.Lett., 106, 103901.CrossRefGoogle ScholarPubMed
[22] Azbel, M. Ya. 1983. Eigenstates and properties of random systems in one dimension at zero temperature. Phys. Rev. B, 28, 4106–4125.CrossRefGoogle Scholar
[23] Baake, M. 1999. A Guide to Mathematical Quasicrystals. arXiv:math-ph, 9901014 v1.Google Scholar
[24] Baake, M. and Grimm, U. 2009. Kinematic diffraction is insufficient to distinguish order from disorder. Phys. Rev. B, 79(2), 20203.CrossRefGoogle Scholar
[25] Baake, M., Grimm, U., and Moody, R. V. 2002. What is Aperiodic Order?arXiv:math.HO, 0203252v1.Google Scholar
[26] Baake, M., and Grimm, U. 2010. Surprises in aperiodic diffraction. J. Phys. - Conf. Series, 226(Apr.), 012023.CrossRefGoogle Scholar
[27] Baba, T. 2008. Slow light in photonic crystals. Nature Photon., 2, 465–473.CrossRefGoogle Scholar
[28] Babuty, A., Joulain, K., Chapuis, P.-O., Greffet, J.-J., and De Wilde, Y. 2013. Blackbody spectrum revisited in the near field. Phys. Rev. Lett., 110, 146103.CrossRefGoogle ScholarPubMed
[29] Bachelard, N., Andreasen, J., Gigan, S., and Sebbah, P. 2012. Taming random lasers through active spatial control of the pump. Phys. Rev. Lett., 109, 033903.CrossRefGoogle Scholar
[30] Ball, P. 2012. Feeling the heat. Nature, 492, 175–176.CrossRefGoogle ScholarPubMed
[31] Barbé, A. and von Haeseler, F. 2005. Correlation and spectral properties of higher–dimensional paperfolding and Rudin–Shapiro sequences. J. Phys. A - Math. Gen., 38(12), 2599–2622.CrossRefGoogle Scholar
[32] Barbé, A. and Von Haeseler, F. 2007. Correlation and spectral properties of multidimensional Thue–Morse sequences. Int. J. Bifurcat. Chaos, 17(04), 1265–1303.CrossRefGoogle Scholar
[33] Barnes, W. L., Dereux, A., and Ebbesen, T. W. 2003. Surface plasmon subwave-length optics. Nature, 424, 824–830.CrossRefGoogle Scholar
[34] Barthelemy, P., Ghulinyan, M., Gaburro, Z., et al. 2007. Optical switching by capillary condensation. Nature Photon., 1, 172–175.CrossRefGoogle Scholar
[35] Barthelemy, P., Bertolotti, J., and Wiersma, D. S. 2008. A Lévy flight for light. Nature, 453(7194), 495–498.CrossRefGoogle ScholarPubMed
[36] Bayer, M., Reinecke, T. L., Weidner, F., et al. 2001. Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators. Phys. Rev. Lett., 86, 3168–3171.CrossRefGoogle ScholarPubMed
[37] Becker, C., Linden, S., von Freymann, G., et al. 2005. Two-color pump–probe experiments on silicon inverse opals. Appl. Phys. Lett., 87, 091111.CrossRefGoogle Scholar
[38] Beenakker, C. W. J. 1997. Random-matrix theory of quantum transport. Rev. Mod. Phys., 69, 731–808.CrossRefGoogle Scholar
[39] Bellomo, B., Lo Franco, R., Maniscalco, S., and Compagno, G. 2008. Entanglement trapping in structured environments. Phys. Rev. A, 78, 060302.CrossRefGoogle Scholar
[40] Bendickson, J. M., Dowling, J. P., and Scalora, M. 1996. Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures. Phys. Rev. E, 50, 4107–4121.Google Scholar
[41] Berger, G. A., Kempe, M., and Genack, A. Z. 1997. Dynamics of stimulated emission from random media. Phys. Rev. E, 56, 6118–6122.CrossRefGoogle Scholar
[42] Bertolotti, J., Galli, M., Sapienza, R., et al. 2006. Wave transport in random systems: Multiple resonance character of necklace modes and their statistical behavior. Phys. Rev. E, 74, 035602(R).CrossRefGoogle ScholarPubMed
[43] Bertolotti, J., Gottardo, S., Wiersma, D. S., Ghulinyan, M., and Pavesi, L. 2005. Optical necklace states in Anderson localized 1D systems. Phys. Rev. Lett., 94, 113903.CrossRefGoogle ScholarPubMed
[44] Bertolotti, J., van Putten, E. G., Blum, C., et al. 2012. Non-invasive imaging through opaque scattering layers. Nature, 491, 232–234.CrossRefGoogle ScholarPubMed
[45] Bindi, L., Steinhardt, P. J., Yao, N., and Lu, P. J. 2009. Natural quasicrystals. Science, 324(5932), 1306.CrossRefGoogle ScholarPubMed
[46] Birowosuto, M. D., Skipetrov, S. E., Vos, W. L., and Mosk, A. P. 2010. Observation of spatial fluctuations of the local density of states in random photonic media. Phys. Rev. Lett., 105, 013904.CrossRefGoogle ScholarPubMed
[47] Bita, I., Choi, T., Walsh, M. E., Smith, H. I., and Thomas, E. L. 2007. Large-area 3D nanostructures with octagonal quasicrystalline symmetry via phase-mask lithography. Adv. Mater., 19(10), 1403.CrossRefGoogle Scholar
[48] Björk, G., Karlsson, A., and Yamamoto, Y. 1994. Definition of a laser threshold. Phys. Rev. A, 50, 1675–1680.CrossRefGoogle ScholarPubMed
[49] Blanco, A., Chomski, E., Grabtchak, S., et al. 2000. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature, 405, 437–439.CrossRefGoogle ScholarPubMed
[50] Bleuse, J., Claudon, J., Creasey, M., et al. 2011. Inhibition, enhancement, and control of spontaneous emission in photonic nanowires. Phys. Rev. Lett., 106, 103601.CrossRefGoogle ScholarPubMed
[51] Bliokh, K. Yu., Bliokh, Yu. P., et al. 2008. Coupling and level repulsion in the localized regime: From isolated to quasiextended modes. Phys. Rev. Lett., 101, 133901.CrossRefGoogle ScholarPubMed
[52] Bloch, F. 1929. Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Physik, 52, 555–600.CrossRefGoogle Scholar
[53] Blum, C., Zijlstra, N., Lagendijk, A., et al. 2012. Nanophotonic control of the Fürster resonance energy transfer efficiency. Phys. Rev. Lett., 109, 203601.CrossRefGoogle Scholar
[54] Boer, J. F. de., van Rossum, M. C. W., van Albada, M. P., Nieuwenhuizen, T. M., and Lagendijk, A. 1994. Probability distribution of multiple scattered light measured in total transmission. Phys. Rev. Lett., 73, 2567–2570.Google ScholarPubMed
[55] Bohren, C. F. and Huffmann, D. R. 1983. Absorption and Scattering of Light by Small Particles. Wiley, New York.Google Scholar
[56] Boriskina, S. V., Gopinath, A., and Dal Negro, L. 2008. Optical gap formation and localization properties of optical modes in deterministic aperiodic photonic structures. Opt. Express, 16(23), 18813–18826.CrossRefGoogle ScholarPubMed
[57] Boriskina, S. V., Gopinath, A., and Dal Negro, L. 2009. Optical gaps, mode patterns and dipole radiation in two-dimensional aperiodic photonic structures. Physica E: Low-dimensional Systems and Nanostructures, 41(6), 1102–1106.CrossRefGoogle Scholar
[58] Brenner, N. and Fishman, S. 1999. Pseudo-randomness and localization. Nonlin-earity, 5(1), 211–235.Google Scholar
[59] Brouwer, P. W. 1998. Transmission through a many-channel random waveguide with absorption. Phys. Rev. B, 57(17), 10526–10536.CrossRefGoogle Scholar
[60] Bruggeman, D. A. G. 1935. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. Ann. Phys. (Leipzig), 24, 636–679.Google Scholar
[61] Burresi, M., Radhalakshmi, V., Savo, R., et al. 2012. Weak localization of light in superdiffusive random systems. Phys. Rev. Lett., 108(11), 110604.Google ScholarPubMed
[62] Busch, K. and John, S. 1998. Photonic band gap formation in certain self-organizing systems. Phys. Rev. E, 58, 3896–3908.CrossRefGoogle Scholar
[63] Busch, K., von Freymann, G., Linden, S., et al. 2007. Periodic nanostructures for photonics. Phys. Rep., 444, 101–202.CrossRefGoogle Scholar
[64] Bykov, V. P. 1972. Spontaneous emission in a periodic structure. Sov. Phys. JETP, 35, 269–273.Google Scholar
[65] Campbell, M., Sharp, D. N., Harrison, M. T., Denning, R. G., and Turberfield, A. J. 2000. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature, 404, 53–56.CrossRefGoogle ScholarPubMed
[66] Cao, D., Tandaechanurat, A., Nakayama, S., et al. 2012. Silicon-based three-dimensional photonic crystal nanocavity laser with In As quantum-dot gain. Appl. Phys. Lett., 101, 191107.CrossRefGoogle Scholar
[67] Cao, H. 2003. Lasing in disordered media. Chap. 6, pages 317–370 in: Wolf, E. (ed.), Progress in Optics, vol. 45. Elsevier.Google Scholar
[68] Cao, H. 2005. Review on latest developments in random lasers with coherent feedback. J. Phys. A, 38, 10497.CrossRefGoogle Scholar
[69] Cao, H., Ling, Y., Xu, J. Y., Cao, C. Q., and Kumar, P. 2001. Photon statistics of random lasers with resonant feedback. Phys. Rev. Lett., 86(20), 4524–4527.CrossRefGoogle ScholarPubMed
[70] Cao, H., Xu, J. Y., Zhang, D. Z., et al. 2000. Spatial confinement of laser light in active random media. Phys. Rev. Lett., 84(24), 5584–5587.CrossRefGoogle ScholarPubMed
[71] Cao, H., Zhao, Y. G., Ho, S. T., et al. 1999. Random laser action in semiconductor powder. Phys. Rev. Lett., 82, 2278–2281.CrossRefGoogle Scholar
[72] Capaz, R. B., Koiller, B., and de Queiroz, S. L. A. 1990. Gap states and localization properties of one-dimensional Fibonacci quasicrystals. Phys.Rev.B, 42, 6402–6407.CrossRefGoogle ScholarPubMed
[73] Castellanos-Beltran, M. A., Ngo, D. Q., Sharks, W. E., Jayich, A. B., and Harris, J. G. E. 2013. Measurement of the full distribution of persistent current in normal-metal rings. Phys. Rev. Lett., 110, 156801.CrossRefGoogle ScholarPubMed
[74] Cerdán, L., Enciso, E., Martín, V., et al. 2012. FRET-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles. Nature Photon., 6, 621–626.CrossRefGoogle Scholar
[75] Chabanov, A. A. and Genack, A. Z. 2001. Statistics of dynamics of localized waves. Phys. Rev. Lett., 87(23), 233903.CrossRefGoogle ScholarPubMed
[76] Chabanov, A. A. and Genack, A. Z. 2005. Statistics of the mesoscopic field. Phys. Rev. E, 72, 055602.CrossRefGoogle ScholarPubMed
[77] Chabanov, A. A., Hu, B., and Genack, A. Z. 2004. Dynamic correlation in wave propagation in random media. Phys. Rev. Lett., 93, 123901.CrossRefGoogle ScholarPubMed
[78] Chabanov, A. A., Stoytchev, M., and Genack, A. Z. 2000. Statistical signatures of photon localization. Nature, 404, 850–853.CrossRefGoogle ScholarPubMed
[79] Chabanov, A. A., Zhang, Z. Q., and Genack, A. Z. 2003. Breakdown of diffusion in dynamics of extended waves in mesoscopic media. Phys. Rev. Lett., 90, 203903.CrossRefGoogle ScholarPubMed
[80] Chaikin, P. M. and Lubensky, T. C. 2000. Principles of Condensed Matter Physics. Cambridge University Press, Cambridge.Google Scholar
[81] Chandrasekhar, S. 1950. Radiative Transfer. Oxford University Press, Oxford.Google Scholar
[82] Cheng, C. C., Arbet-Engels, V., Scherer, A., and Yablonovitch, E. 1996. Nanofabricated three dimensional photonic crystals operating at optical wavelengths. Phys. Scr., T68, 17–20.CrossRefGoogle Scholar
[83] Cheng, S. S. M., Li, L.-M., Chan, C. T., and Zhang, Z. Q. 1999. Defect and transmission properties of two-dimensional quasiperiodic photonic band-gap systems. Phys. Rev. B, 59(6), 4091.CrossRefGoogle Scholar
[84] Cheng, Z., Savit, R., and Merlin, R. 1988. Structure and electronic properties of Thue–Morse lattices. Phys. Rev. B, 37(9), 4375–4382.CrossRefGoogle ScholarPubMed
[85] Cherroret, N., Peña, A., Chabanov, A. A., and Skipetrov, S. E. 2009. Nonuni-versal dynamic conductance fluctuations in disordered systems. Phys. Rev. B, 80, 045118.CrossRefGoogle Scholar
[86] Cheung, S. K., Zhang, X., Zhang, Z. Q., Chabanov, A. A., and Genack, A. Z. 2004. Impact of weak localization in the time domain. Phys. Rev. Lett., 92, 173902.CrossRefGoogle ScholarPubMed
[87] Ching, E. S. C., Leung, P. T., Suen, W. M., Tong, S. S., and Young, K. 1998. Waves in open systems: Eigenfunction expansions. Rev. Mod. Phys., 70, 1545–1554.CrossRefGoogle Scholar
[88] Choi, Y., Yoon, C., Kim, M., et al. 2012. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys. Rev. Lett., 109, 203901.CrossRefGoogle ScholarPubMed
[89] Chu, S. T., Little, B. E., Pan, W., Kaneko, T., and Kokubun, Y. 1999. Cascaded microring resonators for crosstalk reduction and spectrum cleanup in add-drop filters. IEEE Photon. Technol. Lett., 11(11), 1423–1425.Google Scholar
[90] Chutinan, A. and Noda, S. 1999. Effects of structural fluctuations on the photonic bandgap during fabrication of a photonic crystal. J. Opt. Soc. Am. B, 16, 240–244.Google Scholar
[91] Conti, C., Leonetti, M., Fratalocchi, A., Angelani, L., and Ruocco, G. 2008. Condensation in disordered lasers: Theory, 3<JT>D + 1 simulations, and experiments. Phys. Rev. Lett., 101(14), 143901.CrossRefGoogle ScholarPubMed
[92] Cooper, M. L., Gupta, G., Green, W. M. J., et al. 2010. 235-Ring coupled-resonator optical waveguides. CLEO 2010 Proceedings of the Conference on Lasers and Electro-Optics CTUHH3.
[93] Cooper, M. L., Gupta, G., Ong, J. R., et al. 2011. Correlations between light at spec-trally distant wavelengths in coupled microring resonator waveguides. Proceedings of the Conference on Lasers and Electro-Optics CWMH.
[94] Cooper, M. L., Gupta, G., Schneider, M. A., et al. 2010. Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides. Opt. Express, 18, 26505–26516.CrossRefGoogle ScholarPubMed
[95] Cooper, M. L. and Mookherjea, S. 2011. Modeling of multiband transmission in long silicon coupled-resonator optical waveguides. IEEE Photon. Technol. Lett., 23(13), 872–874.CrossRefGoogle Scholar
[96] Coteus, P. W., Knickerbocker, J. U., Lam, C. H., and Vlasov, Y. A. 2011. Technologies for exascale systems. IBM J. Res. Dev., 55, paper nr. 14.CrossRefGoogle Scholar
[97] Cullis, A. G., Canham, L. T., and Calcott, P. D. J. 1997. The structural and luminescence properties of porous silicon. J. Appl. Phys., 82, 909–966.CrossRefGoogle Scholar
[98] Dal Negro, L. and Boriskina, S. V. 2012. Deterministic aperiodic nanostructures for photonics and plasmonics applications. Laser Photon. Rev., 6, 178–218.Google Scholar
[99] Dal Negro, L. and Feng, N.-N. 2007. Spectral gaps and mode localization in Fibonacci chains of metal nanoparticles. Opt. Express, 15(22), 14396–14403.Google Scholar
[100] Dal Negro, L., Feng, N.-N., and Gopinath, A. 2008. Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays. J. Opt. A - Pure Appl. Op., 10(6), 064013.CrossRefGoogle Scholar
[101] Dal Negro, L., Lawrence, N., and Trevino, J. 2012. Analytical light scattering and orbital angular momentum spectra of arbitrary Vogel spirals. Opt. Express, 20(16), 18209.CrossRefGoogle ScholarPubMed
[102] Dal Negro, L., Oton, C. J., Gaburro, Z., et al. 2003. Light transport through band edge states of Fibonacci quasicrystals. Phys. Rev. Lett., 90, 055501.CrossRefGoogle ScholarPubMed
[103] Dal Negro, L., Stolfi, M., Yi, Y., et al. 2004. Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue–Morse quasicrystals. Appl. Phys. Lett., 84(25), 5186–5188.CrossRefGoogle Scholar
[104] Dal Negro, L., Yi, J. H., Nguyen, V., Yi, Y., Michel, J., and Kimerling, L. C. 2005. Spectrally enhanced light emission from aperiodic photonic structures. Appl. Phys. Lett., 86(26), 261905.CrossRefGoogle Scholar
[105] Dalfovo, F., Giorgini, S., Pitaevskii, L. P., and Stringari, S. 1999. Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys., 71 (Apr.), 463–512.CrossRefGoogle Scholar
[106] Dalichaouch, R., Armstrong, J. P., Schultz, S., Platzman, P. M., and McCall, S. L. 1991. Microwave localization by two-dimensional random scattering. Nature, 354, 53–55.CrossRefGoogle Scholar
[107] Davanco, M., Ong, J., Rong, S., et al. 2012. Telecommunications-band heralded single photons from a silicon nanophotonic chip. Appl. Phys. Lett., 100(26), 261104.CrossRefGoogle Scholar
[108] David, A., Benisty, H., and Weisbuch, C. 2012. Photonic crystal light-emitting sources. Rep. Prog. Phys., 75, 126501.CrossRefGoogle ScholarPubMed
[109] Davy, M., Shi, Z., and Genack, A. Z. 2012. Focusing through random media: Eigenchannel participation number and intensity correlation. Phys.Rev.B, 85, 035105.CrossRefGoogle Scholar
[110] Davy, M., Shi, Z., Wang, J., and Genack, A. Z. 2013. Transmission statistics and focusing in single disordered samples. Opt. Express, 21, 10367–10375.CrossRefGoogle ScholarPubMed
[111] Davy, M., Shi, Z., Wang, J., and Genack, A. Z. 2014. Transmission eigenchannels and the densities of states of random media. arxiv.org/abs/1403.3811.
[112] Deubel, M., von Freymann, G., Wegener, M., et al. 2004. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nature Mater., 3(7), 444.CrossRefGoogle ScholarPubMed
[113] Dorokhov, O. N. 1982. Transmission coefficient and the localization length of an electron in N bond disorder chains. Pis'ma Zh. Eksp. Teor. Fiz., 36, 259.Google Scholar
[114] Dorokhov, O. N. 1984. On the coexistence of localized and extended electronic states in the metallic phase. Solid State Commun., 51, 381–384.CrossRefGoogle Scholar
[115] Douady, S. and Couder, Y. 1996. Phyllotaxis as a dynamical self organizing process. J. Theor. Biology, 178, 255–274.Google Scholar
[116] Dougherty, E. R. 1990. Probability and Statistics for the Engineering, Computing and Physical Sciences. Prentice-Hall International Inc., Englewood, New Jersey.Google Scholar
[117] Dowling, J. P., Scalora, M., and Bloemer, M. J. 1994. The photonic band edge laser: A new approach to gain enhancement. J. Appl. Phys., 75, 1896–1899.CrossRefGoogle Scholar
[118] Dyson, F. J. and Mehta, M. L. 1962. Statistical theory of the energy levels of complex systems. I-V. J. Math. Phys., 3, 140.CrossRefGoogle Scholar
[119] Economou, E. N. 2006. Green's Functions in Quantum Physics, Third Edn. Springer, Berlin.CrossRefGoogle Scholar
[120] Economou, E. N. and Sigalas, M. M. 1993. Classical wave propagation in periodic structures: Cermet versus network topology. Phys. Rev. B, 48, 13434–13438.CrossRefGoogle ScholarPubMed
[121] Eiselt, M. H., Clausen, C. B., and Tkach, R. W. 2003. Performance characterization of components with group delay fluctuations. IEEE Photon. Technol. Lett., 15(8), 1076–1078.CrossRefGoogle Scholar
[122] El-Dardiry, R. G. S., and Lagendijk, A. 2011. Tuning random lasers by engineered absorption. Appl. Phys. Lett., 98(16), 161106–161106.CrossRefGoogle Scholar
[123] El-Dardiry, R. G. S., Mosk, A. P., et al. 2010. Experimental studies on the mode structure of random lasers. Phys.Rev.A, 81(4), 043830.CrossRefGoogle Scholar
[124] Engelen, R. J. P., Mori, D., Baba, T., and Kuipers, L. 2008. Two regimes of slow-light losses revealed by adiabatic reduction of group velocity. Phys. Rev. Lett., 101(10), 03901.CrossRefGoogle ScholarPubMed
[125] Esaki, L. and Tsu, R. 1970. Superlattice and negative differential conductivity in semiconductors. IBM J. Res.Dev., 14, 61–65.CrossRefGoogle Scholar
[126] Euser, T. G., Molenaar, A. J., Fleming, J. G., et al. 2008. All-optical octave-broad ultrafast switching of Si woodpile photonic band gap crystals. Phys.Rev.B, 77, 115214.CrossRefGoogle Scholar
[127] Euser, T. G., Wei, H., Kalkman, J., et al. 2007. All-optical octave-broad ultrafast switching of Si woodpile photonic band gap crystals. J. Appl. Phys., 102, 053111.CrossRefGoogle Scholar
[128] Faez, S., Strybulevych, A., Page, J. H., Lagendijk, A., and van Tiggelen, B. A. 2009. Observation of multifractality in Anderson localization of ultrasound. Phys. Rev. Lett., 103, 155703.CrossRefGoogle ScholarPubMed
[129] Fallert, J., Dietz, R. J. B., Sartor, J., et al. 2009. Co-existence of strongly and weakly localized random laser modes. Nature Photon., 3(5), 279–282.CrossRefGoogle Scholar
[130] Feng, S., Kane, C., Lee, P. A., and Stone, A. D. 1988. Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett., 61, 834–837.CrossRefGoogle ScholarPubMed
[131] Fermi, E. 1932. Quantum theory of radiation. Rev. Mod. Phys., 4, 87–132.CrossRefGoogle Scholar
[132] Ferry, D. K., Alkis, R., and Gilbert, M. J. 2007. Semiconductor device scaling: The role of ballistic transport. J. Comput. Theor. Nanos., 4(6), 1149–1152.CrossRefGoogle Scholar
[133] Fink, M. 1992. Time reversal of ultrasonic fields-Part I: Basic principles. IEEE T. Ultrason. Ferr., 39, 555–566.CrossRefGoogle ScholarPubMed
[134] Fischer, J. and Wegener, M. 2011. Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy. Opt. Mater. Express, 1(4), 614–624.CrossRefGoogle Scholar
[135] Fleming, J. G. and Lin, S. Y. 1999. Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 µm. Opt. Lett., 24, 49–51.CrossRefGoogle ScholarPubMed
[136] Florescu, L. and John, S. 2004. Photon statistics and coherence in light emission from a random laser. Phys. Rev. Lett., 93(1), 13602.CrossRefGoogle Scholar
[137] Folli, V., Puglisi, A., Leuzzi, L., and Conti, C. 2012. Shaken granular lasers. Phys. Rev. Lett., 108(24), 248002.CrossRefGoogle ScholarPubMed
[138] Freymann, G., Ledermann, A., Thiel, M., et al. 2010. Three dimensional nanostructures for photonics. Adv. Func. Mater., 20, 1038–1052.Google Scholar
[139] Frolov, S. V., Vardeny, Z. V., and Yoshino, K. 1999. Cooperative and stimulated emission in poly(p-phenylene-vinylene) thin films and solutions. Phys.Rev.B, 57, 9141–9147.Google Scholar
[140] Fujiwara, T., Kohmoto, M., and Tokihiro, T. 1989. Multifractal wave functions on a Fibonacci lattice. Phys. Rev. B, 40, 7413–7416.CrossRefGoogle ScholarPubMed
[141] Fussell, D. P., Hughes, S., and Dignam, M. M. 2008. Influence of fabrication disorder on the optical properties of coupled-cavity photonic crystal waveguides. Phys. Rev. B, 78(14), 144201.CrossRefGoogle Scholar
[142] Galisteo-López, J. F., Ibisate, M., Sapienza, R., et al. 2011. Self-assembled photonic structures. Adv. Mater., 23, 30–69.CrossRefGoogle ScholarPubMed
[143] Galusha, J. W., Jorgensen, M. R., and Bartl, M. H. 2010. Diamond-structured titania photonic-bandgap crystals from biological templates. Adv. Mater., 22, 107–110.Google ScholarPubMed
[144] Garcia, N. and Genack, A. Z. 1989. Crossover to strong intensity correlation for microwave radiation in random media. Phys. Rev. Lett., 63, 1678–1681.CrossRefGoogle ScholarPubMed
[145] Garcia, N. and Genack, A. Z. 1991. Anomalous photon diffusion at the threshold of the Anderson localization transition. Phys. Rev. Lett., 66, 1850–1853.CrossRefGoogle ScholarPubMed
[146] Garcia, N., Genack, A. Z., and Lisyansky, A. A. 1992. Measurement of the transport mean free path of diffusing photons. Phys.Rev.B, 46, 14475–14479.CrossRefGoogle ScholarPubMed
[147] Garcia, P. D., Sapienza, R., Toninelli, C., Lopez, C., and Wiersma, D. S. 2011. Photonic crystals with controlled disorder. Phys. Rev. A, 84, 023813.CrossRefGoogle Scholar
[148] García-Martín, A. and Sáenz, J. J. 2001. Universal conductance distributions in the crossover between diffusive and localization regimes. Phys. Rev. Lett., 87, 116603.CrossRefGoogle ScholarPubMed
[149] Gellermann, W., Kohmoto, M., Sutherland, B., and Taylor, P. C. 1994. Localization of light waves in Fibonacci dielectric multilayers. Phys. Rev. Lett., 72, 633–636.CrossRefGoogle ScholarPubMed
[150] Genack, A. Z. 1987. Optical transmission in disordered media. Phys. Rev. Lett., 58, 2043–2046.CrossRefGoogle ScholarPubMed
[151] Genack, A. Z. and Drake, J. M. 1990. Relationship between optical intensity, fluctuations and pulse propagation in random media. Europhys. Lett., 11, 331.CrossRefGoogle Scholar
[152] Genack, A. Z. and Drake, J. M. 1994. Scattering for super-radiation. Nature, 368, 400–401.CrossRefGoogle Scholar
[153] Genack, A. Z. and Garcia, N. 1991. Observation of photon localization in a three-dimensional disordered system. Phys. Rev. Lett., 66, 2064–2067.CrossRefGoogle Scholar
[154] Genack, A. Z., Garcia, N., and Polkosnik, W. 1990. Long-range intensity correlation in random media. Phys. Rev. Lett., 65, 2129–2132.CrossRefGoogle ScholarPubMed
[155] Genack, A. Z., Sebbah, P., Stoytchev, M., and van Tiggelen, B. A. 1999. Statistics of wave dynamics in random media. Phys. Rev. Lett., 82(4), 715.CrossRefGoogle Scholar
[156] Gertsenshtein, M. E. and Vasil'ev, V. B. 1959. Waveguides with random inhomo-geneities and Brownian motion in the Lobachevsky plane. Theor. of Probab. its Appl., 4, 391–398.CrossRefGoogle Scholar
[157] Ghulinyan, M. 2007. Formation of optimal-order necklace modes in one-dimensional random photonic superlattices. Phys. Rev. A, 76, 013822.CrossRefGoogle Scholar
[158] Ghulinyan, M. 2007. Periodic oscillations in transmission decay of Anderson localized one-dimensional dielectric systems. Phys. Rev. Lett., 99, 063905.CrossRefGoogle ScholarPubMed
[159] Ghulinyan, M., Gaburro, Z., Wiersma, D. S., and Pavesi, L. 2006. Tuning of resonant Zener tunneling by vapor diffusion and condensation in porous optical superlattices. Phys. Rev. B, 74, 045118.CrossRefGoogle Scholar
[160] Ghulinyan, M., Galli, M., Toninelli, C., et al. 2006. Wide-band transmission of nondistorted slow waves in one-dimensional optical superlattices. Appl. Phys. Lett., 88, 241103.CrossRefGoogle Scholar
[161] Ghulinyan, M., Oton, C. J., Bonetti, G., Gaburro, Z., and Pavesi, L. 2003. Free-standing porous silicon single and multiple optical cavities. J. Appl. Phys., 93, 9724–9729.CrossRefGoogle Scholar
[162] Ghulinyan, M., Oton, C. J., Dal Negro, L., et al. 2005. Light-pulse propagation in Fibonacci quasicrystals. Phys. Rev. B, 71, 094204.CrossRefGoogle Scholar
[163] Ghulinyan, M., Oton, C. J., Gaburro, Z., Bettotti, P., and Pavesi, L. 2003. Porous silicon free-standing coupled microcavities. Appl. Phys. Lett., 82, 1550–1552.CrossRefGoogle Scholar
[164] Ghulinyan, M., Oton, C. J., Gaburro, Z., et al. 2005. Zener tunneling of light waves in an optical superlattice. Phys. Rev. Lett., 94, 127401.CrossRefGoogle Scholar
[165] Gifford, D. K., Soller, B. J., Wolfe, M. S., and Froggatt, M. E. 2005. Optical vector network analyzer for single-scan measurements of loss, group delay, and polarization mode dispersion. Appl. Opt., 44(34), 7282–7286.CrossRefGoogle ScholarPubMed
[166] Gjonaj, B., Aulbach, J., Johnson, P. M., et al. 2011. Active spatial control of plasmonic fields. Phys. Rev. E, 5, 360–363.Google Scholar
[167] Goetschy, A. and Stone, A. D. 2013. Filtering random matrices: the effect of incomplete channel control in multiple scattering. arXiv:, 1304.5562.Google ScholarPubMed
[168] Goh, T., Suzuki, S., and Sugita, A. 1997. Estimation of waveguide phase error in silica-based waveguides. J. Lightwave Technol., 15(11), 2107–2113.CrossRefGoogle Scholar
[169] Gopar, V. A., Muttalib, K. A., and Wolfle, P. 2002. Conductance distribution in disordered quantum wires: Crossover between the metallic and insulating regimes. Phys. Rev. B, 66, 174204.CrossRefGoogle Scholar
[170] Gopinath, A., Boriskina, S. V., Feng, N.-N., Reinhard, B. M., and Dal Negro, L. 2008. Photonic-plasmonic scattering resonances in deterministic aperiodic structures. Nano Lett., 8(8), 2423–2431.CrossRefGoogle ScholarPubMed
[171] Gopinath, A., Boriskina, S. V., Reinhard, B. M., and Dal Negro, L. 2009. Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS). Opt. Express, 17(5), 3741–3753.CrossRefGoogle Scholar
[172] Gottardo, S., Cavalieri, S., Yaroshchuk, O., and Wiersma, D. S. 2004. Quasi-two-dimensional diffusive random laser action. Phys. Rev. Lett., 93(26), 263901.CrossRefGoogle ScholarPubMed
[173] Gottardo, S., Sapienza, R., García, P. D., et al. 2008. Resonance-driven random lasing. Nature Photon., 2(7), 429–432.CrossRefGoogle Scholar
[174] Gouedard, C., Husson, D., Sauteret, C., Auzel, F., and Migus, A. 1993. Generation of spatially incoherent short pulses in laser-pumped neodymium stoichiometric crystals and powders. J. Opt. Soc. Am. B, 10(12), 2358–2363.CrossRefGoogle Scholar
[175] Grésillon, S., Aigouy, L., Boccara, A. C., et al. 1999. Experimental observation of localized optical excitations in random metal-dielectric films. Phys. Rev. Lett., 82, 4520–4523.CrossRefGoogle Scholar
[176] Grimm, U. and Schreiber, M. 1999. Aperiodic tilings on the computer. arXiv:condmat, 9903010v1.Google Scholar
[177] Griniasty, M. and Fishman, S. 1988. Localization by pseudorandom potentials in one dimension. Phys. Rev. Lett., 60(13), 1334–1337.CrossRefGoogle ScholarPubMed
[178] Grünbaum, B. and Shephard, G. C. 1987. Tilings and Patterns. W. H. Freeman, New York.Google Scholar
[179] Gumbs, G., Dubey, G. S., Salman, A., Mahmoud, B. S., and Huang, D. 1995. Statistical and transport properties of quasiperiodic layered structures: Thue–Morse and Fibonacci. Phys.Rev.B, 52(July), 210–219.CrossRefGoogle ScholarPubMed
[180] Haberko, J. and Scheffold, F. 2013. Fabrication of mesoscale polymeric templates for three-dimensional disordered photonic materials. Opt. Express, 21(1), 1057.CrossRefGoogle ScholarPubMed
[181] Harding, P. J. 2008. Photonic crystals modified by optically resonant systems. Ph.D. thesis, (University of Twente) available from: www.photonicbandgaps.com.
[182] Haroche, S. 1992. Cavity quantum electrodynamics. Pages 767–940 in: Fundamental Systems in Quantum Optics. North Holland, Amsterdam.Google Scholar
[183] Hase, M., Miyazaki, H., Egashira, M., et al. 2002. Isotropic photonic band gap and anisotropic structures in transmission spectra of two-dimensional fivefold and eightfold symmetric quasiperiodic photonic crystals. Phys. Rev. B, 66(21), 214205.CrossRefGoogle Scholar
[184] Hattori, T., Tsurumachi, N., Kawato, S., and Nakatsuka, H. 1994. Photonic dispersion relation in a one-dimensional quasicrystal. Phys. Rev. B, 50, 4220–4223.CrossRefGoogle Scholar
[185] Hauke, N., Tandaechanurat, A., Zabel, T., et al. 2012. A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands. New J. Phys., 14, 083035.CrossRefGoogle Scholar
[186] Haus, H. A. 2000. Mode-locking of lasers. IEEE J. Sel. Top. Quant., 6(6), 1173–1185.CrossRefGoogle Scholar
[187] He, S. and Maynard, J. D. 1986. Detailed measurements of inelastic scattering in Anderson localization. Phys. Rev. Lett., 57, 3171–3174.CrossRefGoogle ScholarPubMed
[188] Heebner, J. E., Chak, P., Pereira, S., Sipe, J. E., and Boyd, R. W. 2004. Distributed and localized feedback in microresonator sequences for linear and nonlinear optics. J. Opt. Soc. Am. B, 21(10), 1818–1832.CrossRefGoogle Scholar
[189] Hendrickson, J., Richards, B. C., Sweet, J., et al. 2008. Excitonic polaritons in Fibonacci quasicrystals. Opt. Express, 16(20), 15382.CrossRefGoogle ScholarPubMed
[190] Hermatschweiler, M., Ledermann, A., Ozin, G. A., Wegener, M., and von Frey-mann, G. 2007. Fabrication of silicon inverse woodpile photonic crystals. Adv. Func. Mater., 17, 2273–2277.CrossRefGoogle Scholar
[191] Hillebrand, R. and Hergert, W. 2004. Scaling properties of a tetragonal photonic crystal design having a large complete bandgap. Photonics Nanostruct., 2, 33–39.CrossRefGoogle Scholar
[192] Ho, K. M., Chan, C. T., and Soukoulis, C. M. 1990. Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett., 65, 3152–3155.CrossRefGoogle ScholarPubMed
[193] Ho, K. M., Chan, C. T., Soukoulis, C. M., Biswas, R., and Sigalas, M. 1994. Photonic band gaps in three dimensions: New layer-by-layer periodic structures. Solid State Commun., 89, 413–416.CrossRefGoogle Scholar
[194] Hoeffe, M. and Baake, M. 2000. Surprises in diffuse scattering. Z. Kristallogr, 215, 441–444.Google Scholar
[195] Hohenberg, P. C. 1967. Existence of long-range order in one and two dimensions. Phys. Rev., 158, 383–386.CrossRefGoogle Scholar
[196] Holland, B. T., Blanford, C. F., and Stein, A. 1998. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science, 281, 538–540.CrossRefGoogle ScholarPubMed
[197] Hsieh, I., Pu, Y., Grange, R., and Psaltis, D. 2010. Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media. Opt. Express, 18, 12283–12290.Google ScholarPubMed
[198] Hu, H., Strybulevych, A., Page, J. H., Skipetrov, S. E., and van Tiggelen|B., 2008. Localization of ultrasound in a three-dimensional elastic network. Nature Phys., 4, 945–948.CrossRefGoogle Scholar
[199] Huang, X. and Gong, Ch. 1998. Property of Fibonacci numbers and the periodic-like perfectly transparent electronic states in Fibonacci chains. Phys.Rev.B, 58, 739–744.CrossRefGoogle Scholar
[200] Hughes, S., Ramunno, L., Young, J. F., and Sipe, J. E. 2005. Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity. Phys. Rev. Lett., 94(3), 033903.CrossRefGoogle ScholarPubMed
[201] Huisman, S. R., Ctistis, G., Stobbe, S., et al. 2012. Measurement of a band-edge tail in the density of states of a photonic-crystal waveguide. Phys. Rev. B, 86, 155154.CrossRefGoogle Scholar
[202] Huisman, S. R., Nair, R. V., Woldering, L. A., et al. 2011. Signature of a three-dimensional photonic band gap observed on silicon inverse woodpile photonic crystals. Phys. Rev. B, 83, 205313.CrossRefGoogle Scholar
[203] Husken, B. H., Koenderink, A. F., and Vos, W. L. 2013. Angular redistribution of near-infrared emission from quantum dots in three-dimensional photonic crystals. J. Phys. Chem. C, 117, 3431–3439.CrossRefGoogle Scholar
[204] Iglói, F., Turban, L., and Rieger, H. 1999. Anomalous diffusion in aperiodic environments. Phys.Rev. E, 59(2), 1465–1474.CrossRefGoogle Scholar
[205] Il'chishin, I. P. and Vakhnin, A. Yu. 1995. Detecting of the structure distortion of cholesteric liquid crystal using the generation characteristics of the distributed feedback laser based on it. Mol. Cryst. Liq. Cryst., 265, 687–697.Google Scholar
[206] Imagawa, S., Edagawa, K., Morita, K., et al. 2010. Photonic band-gap formation, light diffusion, and localization in photonic amorphous diamond structures. Phys. Rev. B., 82, 155116.CrossRefGoogle Scholar
[207] Imry, Y. 1986. Active transmission channels and universal conductance fluctuations. Europhys. Lett., 1, 249–256.CrossRefGoogle Scholar
[208] Imry, Y. and Landauer, R. 1999. Conductance viewed as transmission. Rev. Mod. Phys., 71, S306–S312.CrossRefGoogle Scholar
[209] Ioffe, A. F. and Regel, A. R. 1960. Noncrystalline, amorphous and liquid electronic semiconductors. Prog. Semicond., 4, 237.Google Scholar
[210] Ishimaru, A. 1978. Wave Propagation and Scattering in Random Media. Academic Press, New York.Google Scholar
[211] Ishizaki, K., Koumura, M., Suzuki, K., Gondaira, K., and Noda, S. 2013. Realization of three-dimensional guiding of photons in photonic crystals. Nature Photon., 7, 133–137.CrossRefGoogle Scholar
[212] Ishizaki, K. and Noda, S. 2009. Manipulation of photons at the surface of three-dimensional photonic crystals. Nature, 460, 367–371.CrossRefGoogle ScholarPubMed
[213] Jahnke, F. and Koch, S. 1995. Many-body theory for semiconductor microcavity lasers. Phys. Rev. A, 52(2), 1712–1727.CrossRefGoogle ScholarPubMed
[214] James, R. W. 1954. The Optical Principles of the Diffraction of X-rays. Bell & Hyman, London.Google Scholar
[215] Janot, C. 1992. Quasicrystals: A Primer. Clarendon Press, Oxford.Google Scholar
[216] Janot, C. 1994. Hierarchical phase transitions and vibrational modes localisation in quasicrystals. Int. J. Mod. Phys. B, 08(17), 2245–2281.CrossRefGoogle Scholar
[217] Jiang, X., Zhang, Y., Feng, S., et al. 2005. Photonic band gaps and localization in the Thue–Morse structures. Appl. Phys. Lett., 86(20), 201110.CrossRefGoogle Scholar
[218] Jin, C., Cheng, B., Man, B., et al. 1999. Band gap and wave guiding effect in a quasiperiodic photonic crystal. Appl. Phys. Lett., 75(13), 1848.CrossRefGoogle Scholar
[219] Joannopoulos, J. D., Johnson, S. G., Winn, J. N., and Meade, R. D. 2008. Photonic Crystals – Molding the Flow of Light, Second Edition. Princeton University Press.Google Scholar
[220] Joannopoulos, J. D., Johnson, S. G., Winn, J. N., and Meade, R. D. 2011. Photonic Crystals: Molding the Flow of Light. Princeton University Press.Google Scholar
[221] John, S. 1984. Electromagnetic absorption in a disordered medium near a photon mobility edge. Phys. Rev. Lett., 53, 2169–2172.CrossRefGoogle Scholar
[222] John, S. 1987. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 58, 2486–2489.CrossRefGoogle ScholarPubMed
[223] John, S. 1991. Localization of light. Phys. Today, 44, 32–40.CrossRefGoogle Scholar
[224] John, S. and Quang, T. 1994. Spontaneous emission near the edge of a photonic bandgap. Phys. Rev. A, 50, 1764–1769.CrossRefGoogle Scholar
[225] John, S., Sompolinsky, H., and Stephen, M. J. 1983. Localization in a disordered elastic medium near two dimensions. Phys. Rev. B, 27, 5592–5603.CrossRefGoogle Scholar
[226] John, S. and Wang, J. 1990. Quantum electrodynamics near a photonic band gap: Photon bound states and dressed atoms. Phys. Rev. Lett., 64, 2418–2421.CrossRefGoogle Scholar
[227] Johnson, P. M., Koenderink, A. F., and Vos, W. L. 2002. Ultrafast switching of photonic density of states in photonic crystals. Phys.Rev.B, 66, 081102.CrossRefGoogle Scholar
[228] Jorgensen, M. R., Galusha, J. W., and Bartl, M. H. 2011. Strongly modified spontaneous emission rates in diamond-structured photonic crystals. Phys. Rev. Lett., 107, 143902.CrossRefGoogle ScholarPubMed
[229] Kao, T. S., Jenkins, S. D., Ruostekoski, J., and Zheludev, N. I. 2011. Coherent control of nanoscale light localization in metamaterial: Creating and positioning isolated subwavelength energy hot spots. Phys. Rev. Lett., 106, 085501.CrossRefGoogle ScholarPubMed
[230] Katz, O., Small, E., Bromberg, Y., and Silberberg, Y. 2011. Focusing and compression of ultrashort pulses through scattering media. Nature Photon., 5, 372–377.CrossRefGoogle Scholar
[231] Kawashima, S., Ishizaki, K., and Noda, S. 2009. Light propagation in three-dimensional photonic crystals. Opt. Express, 18, 386–392.Google Scholar
[232] Kempe, M., Berger, G. A., and Genack, A. Z. 1997. Stimulated emission from amplifying random media. Pages 301–330 in: Hummel, R. E., and Wissmann, P. (eds) Handbook of Optical Properties. CRC Press, Boca Raton, FL.Google Scholar
[233] Khurgin, J. B. and Tucker, R. S. 2009. Slow Light: Science and Applications. CRC Press, Boca Raton, Florida.Google Scholar
[234] Kim, M., Choi, Y., Yoon, C., et al. 2012. Maximal energy transport through dis-ordered media with the implementation of transmission eigenchannels. Nature Photon., 6, 581–585.CrossRefGoogle Scholar
[235] Kim, S.-K., Lee, J.-H., Kim, S.-H., et al. 2005. Photonic quasicrystal single-cell cavity mode. Appl. Phys. Lett., 86(3), 031101.Google Scholar
[236] Kleppner, D. 1981. Inhibited spontaneous emission. Phys. Rev. Lett., 47, 233–236.CrossRefGoogle Scholar
[237] Koenderink, A. F. 2003. Emission and transport of light in photonic crystals. Ph.D. thesis, (University of Amsterdam) available at: www.photonicbandgaps.com.
[238] Koenderink, A. F., Bechger, L., Lagendijk, A., and Vos, W. L. 2003. An experimental study of strongly modified emission in inverse opal photonic crystals. Phys. Stat. Sol. B, 197, 648–661.Google Scholar
[239] Koenderink, A. F., Bechger, L., Schriemer, H. P., Lagendijk, A., and Vos, W. L. 2002. Broadband fivefold reduction of vacuum fluctuations probed by dyes in photonic crystals. Phys. Rev. Lett., 88, 143903.CrossRefGoogle ScholarPubMed
[240] Koenderink, A. F., Lagendijk, A., and Vos, W. L. 2005. Optical extinction due to intrinsic structural variations of photonic crystals. Phys. Rev. B, 72, 153102.CrossRefGoogle Scholar
[241] Kogan, E. and Kaveh, M. 1995. Random-matrix-theory approach to the intensity distributions of waves propagating in a random medium. Phys. Rev. B, 52, R3813–R3815.CrossRefGoogle Scholar
[242] Kohmoto, M., Sutherland, B., and Iguchi, K. 1987. Localization in optics: Quasiperiodic media. Phys. Rev. Lett., 58, 2436–2438.CrossRefGoogle ScholarPubMed
[243] Kohmoto, M., Sutherland, B., and Tang, C. 1987. Critical wave functions and a Cantor-set spectrum of a one-dimensional quasicrystal model. Phys. Rev. B, 35, 1020–1033.CrossRefGoogle Scholar
[244] Kok, M. H., Lu, W., Tam, W. Y., and Wong, G. K. L. 2009. Lasing from dye-doped icosahedral quasicrystals in dichromate gelatin emulsions. Opt. Express, 17(9), 7275.CrossRefGoogle ScholarPubMed
[245] Kolář, M., Ali, M., and Nori, F. 1991. Generalized Thue–Morse chains and their physical properties. Phys. Rev. B, 43(1), 1034–1047.CrossRefGoogle Scholar
[246] Kopp, V. I., Fan, B., Vithana, H. K. M., and Genack, A. Z. 1998. Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals. Opt. Lett., 23, 1707–1709.CrossRefGoogle ScholarPubMed
[247] Kopp, V. I., Zhang, Z.-Q., and Genack, A. Z. 2003. Lasing in chiral photonic structures. Prog. Quant. Electron., 27, 369–416.CrossRefGoogle Scholar
[248] Kottos, T. 2005. Statistics of resonances and delay times in random media: Beyond random matrix theory. J. Phys. A, 38, 10761.CrossRefGoogle Scholar
[249] Krachmalnicoff, V., Castanié, E., De Wilde, Y., and Carminati, R. 2010. Fluctuations of the local density of states probe localized surface plasmons on disordered metal films. Phys. Rev. Lett., 105, 183901.CrossRefGoogle ScholarPubMed
[250] Kramer, P. and Papadopolos, Z. (eds). 2002. Coverings of Discrete Quasiperiodic Sets: Theory and Applications to Quasicrystals. Springer Tracts in Modern Physics, vol. 180. Berlin: Springer-Verlag.
[251] Krauss, T. F. 2007. Slow light in photonic crystal waveguides. J. Phys. D, 40, 2666–2670.CrossRefGoogle Scholar
[252] Kristensen, P. T., Koenderink, A. F., Lodahl, P., Tromborg, B., and Mork, J. 2008. Fractional decay of quantum dots in real photonic crystals. Opt. Lett., 33, 1557–1559.CrossRefGoogle ScholarPubMed
[253] Krokhin, A. A. and Halevi, P. 1996. Influence of weak dissipation on the photonic band structure of periodic composites. Phys.Rev.B, 53, 1206–1214.CrossRefGoogle ScholarPubMed
[254] Kroon, L., Lennholm, E., and Riklund, R. 2002. Localization-delocalization in aperiodic systems. Phys. Rev. B, 66(9).CrossRefGoogle Scholar
[255] Kroon, L. and Riklund, R. 2004. Absence of localization in a model with correlation measure as a random lattice. Phys. Rev. B, 69(9).CrossRefGoogle Scholar
[256] Kuga, Y. and Ishimaru, A. 1984. Retroreflectance from a dense distribution of spherical particles. J. Opt. Soc. Am. A, 1, 831–835.CrossRefGoogle Scholar
[257] Kuhl, U. and Stockmann, H. J. 1998. Microwave realization of the Hofstadter butterfly. Phys. Rev. Lett., 80(15), 3232.CrossRefGoogle Scholar
[258] Kurizki, G. and Genak, A. 1988. Suppression of molecular interactions in periodic dielectric structures. Phys. Rev. Lett., 61, 2269–2271.CrossRefGoogle ScholarPubMed
[259] Labonté, L., Vanneste, C., and Sebbah, P. 2012. Localized mode hybridization by fine tuning of two-dimensional random media. Opt. Lett., 37, 1946–1948.CrossRefGoogle ScholarPubMed
[260] Ladouceur, F. 1997. Roughness, inhomogeneity, and integrated optics. J. Lightwave Technol., 15(6), 1020–1025.CrossRefGoogle Scholar
[261] Ladouceur, F. and Love, J. D. 1995. Effect of roughness and inhomogeneity on evanescent single-mode optical couplers. IEE P. Optoelectron., 142(6), 288–292.Google Scholar
[262] Lagendijk, A. 1993. Vibrational relaxation studied with light. Pages 197–238 in: Ultrashort Processes in Condensed Matter. Plenum, New York.Google Scholar
[263] Lagendijk, A., van Tiggelen, B., and Wiersma, D. S. 2009. Fifty years of Anderson localization. Phys. Today, 62, 24–29.CrossRefGoogle Scholar
[264] Lagendijk, A., Vreeker, R., and de Vries, P. 1989. Influence of internal reflection on diffusive transport in strongly scattering media. Phys. Lett. A, 136, 81–88.CrossRefGoogle Scholar
[265] Lahini, Y., Avidan, A., Pozzi, F., et al. 2008. Anderson localization and non-linearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett., 100, 013906.CrossRefGoogle Scholar
[266] Lakowicz, J. R. 2008. Principles of Fluorescence Spectroscopy, Third Edition. Springer, Berlin.Google Scholar
[267] Lambropoulos, P., Nikolopoulos, G. M., Nielsen, T. R., and Bay, S. 2000. Fundamental quantum optics in structured reservoirs. Rep. Prog. Phys., 63, 455–503.CrossRefGoogle Scholar
[268] Landauer, R. 1970. Electrical resistance of disordered one-dimensional lattices. Philos. Mag., 21, 863–867.CrossRefGoogle Scholar
[269] Lawandy, N. M., Balachandran, R. M., Gomes, A. S. L., and Sauvain, E. 1994. Laser action in strongly scattering media. Nature, 368, 436–438.CrossRefGoogle Scholar
[270] Lawrence, N., Trevino, J., and Dal Negro, L. 2012. Control of optical orbital angular momentum by Vogel spiral arrays of metallic nanoparticles. Opt. Lett., 37(24), 5076–5078.CrossRefGoogle ScholarPubMed
[271] Lawrence, N., Trevino, J., and Dal Negro, L. 2012. Aperiodic arrays of active nanopillars for radiation engineering. J. Appl. Phys., 111(11), 113101.CrossRefGoogle Scholar
[272] Ledermann, A. 2006 (August). Three-dimensional icosahedral photonic quasicrystals: fabrication via direct laser writing and optical characterization. M.Phil. thesis, Universität Karlsruhe (TH).Google Scholar
[273] Ledermann, A., Cademartiri, L., Hermatschweilder, M., et al. 2006. Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths. Nature Mater., 5, 942–945.CrossRefGoogle ScholarPubMed
[274] Ledermann, A., von Freymann, G., and Wegener, M. 2007. Laue-Beugung auf dem Schreibtisch. Photonische Quasikristalle. Physik in unserer Zeit, 38(6), 300.CrossRefGoogle Scholar
[275] Ledermann, A., von Freymann, G., and Wegener, M. 2009. Optical arrangement and its use. European patent, No. DE 102007032181A1 / WO 002009006976A1.Google Scholar
[276] Ledermann, A., Wegener, M., and von Freymann, G. 2010. Rhombicuboctahedral three-dimensional photonic quasicrystals. Adv. Mater., 22, 2363.CrossRefGoogle ScholarPubMed
[277] Ledermann, A., Wiersma, D. S., Wegener, M., and von Freymann, G. 2009. Multiple scattering of light in three-dimensional photonic quasicrystals. Opt. Express, 17(3), 1844.CrossRefGoogle ScholarPubMed
[278] Lee, P. A. and Stone, A. D. 1985. Universal conductance fluctuations in metals. Phys. Rev. Lett., 55, 1622–1625.CrossRefGoogle ScholarPubMed
[279] Lee, P. T., Lu, T. W., and Tsai, F. M. 2007. Octagonal quasi-photonic crystal single-defect microcavity with whispering gallery mode and condensed device size. IEEE Photon. Technol. Lett., 19(9), 710–712.CrossRefGoogle Scholar
[280] Lee, P. T., Lu, T. W., Tsai, F. M., Lu, T. C., and Kuo, H. C. 2006. Whispering gallery mode of modified octagonal quasiperiodic photonic crystal single-defect microcavity and its side-mode reduction. Appl. Phys. Lett., 88(20), 201104.CrossRefGoogle Scholar
[281] Lee, S. D., Shin, S. J., Choi, S. J., et al. 2006. Si-based Coulomb blockade device for spin qubit logic gate. Appl. Phys. Lett., 89(2), 023111.CrossRefGoogle Scholar
[282] Leistikow, M. D., Mosk, A. P., Yeganegi, E., et al. 2011. Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap. Phys. Rev. Lett., 107, 193903.CrossRefGoogle Scholar
[283] Lemoult, F., Lerosey, G., de Rosny, J., and Fink, M. 2010. Resonant metalenses for breaking the diffraction barrier. Phys. Rev. Lett., 104, 203901.CrossRefGoogle ScholarPubMed
[284] Leonetti, M., Conti, C., and Lopez, C. 2011. The mode-locking transition of random lasers. Nature Photon., 5(10), 615–617.CrossRefGoogle Scholar
[285] Leonetti, M., Conti, C., and Lopez, C. 2012. Tunable degree of localization in random lasers with controlled interaction. Appl. Phys. Lett., 101(5), 051104.CrossRefGoogle Scholar
[286] Leonetti, M., Conti, C., and Lopez, C. 2012. Random laser tailored by directional stimulated emission. Phys. Rev. A, 85(Apr), 043841.CrossRefGoogle Scholar
[287] Leonetti, M., Conti, C., and Lopez, C. 2013. Nonlocality and collective emission in disordered lasing resonators. Light: Science and Applications, in press.CrossRefGoogle Scholar
[288] Leonetti, M. and Lopez, C. 2012. Random lasing in structures with multi-scale transport properties. Appl. Phys. Lett., 101(25), 251120.CrossRefGoogle Scholar
[289] Leonetti, M. and Lopez, C. 2013. Active subnanometer spectral control of a random laser. Appl. Phys. Lett., 102(7), 071105.CrossRefGoogle Scholar
[290] Leonetti, M., Sapienza, R., Ibisate, M., Conti, C., and López, C. 2009. Optical gain in DNA-DCM for lasing in photonic materials. Opt. Lett., 34(24), 3764–3766.CrossRefGoogle ScholarPubMed
[291] Lepri, S., Cavalieri, S., Oppo, G.-L., and Wiersma, D. S. 2007. Statistical regimes of random laser fluctuations. Phys.Rev. A, 75(Jun), 063820.CrossRefGoogle Scholar
[292] Letokhov, V. V. 1968. Generation of light by a scattering medium with negative resonance. Sov. Phys. JETP, 26, 835–840.Google Scholar
[293] Leung, P. T., Liu, S. Y., and Young, K. 1994. Completeness and orthogonality of quasinormal modes in leaky cavities. Phys. Rev. A, 49, 3057–3067.Google ScholarPubMed
[294] Leuzzi, L., Conti, C., Folli, V., Angelani, L., and Ruocco, G. 2009. Phase diagram and complexity of mode-locked lasers: From order to disorder. Phys. Rev. Lett., 102(8), 83901.CrossRefGoogle ScholarPubMed
[295] Levine, D. and Steinhardt, P. J. 1986. Quasicrystals. I. Definition and structure. Phys. Rev. B, 34(2), 596.CrossRefGoogle ScholarPubMed
[296] Li, F. H. and Wang, L. C. 1988. Analytical formulation of icosahedral quasi-crystal structures. J. Phys. C, 21(3), 495.CrossRefGoogle Scholar
[297] Li, J. H., Lisyansky, A. A., Cheung, T. D., Livdan, D., and Genack, A. Z. 1993. Transmission and surface intensity profiles in random media. Europhys. Lett., 22, 675.CrossRefGoogle Scholar
[298] Li, Z. Y. and Xia, Y. N. 2001. Full vectorial model for quantum optics in three-dimensional photonic crystals. Phys. Rev. A, 63, 043817.CrossRefGoogle Scholar
[299] Li, Z.-Y. and Zhang, Z.-Q. 2000. Fragility of photonic band gaps in inverse-opal photonic crystals. Phys. Rev. B, 62, 1516–1519.CrossRefGoogle Scholar
[300] Liew, S. F., Noh, H., Trevino, J., Dal Negro, L., and Cao, H. 2011. Localized photonic band edge modes and orbital angular momenta of light in a golden-angle spiral. Opt. Express, 19(24), 23631–23642.CrossRefGoogle Scholar
[301] Liew, S. F., Yang, J. K., Noh, H., et al. 2011. Photonic band gaps in three-dimensional network structures with short-range order. Phys. Rev. A, 84, 063818.CrossRefGoogle Scholar
[302] Lifshitz, R. 2002. The square Fibonacci tiling. J. Alloy. Compd., 342(1-2), 186–190.CrossRefGoogle Scholar
[303] Liu, N. H. 1997. Propagation of light waves in Thue–Morse dielectric multilayers. Phys. Rev. B, 55(Feb.), 3543–3547.CrossRefGoogle Scholar
[304] Lodahl, P., van Driel, A. F., Nikolaev, I. S., et al. 2004. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature, 430, 654–657.CrossRefGoogle ScholarPubMed
[305] Lončar, M., Nedeljković, D., Doll, T., et al. 2000. Waveguiding in planar photonic crystals. Appl. Phys. Lett., 77, 1937–1939.CrossRefGoogle Scholar
[306] Lourtioz, J.-M., Benisty, H., Berger, V., et al. 2008. Photonic Crystals: Towards Nanoscale Photonic Devices. Springer, Heidelberg.Google Scholar
[307] Lubatsch, A., Kroha, J., and Busch, K. 2005. Theory of light diffusion in disordered media with linear absorption or gain. Phys.Rev.B, 71(18), 184201.CrossRefGoogle Scholar
[308] Luck, J. 1989. Cantor spectra and scaling of gap widths in deterministic aperiodic systems. Phys. Rev. B, 39(9), 5834–5849.CrossRefGoogle ScholarPubMed
[309] Luck, J. M., Godreche, C., Janner, A., and Janssen, T. 1993. The nature of the atomic surfaces of quasiperiodic self-similar structures. J. Phys. A - Math. Gen., 26, 1951–1999.CrossRefGoogle Scholar
[310] Ma, X. and John, S. 2009. Ultrafast population switching of quantum dots in a structured vacuum. Phys. Rev. Lett., 103, 233601.CrossRefGoogle Scholar
[311] Mabuchi, H. and Doherty, A. C. 2002. Cavity quantum electrodynamics: Coherence in context. Science, 298, 1372–1377.CrossRefGoogle ScholarPubMed
[312] Maciá, E. 2006. The role of aperiodic order in science and technology. Rep. Prog. Phys., 69(2), 397.CrossRefGoogle Scholar
[313] Maciá, E. and Domínguez-Adame, F. 1996. Physical nature of critical wave functions in Fibonacci systems. Phys. Rev. Lett., 76, 2957–2960.CrossRefGoogle ScholarPubMed
[314] Mahler, L., Tredicucci, A., Beltram, F., et al. 2010. Quasi-periodic distributed feedback laser. Nature Photon., 4(3), 165–169.Google Scholar
[315] Maldovan, M. and Thomas, E. L. 2004. Diamond-structured photonic crystals. Nature Mater., 3, 593–600.CrossRefGoogle ScholarPubMed
[316] Man, W., Megens, M., Steinhardt, P. J., and Chaikin, P. M. 2005. Experimental measurement of the photonic properties of icosahedral quasicrystals. Nature, 436(7053), 993–996.CrossRefGoogle ScholarPubMed
[317] Markoš, P. 1999. Probability distribution of the conductance at the mobility edge. Phys. Rev. Lett., 83, 588–591.CrossRefGoogle Scholar
[318] Markoá, P. and Soukoulis, C. M. 2005. Intensity distribution of scalar waves propagating in random media. Phys. Rev. B, 71(5), 054201.Google Scholar
[319] Markushev, V. M., Zolin, V. F., and Briskina, Ch. M. 1986. Powder laser. Zh. Prikl. Spektrosk, 45, 847–850.Google Scholar
[320] Maruo, S., Nakamura, O., and Kawata, S. 1997. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett., 22(2), 132.CrossRefGoogle ScholarPubMed
[321] Maxwell Garnett, J. C. 1904. Colours in metal glasses and in metal films. Philos. Trans. Roy. Soc. A, 203, 385–420.CrossRefGoogle Scholar
[322] Mazurenko, D. A., Kerst, R., Dijkhuis, J. I., et al. 2003. Ultrafast optical switching in three-dimensional photonic crystals. Phys. Rev. Lett., 91, 213903.CrossRefGoogle ScholarPubMed
[323] McCabe, D. J., Tajalli, A., Austin, D. R., et al. 2011. Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium. Nature Commun., 2, 447.CrossRefGoogle ScholarPubMed
[324] Mehta, M. L. 2004. Random Matrices, Third Edition. Academic Press, New York.Google Scholar
[325] Meisel, D. C., Diem, M., Deubel, M., et al. 2006. Shrinkage pre-compensation of holographic three-dimensional photonic crystal templates. Adv. Mater., 18(22), 2964.CrossRefGoogle Scholar
[326] Mello, P. A., Akkermans, E., and Shapiro, B. 1988. Macroscopic approach to correlations in the electronic transmission and reflection from disordered conductors. Phys. Rev. Lett., 61, 459–462.CrossRefGoogle ScholarPubMed
[327] Mello, P. A., Pereyra, P., and Kumar, N. 1988. Macroscopic approach to multichannel disordered conductors. Ann. Phys., New York, 181, 290–317.Google Scholar
[328] Melloni, A., Morichetti, F., and Martinelli, M. 2003. Optical slow wave structures. Opt. Photonics News, 14, 44–48.CrossRefGoogle Scholar
[329] Melloni, A. and Morichetti, F. 2009. The long march of slow photonics. Nature Photon., 3(3), 119.CrossRefGoogle Scholar
[330] Mermin, N. D. and Wagner, H. 1966. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett., 17, 1133–1136.CrossRefGoogle Scholar
[331] Miller, D. A. B. 2000. Rationale and challenges for optical interconnects to electronic chips. Proc. IEEE, 88(6), 728–749.CrossRefGoogle Scholar
[332] Miller, D. A. B. 2009. Device requirements for optical interconnects to silicon chips. Proc. IEEE, 97(7), 1166–1185.CrossRefGoogle Scholar
[333] Milner, V. and Genack, A. Z. 2005. Photon localization laser: Low-threshold lasing in a random amplifying layered medium via wave localization. Phys. Rev. Lett., 94, 073901.CrossRefGoogle Scholar
[334] Milonni, P. W. 1994. The Quantum Vacuum: An Introduction to Quantum Electro-dynamics. Academic Press, Boston.Google Scholar
[335] Mirlin, A. D. 2000. Statistics of energy levels and eigenfunctions in disordered systems. Phys. Rep., 326, 259–382.CrossRefGoogle Scholar
[336] Mnaymneh, K. and Gauthier, R. C. 2007. Mode localization and band-gap formation in defect-free photonic quasicrystals. Opt. Express, 15(8), 5089.CrossRefGoogle ScholarPubMed
[337] Mookherjea, S. and Oh, A. 2007. Effect of disorder on slow light velocity in optical slow-wave structures. Opt. Lett., 32, 289–291.CrossRefGoogle ScholarPubMed
[338] Mookherjea, S., Park, J. S., Yang, S. H., and Bandaru, P. R. 2008. Localization in silicon nanophotonic slow-light waveguides. Nature Photon., 2(2), 90–93.CrossRefGoogle Scholar
[339] Mookherjea, S. and Schneider, M. A. 2011. Avoiding bandwidth collapse in long chains of coupled optical microresonators. Opt. Lett., 36(23), 4557–4559.CrossRefGoogle ScholarPubMed
[340] Mookherjea, S. and Yariv, A. 2002. Coupled resonator optical waveguides. IEEE J. Sel. Top. Quantum Electron., 8, 448–456.CrossRefGoogle Scholar
[341] Moretti, L. and Mocella, V. 2007. Two-dimensional photonic aperiodic crystals based on Thue–Morse sequence. Opt. Express, 15(23), 15314–15323.CrossRefGoogle ScholarPubMed
[342] Moretti, L., Rea, I.Rotiroti, L., et al. 2006. Photonic band gaps analysis of Thue–Morse multilayers made of porous silicon. Opt. Express, 14(13), 6264–6272.CrossRefGoogle ScholarPubMed
[343] Morichetti, F., Ferrari, C., Canciamilla, A., and Melloni, A. 2012. The first decade of coupled resonator optical waveguides: Bringing slow light to applications. Laser Photon. Rev., 6(1), 74–96.CrossRefGoogle Scholar
[344] Morichetti, F., Canciamilla, A., and Melloni, A. 2010. Statistics of backscattering in optical waveguides. Opt. Lett., 35(11), 1777–1779.CrossRefGoogle ScholarPubMed
[345] Mosk, A. P., Lagendijk, A., Lerosey, G., and Fink, M. 2012. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photon., 6, 283–292.CrossRefGoogle Scholar
[346] Moss, T. S. 1959. Optical Properties of Semiconductors. Butterworth, London.Google Scholar
[347] Mott, N. F. 1970. Conduction in non-crystalline systems IV. Anderson localization in a disordered lattice. Philos. Mag., 22, 7–29.CrossRefGoogle Scholar
[348] Mujumdar, S., Ricci, M., Torre, R., and Wiersma, D. S. 2004. Amplified extended modes in random lasers. Phys. Rev. Lett., 93(5), 53903.CrossRefGoogle ScholarPubMed
[349] Muttalib, K. A. and Wolfle, P. 1999. One-sided log-normal distribution of conductances for a disordered quantum wire. Phys. Rev. Lett., 83, 3013–3016.CrossRefGoogle Scholar
[350] Muzykantskii, B. A. and Khmelnitskii, D. E. 1995. Nearly localized states in weakly disordered conductors. Phys. Rev. B, 51, 5480–5483.CrossRefGoogle ScholarPubMed
[351] Nazarov, Y. V. 1994. Limits of universality in disordered conductors. Phys. Rev. Lett., 73, 134–137.CrossRefGoogle ScholarPubMed
[352] Nielsen, M. A. and Chuang, I. L. 1959. Quantum Computation and Quantum Information. Cambridge University Press, Cambridge.Google Scholar
[353] Nieuwenhuizen, Th. M. and van Rossum, M. C. 1995. Intensity distribution of waves transmitted through a multiple scattering medium. Phys. Rev. Lett., 74, 2674–2677.CrossRefGoogle Scholar
[354] Nikolaev, I. S., Vos, W. L., and Koenderink, A. F. 2009. Accurate calculation of the local density of optical states in inverse-opal photonic crystals. J. Opt. Soc. Am. B, 26, 987–997.CrossRefGoogle Scholar
[355] Noda, S., Fujita, M., and Asano, T. 2007. Spontaneous-emission control by photonic crystals and nanocavities. Nature Photon., 1, 449–458.CrossRefGoogle Scholar
[356] Noda, S., Tomoda, K., Yamamoto, N., and Chutinan, A. 2000. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science, 289, 604–606.CrossRefGoogle ScholarPubMed
[357] Noginov, M. A., Egarievwe, S. U., Noginova, N., Caulfield, H. J., and Wang, J. C. 1999. Interferometric studies of coherence in a powder laser. Opt. Mater., 12(1), 127–134.CrossRefGoogle Scholar
[358] Noh, H., Yang, J. K., Boriskina, S. V., et al. 2011. Lasing in Thue–Morse structures with optimized aperiodicity. Appl. Phys. Lett., 98(20), 201109.CrossRefGoogle Scholar
[359] Nori, F. and Rodriguez, J. P. 1986. Acoustic and electronic properties of one-dimensional quasicrystals. Phys. Rev. B, 34, 2207–2211.CrossRefGoogle ScholarPubMed
[360] Notomi, M., Suzuki, H., Tamamura, T., and Edagawa, K. 2004. Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice. Phys. Rev. Lett., 92(12), 123906.CrossRefGoogle ScholarPubMed
[361] Notomi, M., Kuramochi, E., and Tanabe, T. 2008. Large-scale arrays of ultrahigh-q coupled nanocavities. Nature Photon., 2(12), 741–747.CrossRefGoogle Scholar
[362] Novotny, L. and Hecht, B. 2006. Principles of Nano-Optics. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
[363] Nozaki, K. and Baba, T. 2004. Quasiperiodic photonic crystal microcavity lasers. Appl. Phys. Lett., 84(24), 4875–4877.CrossRefGoogle Scholar
[364] Nozaki, K. and Baba, T. 2006. Lasing characteristics of 12-fold symmetric quasi-periodic photonic crystal slab nanolasers. Jpn. J. Appl. Phys., 45(8A), 6087–6090.CrossRefGoogle Scholar
[365] O'Brien, J. L., Furusawa, A., and Vuckovic, J. 2009. Photonic quantum technologies. Nature Photon., 3, 687–695.CrossRefGoogle Scholar
[366] O'Faolain, L., White, T. P., O'Brien, D., et al. 2007. Dependence of extrinsic loss on group velocity in photonic crystal waveguides. Opt. Express, 15(20), 13129–13138.Google Scholar
[367] Ogawa, S., Imada, M., Yoshimoto, S., Okano, M., and Noda, S. 2004. Control of light emission by 3D photonic crystals. Science, 305, 227–229.CrossRefGoogle ScholarPubMed
[368] Ogawa, S., Ishizaki, K., Furukawa, T., and Noda, S. 2008. Spontaneous emission control by 17 layers of three-dimensional photonic crystals. Electronics Lett., 44, 377.CrossRefGoogle Scholar
[369] Oton, C. J., Dal Negro, L., Gaburro, Z., et al. 2003. Light propagation in one-dimensional porous silicon complex systems. Phys. Stat. Sol. (a), 197, 298–302.Google Scholar
[370] Pappu, R. B., Taylor, J., and Gershenfeld, N. 2002. Physical one-way functions. Science, 297, 2026.CrossRefGoogle ScholarPubMed
[371] Park, H.-G., Kim, S.-H., Kwon, S.-H., et al. 2004. Electrically driven single-cell photonic crystal laser. Science, 305(5689), 1444–1447.CrossRefGoogle ScholarPubMed
[372] Patra, M. 2002. Theory for photon statistics of random lasers. Phys. Rev. A, 65(4), 043809.CrossRefGoogle Scholar
[373] Patterson, M., Hughes, S., Combrie, S., et al. 2009. Disorder-induced coherent scattering in slow-light photonic crystal waveguides. Phys. Rev. Lett., 102(25), 253903.CrossRefGoogle ScholarPubMed
[374] Pavesi, L., Panzarini, G., and Andreani, L. C. 1998. All-porous silicon-coupled microcavities: Experiment versus theory. Phys. Rev. B, 58, 15794–15800.CrossRefGoogle Scholar
[375] Payne, B., Yamilov, A., and Skipetrov, S. E. 2010. Anderson localization as position-dependent diffusion in disordered waveguides. Phys. Rev. B, 82, 024205.CrossRefGoogle Scholar
[376] Pedrotti, F. L., Pedrotti, L. M., and Pedrotti, L. S. 2006. Introduction to Optics. Benjamin-Cummings Pub Co.Google Scholar
[377] Pellandini, P., Stanley, R. P., Houdre, R., et al. 1997. Dual-wavelength laser emission from a coupled semiconductor microcavity. Appl. Phys. Lett., 71, 864–866.CrossRefGoogle Scholar
[378] Pendry, J. B. 1987. Quasi-extended electron states in strongly disordered systems. J. Phys. C, 20, 733.CrossRefGoogle Scholar
[379] Pendry, J. B. 1991. Catching moonbeams. Nature, 351, 438–439.CrossRefGoogle Scholar
[380] Pendry, J. B., Mackinnon, A., and Pretre, A. B. 1990. Maximal fluctuations – a new phenomenon in disordered systems. Physica A, 168, 400–407.CrossRefGoogle Scholar
[381] Pérez-Álvarez, R., García-Moliner, F., and Velasco, V. R. 2001. Some elementary questions in the theory of quasiperiodic heterostructures. J. Phys. Condens. Mat., 13(15), 3689.CrossRefGoogle Scholar
[382] Peter, E., Senellart, P., Martrou, D., et al. 2005. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett., 95, 067401.CrossRefGoogle Scholar
[383] Petrov, A., Krause, M., and Eich, M. 2009. Backscattering and disorder limits in slow light photonic crystal waveguides. Opt. Express, 17(10), 8676–8684.CrossRefGoogle ScholarPubMed
[384] Piéchon, F. 1996. Anomalous diffusion properties of wave packets on quasiperiodic chains. Phys. Rev. Lett., 76, 4372–4375.CrossRefGoogle ScholarPubMed
[385] Plerou, V. and Wang, Z. 1998. Conductances, conductance fluctuations, and level statistics on the surface of multilayer quantum Hall states. Phys. Rev. B, 58, 1967–1979.CrossRefGoogle Scholar
[386] Poddubny, A. N. and Ivchenko, E. L. 2010. Photonic quasicrystalline and aperiodic structures. Physica E, 42(7), 1871–1895.CrossRefGoogle Scholar
[387] Polson, R. C. and Vardeny, Z. V. 2004. Random lasing in human tissues. Appl. Phys. Lett., 85(7), 1289–1291.CrossRefGoogle Scholar
[388] Polson, R. C. and Vardeny, Z. V. 2005. Organic random lasers in the weak-scattering regime. Phys. Rev. B, 71(4), 045205.CrossRefGoogle Scholar
[389] Polson, R. C. and Vardeny, Z. V. 2010. Cancerous tissue mapping from random lasing emission spectra. J. Opt., 12(2), 024010.CrossRefGoogle Scholar
[390] Pompe, G., Rappen, T., Wehner, M., Knop, F., and Wegener, M. 1995. Transient response of a short-cavity semiconductor laser. Phys. Stat. Solidi B, 188(1), 175–180.CrossRefGoogle Scholar
[391] Poon, J. K. S., Scheuer, J., Mookherjea, S., et al. 2004. Matrix analysis of microring coupled-resonator optical waveguides. Opt. Express, 12(1), 90–103.CrossRefGoogle ScholarPubMed
[392] Poon, J. K. S., Zhu, L., DeRose, G., and Yariv, A. 2006. Transmission and group delay of microring coupled-resonator optical waveguides. Opt. Lett., 31, 456–458.CrossRefGoogle ScholarPubMed
[393] Popoff, S. M., Lerosey, G., Carminati, R., et al. 2010. Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media. Phys. Rev. Lett., 104, 100601.CrossRefGoogle Scholar
[394] Povey, I. M., Whitehead, D., Thomas, K., et al. 2006. Photonic crystal thin films of GaAs prepared by atomic layer deposition. Appl. Phys. Lett., 89, 104103.CrossRefGoogle Scholar
[395] Povinelli, M. L., Johnson, S. G., Lidorikis, E., Joannopoulos, J. D., and Soljacic, M. 2004. Effect of a photonic band gap on scattering from waveguide disorder. Appl. Phys. Lett., 84(18), 3639–3641.CrossRefGoogle Scholar
[396] Purcell, E. M. 1946. Spontaneous emission probabilities at radio frequencies. Phys. Rev., 69, 681.Google Scholar
[397] Qi, M., Lidorikis, E., Rakich, P. T., et al. 2004. A three-dimensional optical photonic crystal with designed point defects. Nature, 429, 538–542.CrossRefGoogle ScholarPubMed
[398] Qiu, F., Peng, R. W., Huang, X. Q., et al. 2003. Resonant transmission and frequency trifurcation of light waves in Thue–Morse dielectric multilayers. Europhys. Lett., 63(5), 853–859.CrossRefGoogle Scholar
[399] Qiu, F., Peng, R. W., Huang, X. Q., et al. 2007. Omnidirectional reflection of electromagnetic waves on Thue–Morse dielectric multilayers. Europhys. Lett., 68(5), 658–663.Google Scholar
[400] Raedt, H. D., Lagendijk, A., and de Vries, P. 1989. Transverse localization of light. Phys. Rev. Lett., 62, 47–50.CrossRefGoogle Scholar
[401] Ramanan, V., Nelson, E., Brzezinski, A., Braun, P. V., and Wiltzius, P. 2008. Three dimensional silicon-air photonic crystals with controlled defects using interference lithography. Appl. Phys. Lett., 92, 173304.CrossRefGoogle Scholar
[402] Rechtsman, M. C., Jeong, H.-C., Chaikin, P. M., Torquato, S., and Steinhardt, P. J. 2008. Optimized structures for photonic quasicrystals. Phys. Rev. Lett., 101(7), 73902.CrossRefGoogle ScholarPubMed
[403] Redding, B., Choma, M. A., and Cao, H. 2011. Spatial coherence of random laser emission. Opt. Lett., 36(17), 3404–3406.CrossRefGoogle ScholarPubMed
[404] Redding, B., Choma, M. A., and Cao, H. 2012. Speckle-free laser imaging using random laser illumination. Nature Photon., 6(6), 355–359.Google ScholarPubMed
[405] Reithmaier, J. P., Sȩk, G., Löffler, A., et al. 2004. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature, 432, 197–200.CrossRefGoogle Scholar
[406] Reyntjens, S. and Puers, R. 2001. A review of focused ion beam applications in microsystem technology. J. Micromech. Microeng., 11(4), 287.CrossRefGoogle Scholar
[407] Rinne, S. A., García-Santamaría, F., and Braun, P. V. 2007. Embedded cavities and waveguides in three-dimensional silicon photonic crystals. Nature Photon., 2, 52–56.Google Scholar
[408] Robertson, W. M., Arjavalingam, G., Meade, R. D., et al. 1992. Measurement of photonic band structure in a two-dimensional periodic dielectric array. Phys. Rev. Lett., 68, 2023–2026.CrossRefGoogle Scholar
[409] Rodriguez, A. W., McCauley, A. P., Avniel, Y., and Johnson, S. G. 2008. Computation and visualization of photonic quasicrystal spectra via Bloch's theorem. Phys. Rev. B, 77(10), 104201.CrossRefGoogle Scholar
[410] Roichman, Y. and Grier, D. G. 2005. Holographic assembly of quasicrystalline photonic heterostructures. Opt. Express, 13(14), 5434.CrossRefGoogle ScholarPubMed
[411] Ruijgrok, P. V., Wiiest, R., Rebane, A. A., Renn, A., and Sandoghdar, V. 2010. Spontaneous emission of a nanoscopic emitter in a strongly scattering disordered medium. Opt. Express, 18, 6360.CrossRefGoogle Scholar
[412] Sakoda, K. 1995. Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices. Phys. Rev. B, 52, 7982–7986.CrossRefGoogle ScholarPubMed
[413] Sanchez-Gil, J. A., Freilikher, V., Yurkevich, I., and Maradudin, A. A. 1998. Coexistence of ballistic transport, diffusion, and localization in surface disordered waveguides. Phys. Rev. Lett., 80(5), 948.CrossRefGoogle Scholar
[414] Sapienza, L., Thyrrestrup, H., Stobbe, S., et al. 2010. Cavity quantum electrody-namics with Anderson-localized modes. Science, 327, 1352–1355.CrossRefGoogle ScholarPubMed
[415] Sapienza, R., Bondareff, P., Pierrat, R., et al. 2011. Long-tail statistics of the Purcell factor in disordered media driven by near-field interactions. Phys. Rev. Lett., 106, 163902.CrossRefGoogle ScholarPubMed
[416] Sapienza, R., Costantino, P., Wiersma, D. S., et al. 2003. Optical analogue of electronic Bloch oscillations. Phys. Rev. Lett., 91, 263902.CrossRefGoogle ScholarPubMed
[417] Sapienza, R., García, P. D., Bertolotti, J., et al. 2007. Observation of resonant behavior in the energy velocity of diffused light. Phys. Rev. Lett., 99(23), 233902.CrossRefGoogle ScholarPubMed
[418] Sarma, R., Yamilov, A., Neupane, P., Shapiro, B., and Cao, H. 2014. Probing long-range intensity correlations inside disordered photonic nanostructures. arxiv.org.abs/1405.6339.
[419] Scheffold, F. and Maret, G. 1998. Universal conductance fluctuations of light. Phys. Rev. Lett., 81, 5800–5803.CrossRefGoogle Scholar
[420] Schilling, J., White, J., Scherer, A., et al. 2005. Three-dimensional macroporous silicon photonic crystal with large photonic band gap. Applied Physics Letters, 86, 011101.CrossRefGoogle Scholar
[421] Schuurmans, F. J. P., de Lang, D. T. N., Wegdam, G. H., Sprik, R., and Lagendijk, A. 1998. Local-fields effects on spontaneous emission in a dense supercritical gas. Phys. Rev. Lett., 80, 5077–5080.CrossRefGoogle Scholar
[422] Schwartz, T., Bartal, G., Fishman, S., and Segev, M. 2007. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature, 446, 52–55.CrossRefGoogle ScholarPubMed
[423] Sebbah, P., Hu, B., Genack, A. Z., Pnini, R., and Shapiro, B. 2002. Spatial field correlation: The building block of mesoscopic fluctuations. Phys. Rev. Lett., 88, 123901.CrossRefGoogle ScholarPubMed
[424] Sebbah, P., Hu, B., Klosner, J., and Genack, A. Z. 2006. Extended quasimodes within nominally localized random waveguides. Phys. Rev. Lett., 96, 183902.CrossRefGoogle ScholarPubMed
[425] Sebbah, P. and Vanneste, C. 2002. Random laser in the localized regime. Phys. Rev. B, 66(14), 144202.CrossRefGoogle Scholar
[426] Shapira, O. and Fischer, B. 2005. Localization of light in a random grating array in a single mode fiber. J. Opt. Soc. of Am. B, 22, 2542–2552.CrossRefGoogle Scholar
[427] Shapiro, B. 1999. New type of intensity correlation in random media. Phys. Rev. Lett., 83, 4733–4735.CrossRefGoogle Scholar
[428] Shechtman, D., Blech, I., Gratias, D., and Cahn, J. W. 1984. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett., 53, 1951–1953.CrossRefGoogle Scholar
[429] Sheng, P. 2005. Introduction to Wave Scattering, Localization and Mesoscopic Phenomena. Springer, Berlin.Google Scholar
[430] Sheng, P. 1995. Introduction to Wave Scattering, Localization and Mesoscopic Phenomena. Academic Press, New York.Google Scholar
[431] Shi, Z., Davy, M., Wang, J., and Genack, A. Z. 2013. Focusing through random media in space and time: a transmission matrix approach. Opt. Lett. 38, 2714.CrossRefGoogle ScholarPubMed
[432] Shi, Z. and Genack, A. Z. 2012. Transmission eigenvalues and the bare conductance in the crossover to Anderson localization. Phys. Rev. Lett., 108, 043901.CrossRefGoogle ScholarPubMed
[433] Shi, Z. and Genack, A. Z. 2014. Modal makeup of transmission eigenchannels. arxiv.org/abs/1406.3673.
[434] Shi, Z., Wang, J., and Genack, A. Z. 2014. Microwave conductance in random waveguides in the cross-over to Anderson localization and single-parameterscaling. Proceedings ofthe National Academy ofSciences (PNAS) 111, 2926.Google Scholar
[435] Shipman, P. D. and Newell, A. C. 2004. Phyllotactic patterns on plants. Phys. Lev. Lett., 92, 168102.CrossRefGoogle ScholarPubMed
[436] Shir, D., Liao, H., Jeon, S., et al. 2008. Three-dimensional nanostructures formed by single step, two-photon exposures through elastomeric penrose quasicrystal phase masks. Nano Letters, 8(8), 2236.CrossRefGoogle ScholarPubMed
[437] Shir, D. J., Nelson, E. C., Chanda, D., et al. 2010. Dual exposure, two-photon, conformal phase mask lithography for three dimensional silicon inverse woodpile photonic crystals. J. Vac. Sci. Technol. B, 28, 783–788.CrossRefGoogle Scholar
[438] Siegman, A. E. 1986. Lasers. University Science Books, Sausalito, USA.Google Scholar
[439] Sigalas, M. M., Soukoulis, C. M., Chan, C. T., Biswas, R., and Ho, K. M. 1999. Effect of disorder on photonic band gaps. Phys. Rev. B, 59, 12767–12770.CrossRefGoogle Scholar
[440] Sigler, L. E. 2002. Fibonacci's Liber Abaci. Springer-Verlag, New York.CrossRefGoogle Scholar
[441] Skipetrov, S. E. and van Tiggelen, B. A. 2003. Wave Scattering in Complex Media, from Theory to Applications. NATO series II, vol. 107. Kluwer, Dordrecht.Google Scholar
[442] Skipetrov, S. E. and van Tiggelen, B. A. 2004. Dynamics of weakly localized waves. Phys. Rev. Lett., 92, 113901.CrossRefGoogle ScholarPubMed
[443] Skipetrov, S. E. and van Tiggelen, B. A. 2006. Dynamics of Anderson localization in open 3D media. Phys. Rev. Lett., 96, 043902.CrossRefGoogle ScholarPubMed
[444] Slevin, K. and Ohtsuki, T. 1997. The Anderson transition: Time reversal symmetry and universality. Phys. Rev. Lett., 78, 4083–4086.CrossRefGoogle Scholar
[445] Smith, P. W. 1970. Mode-locking of lasers. Proc. IEEE, 58(9), 1342–1357.CrossRefGoogle Scholar
[446] Smolka, S., Thyrrestrup, H., Sapienza, L., et al. 2011. Probing the statistical properties of Anderson localization with quantum emitters. New J. Phys., 13, 063044.CrossRefGoogle Scholar
[447] Sokoloff, J. B. 1987. Anomalous electrical conduction in quasicrystals and Fibonacci lattices. Phys. Rev. Lett., 58, 2267–2270.CrossRefGoogle ScholarPubMed
[448] Soukoulis, C. M. (ed.). 1996. Photonic Band Gap Materials. Proceedings of the NATO Advanced Study Institute on Photonic Band Gap Materials. Kluwer, Dordrecht.CrossRef
[449] Soukoulis, C. M. (ed.). 2001. Photonic Crystals and Light Localization in the 21st Century. Kluwer, Dordrecht.CrossRef
[450] Soukoulis, C. M. and Economou, E. N. 1982. Localization in one-dimensional lattices in the presence of incommensurate potentials. Phys. Rev. Lett., 48, 1043–1046.CrossRefGoogle Scholar
[451] Soukoulis, C. M., Wang, X., Li, Q., and Sigalas, M. M. 1999. What is the right form of the probability distribution of the conductance at the mobility edge?Phys. Rev. Lett., 82, 668.CrossRefGoogle Scholar
[452] Sözöer, H. S., Haus, J. W., and Inguva, R. 1992. Photonic bands: Convergence problems with the plane-wave method. Phys. Rev. B, 45, 13962–13972.Google Scholar
[453] Sperling, T., Buehrer, W., Aegerter, C. M., and Maret, G. 2012. Direct determination of the transition to localization of light in three dimensions. Nature Photon., 7(1), 48–52.Google Scholar
[454] Sprik, R., van Tiggelen, B. A., and Lagendijk, A. 1996. Optical emission in periodic dielectrics. Europhys. Lett., 35, 265–270.CrossRefGoogle Scholar
[455] Stanley, R. P., Houdré, R., Oesterle, U., Ilegems, M., and Weisbuch, C. 1994. Coupled semiconductor microcavities. Appl. Phys. Lett., 65, 2093–2095.CrossRefGoogle Scholar
[456] Stano, P. and Jacquod, P. 2013. Suppression of interactions in multimode random lasers in the Anderson localized regime. Nature Photon., 7, 66–71.CrossRefGoogle Scholar
[457] Starykh, O. A., Jacquod, P. R. J., Narimanov, E. E., and Stone, A. D. 2000. Signature of dynamical localization in the resonance width distribution of wave-chaotic dielectric cavities. Phys. Rev. E, 62, 2078–2084.CrossRefGoogle ScholarPubMed
[458] Staude, I., McGuinness, C., Frölich, A., et al. 2012. Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures. Opt. Express, 20, 5607–5612.CrossRefGoogle ScholarPubMed
[459] Staude, I., Thiel, M., Essig, S., et al. 2010. Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths. Opt. Lett., 35, 1094–1096.CrossRefGoogle ScholarPubMed
[460] Staude, I., von Freymann, G., Essig, S., Busch, K., and Wegener, M. 2011. Waveguides in three-dimensional photonic-bandgap materials by direct laser writing and silicon double inversion. Opt. Lett., 36, 67.CrossRefGoogle ScholarPubMed
[461] Steinbach, F., Ossipov, A., Kottos, T., and Geisel, T. 2000. Statistics of resonances and of delay times in quasiperiodic Schrödinger equations. Phys. Rev. Lett., 85, 4426–4429.CrossRefGoogle ScholarPubMed
[462] Stephen, M. J. and Cwilich, G. 1987. Intensity correlation functions and fluctuations in light scattered from a random medium. Phys. Rev. Lett., 59, 285–287.CrossRefGoogle ScholarPubMed
[463] Steurer, W. and Sutter-Widmer, D. 2007. Photonic and phononic quasicrystals. J. Phys. D: Appl. Phys., 40(13), R229.CrossRefGoogle Scholar
[464] Stone, A. D., Mello, P. A., Muttalib, K., and Pichard, J. L. 1991. Random matrix theory and maximum entropy models for disordered conductors. Pages 369–448 in: Altshuler, B. L., Lee, P. A., and Webb, R. A. (eds), Mesoscopic Phenomena in Solids. Elsevier, Amsterdam.Google Scholar
[465] Storzer, M., Gross, P., Aegerter, C. M., and Maret, G. 2006. Observation of the critical regime near Anderson localization of light. Phys. Rev. Lett., 96, 063904.CrossRefGoogle Scholar
[466] Stoytchev, M. and Genack, A. Z. 1997. Measurement of the probability distribution of total transmission in random waveguides. Phys. Rev. Lett., 79, 309–312.CrossRefGoogle Scholar
[467] Stoytchev, M. and Genack, A. Z. 1999. Observations of non-Rayleigh statistics in the approach to photon localization. Opt. Lett., 24(4), 262–264.CrossRefGoogle ScholarPubMed
[468] Takahashi, S., Okano, M., Imada, M., and Noda, S. 2006. Three-dimensional photonic crystals based on double-angled etching and wafer-fusion techniques. Appl. Phys. Lett., 89, 123106.CrossRefGoogle Scholar
[469] Takahashi, S., Suzuki, K., Okano, M., et al. 2009. Direct creation of three-dimensional photonic crystals by a top-down approach. Nat. Mater., 8, 721–725.CrossRefGoogle ScholarPubMed
[470] Tandaechanurat, A., Ishida, S., Aoki, K., et al. 2009. Demonstration of high-Q (>8600) three-dimensional photonic crystal nanocavity embedding quantum dots. Appl. Phys. Lett., 94, 171115.CrossRefGoogle Scholar
[471] Tandaechanurat, A., Ishida, S., Guimard, D., et al. 2010. Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap. Nature Photon., 5, 91–94.Google Scholar
[472] Tang, L. and Yoshie, T. 2011. Light localization in woodpile photonic crystal built via two-directional etching. IEEE J. Quant. Elec., 47, 1028–1035.CrossRefGoogle Scholar
[473] Tétreault, N., Míguez, H., and Ozin, G. A. 2004. Silicon inverse opal – a platform for photonic bandgap research. Adv. Mater., 16, 1471–1476.CrossRefGoogle Scholar
[474] Tétreault, N., von Freymann, G., Deubel, M., et al. 2006. New route to three-dimensional photonic bandgap materials: Silicon double inversion of polymer templates. Adv. Mater., 18, 457–460.CrossRefGoogle Scholar
[475] Texier, C. and Comtet, A. 1999. Universality of the Wigner time delay distribution for one-dimensional random potentials. Phys. Rev. Lett., 82(21), 4220–4223.CrossRefGoogle Scholar
[476] Thouless, D. J. 1974. Electrons in disordered systems and the theory of localization. Phys. Rep., 13, 93–142.CrossRefGoogle Scholar
[477] Thouless, D. J. 1977. Maximum metallic resistance in thin wires. Phys. Rev. Lett., 39, 1167–1169.CrossRefGoogle Scholar
[478] Thue, A. 1909. Über Annäherungswerte algebraischer Zahlen. Journal für die reine und angewandte Mathematik, 135, 284–305.Google Scholar
[479] Thyrrestrup, H., Hartsuiker, A., Gérard, J.-M., and Vos, W. L. 2013. Non-exponential spontaneous emission dynamics for emitters in a time-dependent optical cavity. http://Arxiv.org, 1301.7612.
[480] Tian, C. S., Cheung, S. K., and Zhang, Z. Q. 2010. Local diffusion theory for localized waves in open media. Phys. Rev. Lett., 105, 263905.CrossRefGoogle ScholarPubMed
[481] Tjerkstra, R. W., Woldering, L. A., van den Broek, J. M., et al. 2011. Method to pattern etch masks in two inclined planes for three-dimensional nano- and microfabrication. J. Vac. Sci. Technol. B, 29, 061604.CrossRefGoogle Scholar
[482] Topolancik, J., Ilic, B., and Vollmer, F. 2007. Experimental observation of strong photon localization in disordered photonic crystal waveguides. Phys. Rev. Lett., 99, 253901.CrossRefGoogle ScholarPubMed
[483] Trevino, J., Cao, H., and Dal Negro, L. 2011. Circularly symmetric light scattering from nanoplasmonic spirals. Nano Lett., 11(5), 2008–2016.CrossRefGoogle ScholarPubMed
[484] Trevino, J., Liew, S. F., Noh, H., Cao, H., and Dal Negro, L. 2012. Geometrical structure, multifractal spectra and localized optical modes of aperiodic Vogel spirals. Opt. Express, 20(3), 3015–3033.CrossRefGoogle ScholarPubMed
[485] Tseng, A. A., Chen, K., Chen, C. D., and Ma, K. J. 2003. Electron beam lithography in nanoscale fabrication: Recent development. IEEE. T. Electron. Pa. M., 26(2), 141–149.Google Scholar
[486] Türeci, H. E., Ge, L., Rotter, S., and Stone, A. D. 2008. Strong interactions in multimode random lasers. Science, 320, 643–646.CrossRefGoogle ScholarPubMed
[487] van Albada, M. P., de Boer, J. F., and Lagendijk, A. 1990. Observation of long-range intensity correlation in the transport of coherent light through a random medium. Phys. Rev. Lett., 64, 2787–2790.CrossRefGoogle ScholarPubMed
[488] van Albada, M. P. and Lagendijk, A. 1985. Observation of weak localization of light in a random medium. Phys. Rev. Lett., 55, 2692–2695.Google Scholar
[489] van Albada, M. P., van Tiggelen, B. A., Lagendijk, A., and Tip, A. 1991. Speed of propagation of classical waves in strongly scattering media. Phys. Rev. Lett., 66, 3132–3135.CrossRefGoogle ScholarPubMed
[490] van Coevorden, D. V., Sprik, R., Tip, A., and Lagendijk, A. 1997. Photonic band structure of atomic lattices. Phys. Rev. Lett., 77, 2412–2415.Google Scholar
[491] van de Hulst, H. C. 1957. Light Scattering by Small Particles. Dover, New York.Google Scholar
[492] van den Broek, J. M., Woldering, L. A., Tjerkstra, R. W., et al. 2012. Inverse-woodpile photonic band gap crystals with a cubic diamond-like structure made from single-crystalline silicon. Adv. Func. Mater., 22, 25–31.CrossRefGoogle Scholar
[493] van der Beek, T., Barthelemy, P., Johnson, P. M., Wiersma, D. S., and Lagendijk, A. 2012. Light transport through disordered layers of dense gallium arsenide submicron particles. Phys. Rev. B., 85, 115401.CrossRefGoogle Scholar
[494] van der Molen, K. L., Mosk, A. P., and Lagendijk, A. 2006. Intrinsic intensity fluctuations in random lasers. Phys. Rev. A, 74(Nov), 053808.CrossRefGoogle Scholar
[495] van der Molen, K. L., Mosk, A. P., and Lagendijk, A. 2007. Quantitative analysis of several random lasers. Opt. Commun., 278(1), 110–113.CrossRefGoogle Scholar
[496] van der Molen, K. L., Tjerkstra, R. W., Mosk, A. P., and Lagendijk, A. 2007. Spatial extent of random laser modes. Phys. Rev. Lett., 98(14), 143901.CrossRefGoogle ScholarPubMed
[497] van Driel, A. F., Nikolaev, I. S., Vergeer, P., et al. 2007. Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models. Phys.Rev.B, 75, 035329.CrossRefGoogle Scholar
[498] van Langen, S. A., Brouwer, P. W., and Beenakker, C. W. J. 1996. Nonperturbative calculation of the probability distribution of plane-wave transmission through a disordered waveguide. Phys.Rev. E, 53(2), R1344–R1347.CrossRefGoogle ScholarPubMed
[499] van Putten, G. E., Akbulut, D., Bertolotti, J., et al. 2011. Scattering lens resolves sub-100 nm structures with visible light. Phys. Rev. Lett., 106, 193905.CrossRefGoogle ScholarPubMed
[500] van Putten, G. E. and Mosk, A. P. 2010. The information age in optics: Measuring the transmission matrix. Physics, 3, 22.CrossRefGoogle Scholar
[501] van Rossum, M. C. W. and Nieuwenhuizen, T. M. 1999. Multiple scattering of classical waves: Microscopy, mesoscopy, and diffusion. Rev. Mod. Phys., 71, 313–371.CrossRefGoogle Scholar
[502] van Tiggelen, B. A., Sebbah, P., Stoytchev, M., and Genack, A. Z. 1999. Delay-time statistics for diffuse waves. Phys.Rev.E, 59(6), 7166.CrossRefGoogle ScholarPubMed
[503] Vanneste, C. and Sebbah, P. 2005. Localized modes in random arrays of cylinders. Phys. Rev. E, 71(2), 026612.CrossRefGoogle Scholar
[504] Vanneste, C., Sebbah, P., and Cao, H. 2007. Lasing with resonant feedback in weakly scattering random systems. Phys. Rev. Lett., 98, 143902.CrossRefGoogle ScholarPubMed
[505] Vasconcelos, M. S. and Albuquerque, E. L. 1999. Transmission fingerprints in quasiperiodic dielectric multilayers. Phys. Rev. B, 59(17), 11128–11131.CrossRefGoogle Scholar
[506] Vats, N., John, S., and Busch, K. 2002. Theory of fluorescence in photonic crystals. Phys. Rev. A, 65, 043808.CrossRefGoogle Scholar
[507] Vellekoop, I. M. and Aegerter, C. M. 2010. Scattered light fluorescence microscopy: Imaging through turbid layers. Opt. Lett., 35, 1245–1247.CrossRefGoogle ScholarPubMed
[508] Vellekoop, I. M., Lagendijk, A., and Mosk, A. P. 2010. Exploiting disorder for perfect focusing. Nature Photon., 4, 320–322.CrossRefGoogle Scholar
[509] Vellekoop, I. M. and Mosk, A. P. 2007. Focusing coherent light through opaque strongly scattering media. Opt. Lett., 32, 2309–2311.CrossRefGoogle ScholarPubMed
[510] Vellekoop, I. M., van Putten, E. P., Lagendijk, A., and Mosk, A. P. 2008. Demixing light paths inside disordered metamaterials. Opt. Express, 16, 67–80.CrossRefGoogle ScholarPubMed
[511] Vlasov, Y. A., Bo, X.-Z., Sturm, J. C., and Norris, D. J. 2001. On-chip natural assembly of silicon photonic bandgap crystals. Nature, 414, 289–293.CrossRefGoogle ScholarPubMed
[512] Vogel, H. 1979. A better way to construct the sunflower head. Math. Biosci., 44, 179–189.CrossRefGoogle Scholar
[513] von Freymann, G., Ledermann, A., Thiel, M., et al. 2010. Three-dimensional nanostructures for photonics. Adv. Funct. Mater., 20, 1038.Google Scholar
[514] Vos, W. L., Koenderink, A. F., and Nikolaev, I. S. 2009. Orientation-dependent spontaneous emission rates of a two-level quantum emitter in any nanophotonic environment. Phys. Rev. A, 80, 053802.CrossRefGoogle Scholar
[515] Vos, W. L., Sprik, R., van Blaaderen, A., et al. 1996. Strong effects of photonic band structures on the diffraction of colloidal crystals. Phys.Rev.B, 53, 16231–16235.CrossRefGoogle ScholarPubMed
[516] Vos, W. L. and van Driel, H. M. 2000. Higher order Bragg diffraction by strongly photonic fcc crystals: Onset of a photonic bandgap. Phys. Lett. A, 272, 101–106.CrossRefGoogle Scholar
[517] Vos, W. L., van Driel, H. M., Megens, M., Koenderink, A. F., and Imhof, A. 2001. Experimental probes of the optical properties of photonic crystals. Pages 181–198 in: Proceedings of the NATO ASI “Photonic Crystals and Light Localization in the 21st century”Kluwer, Dordrecht.Google Scholar
[518] Wang, Ch. and Barrio, R. A. 1988. Theory of the Raman response in Fibonacci superlattices. Phys. Rev. Lett., 61, 191–194.CrossRefGoogle ScholarPubMed
[519] Wang, J., Chabanov, A. A., Lu, D. Y., Zhang, Z. Q., and Genack, A. Z. 2010. Dynamics of fluctuations of localized waves. Phys. Rev. B, 81, 241101(R).CrossRefGoogle Scholar
[520] Wang, J. and Genack, A. Z. 2011. Transport through modes in random media. Nature, 471, 345–348.CrossRefGoogle ScholarPubMed
[521] Wang, K. 2006. Light wave states in two-dimensional quasiperiodic media. Phys. Rev. B, 73(23), 235122.CrossRefGoogle Scholar
[522] Wang, X. H., Gu, B. Y., Wang, R. Z., and Xu, H. Q. 2003. Decay kinetic properties of atoms in photonic crystals with absolute gaps. Phys. Rev. Lett., 91, 113904.CrossRefGoogle ScholarPubMed
[523] Watson, G. H., Fleury, P. A., and McCall, S. L. 1987. Searching for photon localization in the time domain. Phys. Rev. Lett., 58, 945–948.CrossRefGoogle ScholarPubMed
[524] Weaver, R. 1993. Anomalous diffusivity and localization of classical waves in disordered media: The effect of dissipation. Phys.Rev.B, 47, 1077–1080.CrossRefGoogle ScholarPubMed
[525] Webb, R. A., Washburn, S., Umbach, C. P., and Laibowitz, R. B. 1985. Observations of h/e Aharonov–Bohm oscillations in normal-metal rings. Phys. Rev. Lett., 54, 2696–2699.CrossRefGoogle ScholarPubMed
[526] Wei, H., Underwood, D. F., Han, S. E., Blank, D. A., and Norris, D. J. 2009. The role of stress in the time-dependent optical response of silicon photonic band gap crystals. Appl. Phys. Lett., 95, 051910.CrossRefGoogle Scholar
[527] Whittaker, D. M. and Culshaw, I. S. 1999. Scattering-matrix treatment of patterned multilayer photonic structures. Phys. Rev. B, 60(4), 2610.CrossRefGoogle Scholar
[528] Wiersma, D. 2000. Laser physics: The smallest random laser. Nature, 406(6792), 132–135.CrossRefGoogle Scholar
[529] Wiersma, D. S. 2008. The physics and applications of random lasers. Nature Phys., 4, 359–367.CrossRefGoogle Scholar
[530] Wiersma, D. S. 2013. Disordered photonics. Nature Photon., 7, 188–196.CrossRefGoogle Scholar
[531] Wiersma, D. S., Bartolini, P., Lagendijk, A., and Righini, R. 1997. Localization of light in a disordered medium. Nature, 390, 671–673.CrossRefGoogle Scholar
[532] Wiersma, D. S. and Cavalieri, S. 2001. Light emission: A temperature-tunable random laser. Nature, 414(6865), 708–709.CrossRefGoogle ScholarPubMed
[533] Wiersma, D. S. and Lagendijk, A. 1996. Light diffusion with gain and random lasers. Phys. Rev. E, 54, 4256–4265.CrossRefGoogle ScholarPubMed
[534] Wiersma, D. S., van Albada, M. P., and Lagendijk, A. 1995. Random laser? Nature, 373, 203–204.CrossRef
[535] Wiersma, D. S., van Albada, M. P., van Tiggelen, B. A., and Lagendijk, A. 1995. Experimental evidence for recurrent multiple scattering events of light in disordered media. Phys. Rev. Lett., 74, 4193–1196.CrossRefGoogle ScholarPubMed
[536] Wigner, E. P. 1951. On the statistical distribution of the widths and spacing of nuclear resonance levels. Page 790 in: Proc. Cambridge Phil. Soc.
[537] Wijnhoven, J. E. G. J., Bechger, L., and Vos, W. L. 2001. Fabrication and characterization of large macroporous photonic crystals in titania. Chem. Mater., 13, 4486–4499.CrossRefGoogle Scholar
[538] Wijnhoven, J. E. G. J. and Vos, W. L. 1998. Preparation of photonic crystals made of air spheres in titania. Science, 281, 802–804.CrossRefGoogle ScholarPubMed
[539] Wilson, K. G. 1971. Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture. Phys. Rev. B, 4, 3174–3183.CrossRefGoogle Scholar
[540] Woldering, L. A., Mosk, A. P., Tjerkstra, R. W., and Vos, W. L. 2009. The influence of fabrication deviations on the photonic band gap of three-dimensional inverse woodpile nanostructures. J. Appl. Phys., 105, 093108.CrossRefGoogle Scholar
[541] Woldering, L. A., Tjerkstra, R. W., Jansen, H. V., Setija, I. D., and Vos, W. L. 2008. Periodic arrays of deep nanopores made in silicon with reactive ion etching and deep UV lithography. Nanotechnology, 19, 145304.CrossRefGoogle ScholarPubMed
[542] Woldeyohannes, M. and John, S. 1999. Coherent control of spontaneous emission near a photonic band edge: A qubit for quantum computation. Phys. Rev. A, 60, 5046–5068.CrossRefGoogle Scholar
[543] Wolf, P. E. and Maret, G. 1985. Weak localization and coherent backscattering of photons in disordered media. Phys. Rev. Lett., 55, 2696–2699.CrossRefGoogle ScholarPubMed
[544] Wu, X., Fang, W., Yamilov, A., et al. 2006. Random lasing in weakly scattering systems. Phys. Rev. A, 74(5), 053812.CrossRefGoogle Scholar
[545] Xia, F., Sekaric, L., and Vlasov, Y. A. 2007. Ultracompact optical buffers on a silicon chip. Nature Photon., 1(1), 65–71.CrossRefGoogle Scholar
[546] Xia, F., Rooks, M., Sekaric, L., and Vlasov, Y. 2007b. Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects. Opt. Express, 15(19), 11934–11941.
[547] Xu, J., Ma, R., Wang, X., and Tam, W. Y. 2007. Icosahedral quasicrystals for visible wavelengths by optical interference holography. Opt. Express, 15(7), 4287.CrossRefGoogle ScholarPubMed
[548] Xu, Y., Lee, R. K., and Yariv, A. 2000. Propagation and second-harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide. J. Opt. Soc. Am. B, 17(3), 387–400.CrossRefGoogle Scholar
[549] Yablonovitch, E. 1987. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 58, 2059–2062.CrossRefGoogle ScholarPubMed
[550] Yablonovitch, E., Gmitter, T. J., and Leung, K. M. 1991. Photonic band structure: The face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett., 67, 2295–2298.CrossRefGoogle ScholarPubMed
[551] Yablonovitch, E., Gmitter, T. J., Meade, R. D., et al. 1991. Donor and acceptor modes in photonic band structure. Phys. Rev. Lett., 67, 3380–3383.CrossRefGoogle ScholarPubMed
[552] Yamilov, A., Wu, X., Cao, H., and Burin, A. L. 2005. Absorption-induced confinement of lasing modes in diffusive random media. Opt. Lett., 30, 2430–2432.CrossRefGoogle ScholarPubMed
[553] Yang, J. K., Boriskina, S. V., Noh, H., et al. 2010. Demonstration of laser action in a pseudorandom medium. Appl. Phys. Lett., 97(22), 223101.CrossRefGoogle Scholar
[554] Yang, S. and Astratov, V. N. 2009. Spectroscopy of coherently coupled whispering-gallery modes in size-matched bispheres assembled on a substrate. Opt. Lett., 34(13), 2057–2059.CrossRefGoogle ScholarPubMed
[555] Yariv, A., Xu, Y., Lee, R. K., and Scherer, A. 1999. Coupled-resonator optical waveguide: A proposal and analysis. Opt. Lett., 24(11), 711–713.CrossRefGoogle ScholarPubMed
[556] Yariv, A. and Yeh, P. 1983. Optical Waves in Crystals: Propagation and Control of Laser Radiation. Wiley, New York.Google Scholar
[557] Ye, D.-X., Yang, Z.-P., Chang, A. S., et al. 2007. Experimental realization of a well-controlled 3D silicon spiral photonic crystal. J. Phys. D, 40, 2624–2628.CrossRefGoogle Scholar
[558] Yin, J., Huang, X., Liu, S., and Hu, S. 2007. Photonic bandgap properties of 8-fold symmetric photonic quasicrystals. Opt. Commun., 269(2), 385.CrossRefGoogle Scholar
[559] Yoshie, T., Scherer, A., Hendrickson, J., et al. 2004. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 432, 201–203.CrossRefGoogle Scholar
[560] Zhang, S., Lockerman, Y., and Genack, A. Z. 2010. Mesoscopic speckle. Phys. Rev. E, 82, 051114.CrossRefGoogle ScholarPubMed
[561] Zhang, S., Park, J., Milner, V., and Genack, A. Z. 2008. Delocalization transition in dimensional crossover in random layered media. Phys. Rev. Lett., 101, 183901.CrossRefGoogle ScholarPubMed
[562] Zhang, X., Zhang, Z.-Q., and Chan, C. T. 2001. Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals. Phys. Rev. B, 63(8), 081105.CrossRefGoogle Scholar
[563] Zhang, X. D., Zhang, Z. Q., and Chan, C. T. 2001. Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals. Phys. Rev. B, 63, 081105.CrossRefGoogle Scholar
[564] Zhang, Z. Q., Chabanov, A. A., Cheung, S. K., Wong, C. H., and Genack, A. Z. 2009. Dynamics of localized waves. Phys.Rev. B, 79, 144203.CrossRefGoogle Scholar
[565] Zhu, J. X., Pine, D. J., and Weitz, D. 1991. Internal reflection of diffusive light in random media. Phys.Rev.A, 44, 3948–3959.CrossRefGoogle ScholarPubMed
[566] Zhukovsky, S. V., Chigrin, D. N., and Kroha, J. 2006. Low-loss resonant modes in deterministically aperiodic nanopillar waveguides. J. Opt. Soc. Am. B, 23(10), 2265–2272.CrossRefGoogle Scholar
[567] Zito, G., Piccirillo, B., Santamato, E., et al. 2008. Two-dimensional photonic quasicrystals by single beam computer-generated holography. Opt. Express, 16(8), 5164.CrossRefGoogle ScholarPubMed
[568] Zoorob, M. E., Charlton, M. D. B., Parker, G. J., Baumberg, J. J., and Netti, M. C. 2000. Complete photonic bandgaps in 12-fold symmetric quasicrystals. Nature, 404(6779), 740–743.CrossRefGoogle ScholarPubMed
[569] Zurek, W. H. 1991. Decoherence and the transition from quantum to classical. Phys. Today, 44, 36–44.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Edited by Mher Ghulinyan, Lorenzo Pavesi, Università degli Studi di Trento, Italy
  • Book: Light Localisation and Lasing
  • Online publication: 18 December 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139839501.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Edited by Mher Ghulinyan, Lorenzo Pavesi, Università degli Studi di Trento, Italy
  • Book: Light Localisation and Lasing
  • Online publication: 18 December 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139839501.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Edited by Mher Ghulinyan, Lorenzo Pavesi, Università degli Studi di Trento, Italy
  • Book: Light Localisation and Lasing
  • Online publication: 18 December 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139839501.010
Available formats
×