Skip to main content Accessibility help
Light Localisation and Lasing
  • Access
  • Cited by 6

Book description

The properties of quasi-random and random photonic systems have been extensively studied over the last two decades, but recent technological advances have opened new horizons in the field, providing better samples and devices. New optical characterization techniques have enhanced understanding of the novel and fundamental properties of these systems. This book examines the full hierarchy of these systems, from 1D to 2D and 3D, from photonic crystals and random microresonator chains to quasi crystals. It treats photon transport as well as photon generation and random lasing, and deals with semiconductors, organics and glass materials. Presenting basic and state-of-the-art research on this fascinating field, this collection of self-contained chapters is an ideal introductory text for graduate students entering this field, as well as a useful reference for researchers in optics, photonics and optical engineering.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.


  • Frontmatter
    pp i-iv
  • Contents
    pp v-viii
  • List of contributors
    pp ix-x
  • Preface
    pp xi-xiv
  • 1 - Light propagation and emission in complex photonic media
    pp 1-12
  • 2 - Transport of localized waves via modes and channels
    pp 13-53
  • 3 - Modes structure and interaction in random lasers
    pp 54-79
  • 4 - Ordered and disordered light transport in coupled microring resonators
    pp 80-98
  • 5 - One-dimensional photonic quasicrystals
    pp 99-129
    • By Mher Ghulinyan, Center for Materials & Microsystems, Fondazione Bruno Kessler
  • 6 - 2D pseudo-random and deterministic aperiodic lasers
    pp 130-145
  • References
    pp 215-242
  • Index
    pp 243-246
[1] Abrahams, E. (eds). 2010. 50 Years of Anderson Localization. World Scientific Publishing Co. Pte. Ltd.
[2] Abrahams, E., Anderson, P. W., Licciardello, D. C., and Ramakrishnan, T. V. 1979. Scaling theory of localization: Absence of quantum diffusion in two dimensions. Phys. Rev. Lett., 42, 673–676.
[3] Abrikosov, A. A. and Ryzhkin, I. A. 1978. Conductivity of quasi-one-dimensional metal systems. Adv. Phys., 27, 147–230.
[4] Adar, R., Henry, C. H., Milbrodt, M. A., and Kistler, R. C. 1994. Phase coherence of optical waveguides. J. Lightwave Technol., 12(4), 603–606.
[5] Agarwal, V., Soto-Urueta, J. A., Becerra, D., and Mora-Ramos, M. E. 2005. Light propagation in polytype Thue–Morse structures made of porous silicon. Photonics and Nanostructures – Fundamentals and Applications, 3(2-3), 155–161. The Sixth International Symposium on Photonic and Electromagnetic Crystal Structures (PECS-VI) – PECS-VI.
[6] Akkermans, E. and Montambaux, G. 2007. Mesoscopic Physics of Electrons and Photons. Cambridge University Press, Cambridge.
[7] Akkermans, E., Wolf, P. E., and Maynard, R. 1986. Coherent backscattering of light by disordered media: Analysis of the peak lineshape. Phys. Rev. Lett., 56, 1471–1474.
[8] Altshuler, B. L. 1985. Pis'ma Zh. Eksp. Teor. Fiz., 41, 530.
[9] Altshuler, B. L., Lee, P. A., and Webb, R. A. (eds). 1991. Mesoscopic Phenomena in Solids. Elsevier, Amsterdam.
[10] Ambartsumyan, R. V., Basov, N. G., Kryukov, P. G., and Letokhov, V. S. 1966. Laser with a nonresonant feedback. JETP Lett., 3, 167–169.
[11] Anderson, P. W. 1958. Absence of diffusion in certain random lattices. Phys. Rev., 109, 1492–1505.
[12] Anderson, P. W., Thouless, D. J., Abrahams, E., and Fisher, D. S. 1980. New method for a scaling theory of localization. Phys. Rev. B, 22, 3519–3526.
[13] Andreasen, J., Asatryan, A. A., Botten, L. C., et al. 2011. Modes of random lasers. Adv. Opt. Photonics, 3(1), 88–127.
[14] Angelani, L., Conti, C., Ruocco, G., and Zamponi, F. 2006. Glassy behavior of light. Phys. Rev. Lett., 96(6), 065702.
[15] Antonoyiannakis, M. I. and Pendry, J. B. 1999. Electromagnetic forces in photonic crystals. Phys.Rev.B, 60, 2363–2374.
[16] Aoki, K., Guimard, D., Nishioka, M., et al. 2008. Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity. Nature Photon., 2, 688–692.
[17] Apalkov, V. M., Raikh, M. E., and Shapiro, B. 2004. Anomalously localized states in the Anderson model. Phys. Rev. Lett., 92, 066601.
[18] Armitage, A., Skolnick, M. S., Kavokin, A. V., et al. 1998. Polariton-induced optical asymmetry in semiconductor microcavities. Phys. Rev. B, 58, 15367–15370.
[19] Ashcroft, N. W. and Mermin, N. D. 1976. Solid State Physics. Holt, Rinehart, and Winston, USA.
[20] Astratov, V. N., Franchak, J. P., and Ashili, S. P. 2004. Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder. Appl. Phys. Lett., 85, 5508–5510.
[21] Aulbach, J., Gjonaj, B., Johnson, P. M., Mosk, A. P., and Lagendijk, A. 2011. Control of light transmission through opaque scattering media in space and time. Phys. Rev.Lett., 106, 103901.
[22] Azbel, M. Ya. 1983. Eigenstates and properties of random systems in one dimension at zero temperature. Phys. Rev. B, 28, 4106–4125.
[23] Baake, M. 1999. A Guide to Mathematical Quasicrystals. arXiv:math-ph, 9901014 v1.
[24] Baake, M. and Grimm, U. 2009. Kinematic diffraction is insufficient to distinguish order from disorder. Phys. Rev. B, 79(2), 20203.
[25] Baake, M., Grimm, U., and Moody, R. V. 2002. What is Aperiodic Order?arXiv:math.HO, 0203252v1.
[26] Baake, M., and Grimm, U. 2010. Surprises in aperiodic diffraction. J. Phys. - Conf. Series, 226(Apr.), 012023.
[27] Baba, T. 2008. Slow light in photonic crystals. Nature Photon., 2, 465–473.
[28] Babuty, A., Joulain, K., Chapuis, P.-O., Greffet, J.-J., and De Wilde, Y. 2013. Blackbody spectrum revisited in the near field. Phys. Rev. Lett., 110, 146103.
[29] Bachelard, N., Andreasen, J., Gigan, S., and Sebbah, P. 2012. Taming random lasers through active spatial control of the pump. Phys. Rev. Lett., 109, 033903.
[30] Ball, P. 2012. Feeling the heat. Nature, 492, 175–176.
[31] Barbé, A. and von Haeseler, F. 2005. Correlation and spectral properties of higher–dimensional paperfolding and Rudin–Shapiro sequences. J. Phys. A - Math. Gen., 38(12), 2599–2622.
[32] Barbé, A. and Von Haeseler, F. 2007. Correlation and spectral properties of multidimensional Thue–Morse sequences. Int. J. Bifurcat. Chaos, 17(04), 1265–1303.
[33] Barnes, W. L., Dereux, A., and Ebbesen, T. W. 2003. Surface plasmon subwave-length optics. Nature, 424, 824–830.
[34] Barthelemy, P., Ghulinyan, M., Gaburro, Z., et al. 2007. Optical switching by capillary condensation. Nature Photon., 1, 172–175.
[35] Barthelemy, P., Bertolotti, J., and Wiersma, D. S. 2008. A Lévy flight for light. Nature, 453(7194), 495–498.
[36] Bayer, M., Reinecke, T. L., Weidner, F., et al. 2001. Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators. Phys. Rev. Lett., 86, 3168–3171.
[37] Becker, C., Linden, S., von Freymann, G., et al. 2005. Two-color pump–probe experiments on silicon inverse opals. Appl. Phys. Lett., 87, 091111.
[38] Beenakker, C. W. J. 1997. Random-matrix theory of quantum transport. Rev. Mod. Phys., 69, 731–808.
[39] Bellomo, B., Lo Franco, R., Maniscalco, S., and Compagno, G. 2008. Entanglement trapping in structured environments. Phys. Rev. A, 78, 060302.
[40] Bendickson, J. M., Dowling, J. P., and Scalora, M. 1996. Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures. Phys. Rev. E, 50, 4107–4121.
[41] Berger, G. A., Kempe, M., and Genack, A. Z. 1997. Dynamics of stimulated emission from random media. Phys. Rev. E, 56, 6118–6122.
[42] Bertolotti, J., Galli, M., Sapienza, R., et al. 2006. Wave transport in random systems: Multiple resonance character of necklace modes and their statistical behavior. Phys. Rev. E, 74, 035602(R).
[43] Bertolotti, J., Gottardo, S., Wiersma, D. S., Ghulinyan, M., and Pavesi, L. 2005. Optical necklace states in Anderson localized 1D systems. Phys. Rev. Lett., 94, 113903.
[44] Bertolotti, J., van Putten, E. G., Blum, C., et al. 2012. Non-invasive imaging through opaque scattering layers. Nature, 491, 232–234.
[45] Bindi, L., Steinhardt, P. J., Yao, N., and Lu, P. J. 2009. Natural quasicrystals. Science, 324(5932), 1306.
[46] Birowosuto, M. D., Skipetrov, S. E., Vos, W. L., and Mosk, A. P. 2010. Observation of spatial fluctuations of the local density of states in random photonic media. Phys. Rev. Lett., 105, 013904.
[47] Bita, I., Choi, T., Walsh, M. E., Smith, H. I., and Thomas, E. L. 2007. Large-area 3D nanostructures with octagonal quasicrystalline symmetry via phase-mask lithography. Adv. Mater., 19(10), 1403.
[48] Björk, G., Karlsson, A., and Yamamoto, Y. 1994. Definition of a laser threshold. Phys. Rev. A, 50, 1675–1680.
[49] Blanco, A., Chomski, E., Grabtchak, S., et al. 2000. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature, 405, 437–439.
[50] Bleuse, J., Claudon, J., Creasey, M., et al. 2011. Inhibition, enhancement, and control of spontaneous emission in photonic nanowires. Phys. Rev. Lett., 106, 103601.
[51] Bliokh, K. Yu., Bliokh, Yu. P., et al. 2008. Coupling and level repulsion in the localized regime: From isolated to quasiextended modes. Phys. Rev. Lett., 101, 133901.
[52] Bloch, F. 1929. Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Physik, 52, 555–600.
[53] Blum, C., Zijlstra, N., Lagendijk, A., et al. 2012. Nanophotonic control of the Fürster resonance energy transfer efficiency. Phys. Rev. Lett., 109, 203601.
[54] Boer, J. F. de., van Rossum, M. C. W., van Albada, M. P., Nieuwenhuizen, T. M., and Lagendijk, A. 1994. Probability distribution of multiple scattered light measured in total transmission. Phys. Rev. Lett., 73, 2567–2570.
[55] Bohren, C. F. and Huffmann, D. R. 1983. Absorption and Scattering of Light by Small Particles. Wiley, New York.
[56] Boriskina, S. V., Gopinath, A., and Dal Negro, L. 2008. Optical gap formation and localization properties of optical modes in deterministic aperiodic photonic structures. Opt. Express, 16(23), 18813–18826.
[57] Boriskina, S. V., Gopinath, A., and Dal Negro, L. 2009. Optical gaps, mode patterns and dipole radiation in two-dimensional aperiodic photonic structures. Physica E: Low-dimensional Systems and Nanostructures, 41(6), 1102–1106.
[58] Brenner, N. and Fishman, S. 1999. Pseudo-randomness and localization. Nonlin-earity, 5(1), 211–235.
[59] Brouwer, P. W. 1998. Transmission through a many-channel random waveguide with absorption. Phys. Rev. B, 57(17), 10526–10536.
[60] Bruggeman, D. A. G. 1935. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. Ann. Phys. (Leipzig), 24, 636–679.
[61] Burresi, M., Radhalakshmi, V., Savo, R., et al. 2012. Weak localization of light in superdiffusive random systems. Phys. Rev. Lett., 108(11), 110604.
[62] Busch, K. and John, S. 1998. Photonic band gap formation in certain self-organizing systems. Phys. Rev. E, 58, 3896–3908.
[63] Busch, K., von Freymann, G., Linden, S., et al. 2007. Periodic nanostructures for photonics. Phys. Rep., 444, 101–202.
[64] Bykov, V. P. 1972. Spontaneous emission in a periodic structure. Sov. Phys. JETP, 35, 269–273.
[65] Campbell, M., Sharp, D. N., Harrison, M. T., Denning, R. G., and Turberfield, A. J. 2000. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature, 404, 53–56.
[66] Cao, D., Tandaechanurat, A., Nakayama, S., et al. 2012. Silicon-based three-dimensional photonic crystal nanocavity laser with In As quantum-dot gain. Appl. Phys. Lett., 101, 191107.
[67] Cao, H. 2003. Lasing in disordered media. Chap. 6, pages 317–370 in: Wolf, E. (ed.), Progress in Optics, vol. 45. Elsevier.
[68] Cao, H. 2005. Review on latest developments in random lasers with coherent feedback. J. Phys. A, 38, 10497.
[69] Cao, H., Ling, Y., Xu, J. Y., Cao, C. Q., and Kumar, P. 2001. Photon statistics of random lasers with resonant feedback. Phys. Rev. Lett., 86(20), 4524–4527.
[70] Cao, H., Xu, J. Y., Zhang, D. Z., et al. 2000. Spatial confinement of laser light in active random media. Phys. Rev. Lett., 84(24), 5584–5587.
[71] Cao, H., Zhao, Y. G., Ho, S. T., et al. 1999. Random laser action in semiconductor powder. Phys. Rev. Lett., 82, 2278–2281.
[72] Capaz, R. B., Koiller, B., and de Queiroz, S. L. A. 1990. Gap states and localization properties of one-dimensional Fibonacci quasicrystals. Phys.Rev.B, 42, 6402–6407.
[73] Castellanos-Beltran, M. A., Ngo, D. Q., Sharks, W. E., Jayich, A. B., and Harris, J. G. E. 2013. Measurement of the full distribution of persistent current in normal-metal rings. Phys. Rev. Lett., 110, 156801.
[74] Cerdán, L., Enciso, E., Martín, V., et al. 2012. FRET-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles. Nature Photon., 6, 621–626.
[75] Chabanov, A. A. and Genack, A. Z. 2001. Statistics of dynamics of localized waves. Phys. Rev. Lett., 87(23), 233903.
[76] Chabanov, A. A. and Genack, A. Z. 2005. Statistics of the mesoscopic field. Phys. Rev. E, 72, 055602.
[77] Chabanov, A. A., Hu, B., and Genack, A. Z. 2004. Dynamic correlation in wave propagation in random media. Phys. Rev. Lett., 93, 123901.
[78] Chabanov, A. A., Stoytchev, M., and Genack, A. Z. 2000. Statistical signatures of photon localization. Nature, 404, 850–853.
[79] Chabanov, A. A., Zhang, Z. Q., and Genack, A. Z. 2003. Breakdown of diffusion in dynamics of extended waves in mesoscopic media. Phys. Rev. Lett., 90, 203903.
[80] Chaikin, P. M. and Lubensky, T. C. 2000. Principles of Condensed Matter Physics. Cambridge University Press, Cambridge.
[81] Chandrasekhar, S. 1950. Radiative Transfer. Oxford University Press, Oxford.
[82] Cheng, C. C., Arbet-Engels, V., Scherer, A., and Yablonovitch, E. 1996. Nanofabricated three dimensional photonic crystals operating at optical wavelengths. Phys. Scr., T68, 17–20.
[83] Cheng, S. S. M., Li, L.-M., Chan, C. T., and Zhang, Z. Q. 1999. Defect and transmission properties of two-dimensional quasiperiodic photonic band-gap systems. Phys. Rev. B, 59(6), 4091.
[84] Cheng, Z., Savit, R., and Merlin, R. 1988. Structure and electronic properties of Thue–Morse lattices. Phys. Rev. B, 37(9), 4375–4382.
[85] Cherroret, N., Peña, A., Chabanov, A. A., and Skipetrov, S. E. 2009. Nonuni-versal dynamic conductance fluctuations in disordered systems. Phys. Rev. B, 80, 045118.
[86] Cheung, S. K., Zhang, X., Zhang, Z. Q., Chabanov, A. A., and Genack, A. Z. 2004. Impact of weak localization in the time domain. Phys. Rev. Lett., 92, 173902.
[87] Ching, E. S. C., Leung, P. T., Suen, W. M., Tong, S. S., and Young, K. 1998. Waves in open systems: Eigenfunction expansions. Rev. Mod. Phys., 70, 1545–1554.
[88] Choi, Y., Yoon, C., Kim, M., et al. 2012. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys. Rev. Lett., 109, 203901.
[89] Chu, S. T., Little, B. E., Pan, W., Kaneko, T., and Kokubun, Y. 1999. Cascaded microring resonators for crosstalk reduction and spectrum cleanup in add-drop filters. IEEE Photon. Technol. Lett., 11(11), 1423–1425.
[90] Chutinan, A. and Noda, S. 1999. Effects of structural fluctuations on the photonic bandgap during fabrication of a photonic crystal. J. Opt. Soc. Am. B, 16, 240–244.
[91] Conti, C., Leonetti, M., Fratalocchi, A., Angelani, L., and Ruocco, G. 2008. Condensation in disordered lasers: Theory, 3<JT>D + 1 simulations, and experiments. Phys. Rev. Lett., 101(14), 143901.
[92] Cooper, M. L., Gupta, G., Green, W. M. J., et al. 2010. 235-Ring coupled-resonator optical waveguides. CLEO 2010 Proceedings of the Conference on Lasers and Electro-Optics CTUHH3.
[93] Cooper, M. L., Gupta, G., Ong, J. R., et al. 2011. Correlations between light at spec-trally distant wavelengths in coupled microring resonator waveguides. Proceedings of the Conference on Lasers and Electro-Optics CWMH.
[94] Cooper, M. L., Gupta, G., Schneider, M. A., et al. 2010. Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides. Opt. Express, 18, 26505–26516.
[95] Cooper, M. L. and Mookherjea, S. 2011. Modeling of multiband transmission in long silicon coupled-resonator optical waveguides. IEEE Photon. Technol. Lett., 23(13), 872–874.
[96] Coteus, P. W., Knickerbocker, J. U., Lam, C. H., and Vlasov, Y. A. 2011. Technologies for exascale systems. IBM J. Res. Dev., 55, paper nr. 14.
[97] Cullis, A. G., Canham, L. T., and Calcott, P. D. J. 1997. The structural and luminescence properties of porous silicon. J. Appl. Phys., 82, 909–966.
[98] Dal Negro, L. and Boriskina, S. V. 2012. Deterministic aperiodic nanostructures for photonics and plasmonics applications. Laser Photon. Rev., 6, 178–218.
[99] Dal Negro, L. and Feng, N.-N. 2007. Spectral gaps and mode localization in Fibonacci chains of metal nanoparticles. Opt. Express, 15(22), 14396–14403.
[100] Dal Negro, L., Feng, N.-N., and Gopinath, A. 2008. Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays. J. Opt. A - Pure Appl. Op., 10(6), 064013.
[101] Dal Negro, L., Lawrence, N., and Trevino, J. 2012. Analytical light scattering and orbital angular momentum spectra of arbitrary Vogel spirals. Opt. Express, 20(16), 18209.
[102] Dal Negro, L., Oton, C. J., Gaburro, Z., et al. 2003. Light transport through band edge states of Fibonacci quasicrystals. Phys. Rev. Lett., 90, 055501.
[103] Dal Negro, L., Stolfi, M., Yi, Y., et al. 2004. Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue–Morse quasicrystals. Appl. Phys. Lett., 84(25), 5186–5188.
[104] Dal Negro, L., Yi, J. H., Nguyen, V., Yi, Y., Michel, J., and Kimerling, L. C. 2005. Spectrally enhanced light emission from aperiodic photonic structures. Appl. Phys. Lett., 86(26), 261905.
[105] Dalfovo, F., Giorgini, S., Pitaevskii, L. P., and Stringari, S. 1999. Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys., 71 (Apr.), 463–512.
[106] Dalichaouch, R., Armstrong, J. P., Schultz, S., Platzman, P. M., and McCall, S. L. 1991. Microwave localization by two-dimensional random scattering. Nature, 354, 53–55.
[107] Davanco, M., Ong, J., Rong, S., et al. 2012. Telecommunications-band heralded single photons from a silicon nanophotonic chip. Appl. Phys. Lett., 100(26), 261104.
[108] David, A., Benisty, H., and Weisbuch, C. 2012. Photonic crystal light-emitting sources. Rep. Prog. Phys., 75, 126501.
[109] Davy, M., Shi, Z., and Genack, A. Z. 2012. Focusing through random media: Eigenchannel participation number and intensity correlation. Phys.Rev.B, 85, 035105.
[110] Davy, M., Shi, Z., Wang, J., and Genack, A. Z. 2013. Transmission statistics and focusing in single disordered samples. Opt. Express, 21, 10367–10375.
[111] Davy, M., Shi, Z., Wang, J., and Genack, A. Z. 2014. Transmission eigenchannels and the densities of states of random media.
[112] Deubel, M., von Freymann, G., Wegener, M., et al. 2004. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nature Mater., 3(7), 444.
[113] Dorokhov, O. N. 1982. Transmission coefficient and the localization length of an electron in N bond disorder chains. Pis'ma Zh. Eksp. Teor. Fiz., 36, 259.
[114] Dorokhov, O. N. 1984. On the coexistence of localized and extended electronic states in the metallic phase. Solid State Commun., 51, 381–384.
[115] Douady, S. and Couder, Y. 1996. Phyllotaxis as a dynamical self organizing process. J. Theor. Biology, 178, 255–274.
[116] Dougherty, E. R. 1990. Probability and Statistics for the Engineering, Computing and Physical Sciences. Prentice-Hall International Inc., Englewood, New Jersey.
[117] Dowling, J. P., Scalora, M., and Bloemer, M. J. 1994. The photonic band edge laser: A new approach to gain enhancement. J. Appl. Phys., 75, 1896–1899.
[118] Dyson, F. J. and Mehta, M. L. 1962. Statistical theory of the energy levels of complex systems. I-V. J. Math. Phys., 3, 140.
[119] Economou, E. N. 2006. Green's Functions in Quantum Physics, Third Edn. Springer, Berlin.
[120] Economou, E. N. and Sigalas, M. M. 1993. Classical wave propagation in periodic structures: Cermet versus network topology. Phys. Rev. B, 48, 13434–13438.
[121] Eiselt, M. H., Clausen, C. B., and Tkach, R. W. 2003. Performance characterization of components with group delay fluctuations. IEEE Photon. Technol. Lett., 15(8), 1076–1078.
[122] El-Dardiry, R. G. S., and Lagendijk, A. 2011. Tuning random lasers by engineered absorption. Appl. Phys. Lett., 98(16), 161106–161106.
[123] El-Dardiry, R. G. S., Mosk, A. P., et al. 2010. Experimental studies on the mode structure of random lasers. Phys.Rev.A, 81(4), 043830.
[124] Engelen, R. J. P., Mori, D., Baba, T., and Kuipers, L. 2008. Two regimes of slow-light losses revealed by adiabatic reduction of group velocity. Phys. Rev. Lett., 101(10), 03901.
[125] Esaki, L. and Tsu, R. 1970. Superlattice and negative differential conductivity in semiconductors. IBM J. Res.Dev., 14, 61–65.
[126] Euser, T. G., Molenaar, A. J., Fleming, J. G., et al. 2008. All-optical octave-broad ultrafast switching of Si woodpile photonic band gap crystals. Phys.Rev.B, 77, 115214.
[127] Euser, T. G., Wei, H., Kalkman, J., et al. 2007. All-optical octave-broad ultrafast switching of Si woodpile photonic band gap crystals. J. Appl. Phys., 102, 053111.
[128] Faez, S., Strybulevych, A., Page, J. H., Lagendijk, A., and van Tiggelen, B. A. 2009. Observation of multifractality in Anderson localization of ultrasound. Phys. Rev. Lett., 103, 155703.
[129] Fallert, J., Dietz, R. J. B., Sartor, J., et al. 2009. Co-existence of strongly and weakly localized random laser modes. Nature Photon., 3(5), 279–282.
[130] Feng, S., Kane, C., Lee, P. A., and Stone, A. D. 1988. Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett., 61, 834–837.
[131] Fermi, E. 1932. Quantum theory of radiation. Rev. Mod. Phys., 4, 87–132.
[132] Ferry, D. K., Alkis, R., and Gilbert, M. J. 2007. Semiconductor device scaling: The role of ballistic transport. J. Comput. Theor. Nanos., 4(6), 1149–1152.
[133] Fink, M. 1992. Time reversal of ultrasonic fields-Part I: Basic principles. IEEE T. Ultrason. Ferr., 39, 555–566.
[134] Fischer, J. and Wegener, M. 2011. Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy. Opt. Mater. Express, 1(4), 614–624.
[135] Fleming, J. G. and Lin, S. Y. 1999. Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 µm. Opt. Lett., 24, 49–51.
[136] Florescu, L. and John, S. 2004. Photon statistics and coherence in light emission from a random laser. Phys. Rev. Lett., 93(1), 13602.
[137] Folli, V., Puglisi, A., Leuzzi, L., and Conti, C. 2012. Shaken granular lasers. Phys. Rev. Lett., 108(24), 248002.
[138] Freymann, G., Ledermann, A., Thiel, M., et al. 2010. Three dimensional nanostructures for photonics. Adv. Func. Mater., 20, 1038–1052.
[139] Frolov, S. V., Vardeny, Z. V., and Yoshino, K. 1999. Cooperative and stimulated emission in poly(p-phenylene-vinylene) thin films and solutions. Phys.Rev.B, 57, 9141–9147.
[140] Fujiwara, T., Kohmoto, M., and Tokihiro, T. 1989. Multifractal wave functions on a Fibonacci lattice. Phys. Rev. B, 40, 7413–7416.
[141] Fussell, D. P., Hughes, S., and Dignam, M. M. 2008. Influence of fabrication disorder on the optical properties of coupled-cavity photonic crystal waveguides. Phys. Rev. B, 78(14), 144201.
[142] Galisteo-López, J. F., Ibisate, M., Sapienza, R., et al. 2011. Self-assembled photonic structures. Adv. Mater., 23, 30–69.
[143] Galusha, J. W., Jorgensen, M. R., and Bartl, M. H. 2010. Diamond-structured titania photonic-bandgap crystals from biological templates. Adv. Mater., 22, 107–110.
[144] Garcia, N. and Genack, A. Z. 1989. Crossover to strong intensity correlation for microwave radiation in random media. Phys. Rev. Lett., 63, 1678–1681.
[145] Garcia, N. and Genack, A. Z. 1991. Anomalous photon diffusion at the threshold of the Anderson localization transition. Phys. Rev. Lett., 66, 1850–1853.
[146] Garcia, N., Genack, A. Z., and Lisyansky, A. A. 1992. Measurement of the transport mean free path of diffusing photons. Phys.Rev.B, 46, 14475–14479.
[147] Garcia, P. D., Sapienza, R., Toninelli, C., Lopez, C., and Wiersma, D. S. 2011. Photonic crystals with controlled disorder. Phys. Rev. A, 84, 023813.
[148] García-Martín, A. and Sáenz, J. J. 2001. Universal conductance distributions in the crossover between diffusive and localization regimes. Phys. Rev. Lett., 87, 116603.
[149] Gellermann, W., Kohmoto, M., Sutherland, B., and Taylor, P. C. 1994. Localization of light waves in Fibonacci dielectric multilayers. Phys. Rev. Lett., 72, 633–636.
[150] Genack, A. Z. 1987. Optical transmission in disordered media. Phys. Rev. Lett., 58, 2043–2046.
[151] Genack, A. Z. and Drake, J. M. 1990. Relationship between optical intensity, fluctuations and pulse propagation in random media. Europhys. Lett., 11, 331.
[152] Genack, A. Z. and Drake, J. M. 1994. Scattering for super-radiation. Nature, 368, 400–401.
[153] Genack, A. Z. and Garcia, N. 1991. Observation of photon localization in a three-dimensional disordered system. Phys. Rev. Lett., 66, 2064–2067.
[154] Genack, A. Z., Garcia, N., and Polkosnik, W. 1990. Long-range intensity correlation in random media. Phys. Rev. Lett., 65, 2129–2132.
[155] Genack, A. Z., Sebbah, P., Stoytchev, M., and van Tiggelen, B. A. 1999. Statistics of wave dynamics in random media. Phys. Rev. Lett., 82(4), 715.
[156] Gertsenshtein, M. E. and Vasil'ev, V. B. 1959. Waveguides with random inhomo-geneities and Brownian motion in the Lobachevsky plane. Theor. of Probab. its Appl., 4, 391–398.
[157] Ghulinyan, M. 2007. Formation of optimal-order necklace modes in one-dimensional random photonic superlattices. Phys. Rev. A, 76, 013822.
[158] Ghulinyan, M. 2007. Periodic oscillations in transmission decay of Anderson localized one-dimensional dielectric systems. Phys. Rev. Lett., 99, 063905.
[159] Ghulinyan, M., Gaburro, Z., Wiersma, D. S., and Pavesi, L. 2006. Tuning of resonant Zener tunneling by vapor diffusion and condensation in porous optical superlattices. Phys. Rev. B, 74, 045118.
[160] Ghulinyan, M., Galli, M., Toninelli, C., et al. 2006. Wide-band transmission of nondistorted slow waves in one-dimensional optical superlattices. Appl. Phys. Lett., 88, 241103.
[161] Ghulinyan, M., Oton, C. J., Bonetti, G., Gaburro, Z., and Pavesi, L. 2003. Free-standing porous silicon single and multiple optical cavities. J. Appl. Phys., 93, 9724–9729.
[162] Ghulinyan, M., Oton, C. J., Dal Negro, L., et al. 2005. Light-pulse propagation in Fibonacci quasicrystals. Phys. Rev. B, 71, 094204.
[163] Ghulinyan, M., Oton, C. J., Gaburro, Z., Bettotti, P., and Pavesi, L. 2003. Porous silicon free-standing coupled microcavities. Appl. Phys. Lett., 82, 1550–1552.
[164] Ghulinyan, M., Oton, C. J., Gaburro, Z., et al. 2005. Zener tunneling of light waves in an optical superlattice. Phys. Rev. Lett., 94, 127401.
[165] Gifford, D. K., Soller, B. J., Wolfe, M. S., and Froggatt, M. E. 2005. Optical vector network analyzer for single-scan measurements of loss, group delay, and polarization mode dispersion. Appl. Opt., 44(34), 7282–7286.
[166] Gjonaj, B., Aulbach, J., Johnson, P. M., et al. 2011. Active spatial control of plasmonic fields. Phys. Rev. E, 5, 360–363.
[167] Goetschy, A. and Stone, A. D. 2013. Filtering random matrices: the effect of incomplete channel control in multiple scattering. arXiv:, 1304.5562.
[168] Goh, T., Suzuki, S., and Sugita, A. 1997. Estimation of waveguide phase error in silica-based waveguides. J. Lightwave Technol., 15(11), 2107–2113.
[169] Gopar, V. A., Muttalib, K. A., and Wolfle, P. 2002. Conductance distribution in disordered quantum wires: Crossover between the metallic and insulating regimes. Phys. Rev. B, 66, 174204.
[170] Gopinath, A., Boriskina, S. V., Feng, N.-N., Reinhard, B. M., and Dal Negro, L. 2008. Photonic-plasmonic scattering resonances in deterministic aperiodic structures. Nano Lett., 8(8), 2423–2431.
[171] Gopinath, A., Boriskina, S. V., Reinhard, B. M., and Dal Negro, L. 2009. Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS). Opt. Express, 17(5), 3741–3753.
[172] Gottardo, S., Cavalieri, S., Yaroshchuk, O., and Wiersma, D. S. 2004. Quasi-two-dimensional diffusive random laser action. Phys. Rev. Lett., 93(26), 263901.
[173] Gottardo, S., Sapienza, R., García, P. D., et al. 2008. Resonance-driven random lasing. Nature Photon., 2(7), 429–432.
[174] Gouedard, C., Husson, D., Sauteret, C., Auzel, F., and Migus, A. 1993. Generation of spatially incoherent short pulses in laser-pumped neodymium stoichiometric crystals and powders. J. Opt. Soc. Am. B, 10(12), 2358–2363.
[175] Grésillon, S., Aigouy, L., Boccara, A. C., et al. 1999. Experimental observation of localized optical excitations in random metal-dielectric films. Phys. Rev. Lett., 82, 4520–4523.
[176] Grimm, U. and Schreiber, M. 1999. Aperiodic tilings on the computer. arXiv:condmat, 9903010v1.
[177] Griniasty, M. and Fishman, S. 1988. Localization by pseudorandom potentials in one dimension. Phys. Rev. Lett., 60(13), 1334–1337.
[178] Grünbaum, B. and Shephard, G. C. 1987. Tilings and Patterns. W. H. Freeman, New York.
[179] Gumbs, G., Dubey, G. S., Salman, A., Mahmoud, B. S., and Huang, D. 1995. Statistical and transport properties of quasiperiodic layered structures: Thue–Morse and Fibonacci. Phys.Rev.B, 52(July), 210–219.
[180] Haberko, J. and Scheffold, F. 2013. Fabrication of mesoscale polymeric templates for three-dimensional disordered photonic materials. Opt. Express, 21(1), 1057.
[181] Harding, P. J. 2008. Photonic crystals modified by optically resonant systems. Ph.D. thesis, (University of Twente) available from:
[182] Haroche, S. 1992. Cavity quantum electrodynamics. Pages 767–940 in: Fundamental Systems in Quantum Optics. North Holland, Amsterdam.
[183] Hase, M., Miyazaki, H., Egashira, M., et al. 2002. Isotropic photonic band gap and anisotropic structures in transmission spectra of two-dimensional fivefold and eightfold symmetric quasiperiodic photonic crystals. Phys. Rev. B, 66(21), 214205.
[184] Hattori, T., Tsurumachi, N., Kawato, S., and Nakatsuka, H. 1994. Photonic dispersion relation in a one-dimensional quasicrystal. Phys. Rev. B, 50, 4220–4223.
[185] Hauke, N., Tandaechanurat, A., Zabel, T., et al. 2012. A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands. New J. Phys., 14, 083035.
[186] Haus, H. A. 2000. Mode-locking of lasers. IEEE J. Sel. Top. Quant., 6(6), 1173–1185.
[187] He, S. and Maynard, J. D. 1986. Detailed measurements of inelastic scattering in Anderson localization. Phys. Rev. Lett., 57, 3171–3174.
[188] Heebner, J. E., Chak, P., Pereira, S., Sipe, J. E., and Boyd, R. W. 2004. Distributed and localized feedback in microresonator sequences for linear and nonlinear optics. J. Opt. Soc. Am. B, 21(10), 1818–1832.
[189] Hendrickson, J., Richards, B. C., Sweet, J., et al. 2008. Excitonic polaritons in Fibonacci quasicrystals. Opt. Express, 16(20), 15382.
[190] Hermatschweiler, M., Ledermann, A., Ozin, G. A., Wegener, M., and von Frey-mann, G. 2007. Fabrication of silicon inverse woodpile photonic crystals. Adv. Func. Mater., 17, 2273–2277.
[191] Hillebrand, R. and Hergert, W. 2004. Scaling properties of a tetragonal photonic crystal design having a large complete bandgap. Photonics Nanostruct., 2, 33–39.
[192] Ho, K. M., Chan, C. T., and Soukoulis, C. M. 1990. Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett., 65, 3152–3155.
[193] Ho, K. M., Chan, C. T., Soukoulis, C. M., Biswas, R., and Sigalas, M. 1994. Photonic band gaps in three dimensions: New layer-by-layer periodic structures. Solid State Commun., 89, 413–416.
[194] Hoeffe, M. and Baake, M. 2000. Surprises in diffuse scattering. Z. Kristallogr, 215, 441–444.
[195] Hohenberg, P. C. 1967. Existence of long-range order in one and two dimensions. Phys. Rev., 158, 383–386.
[196] Holland, B. T., Blanford, C. F., and Stein, A. 1998. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science, 281, 538–540.
[197] Hsieh, I., Pu, Y., Grange, R., and Psaltis, D. 2010. Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media. Opt. Express, 18, 12283–12290.
[198] Hu, H., Strybulevych, A., Page, J. H., Skipetrov, S. E., and van Tiggelen|B., 2008. Localization of ultrasound in a three-dimensional elastic network. Nature Phys., 4, 945–948.
[199] Huang, X. and Gong, Ch. 1998. Property of Fibonacci numbers and the periodic-like perfectly transparent electronic states in Fibonacci chains. Phys.Rev.B, 58, 739–744.
[200] Hughes, S., Ramunno, L., Young, J. F., and Sipe, J. E. 2005. Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity. Phys. Rev. Lett., 94(3), 033903.
[201] Huisman, S. R., Ctistis, G., Stobbe, S., et al. 2012. Measurement of a band-edge tail in the density of states of a photonic-crystal waveguide. Phys. Rev. B, 86, 155154.
[202] Huisman, S. R., Nair, R. V., Woldering, L. A., et al. 2011. Signature of a three-dimensional photonic band gap observed on silicon inverse woodpile photonic crystals. Phys. Rev. B, 83, 205313.
[203] Husken, B. H., Koenderink, A. F., and Vos, W. L. 2013. Angular redistribution of near-infrared emission from quantum dots in three-dimensional photonic crystals. J. Phys. Chem. C, 117, 3431–3439.
[204] Iglói, F., Turban, L., and Rieger, H. 1999. Anomalous diffusion in aperiodic environments. Phys.Rev. E, 59(2), 1465–1474.
[205] Il'chishin, I. P. and Vakhnin, A. Yu. 1995. Detecting of the structure distortion of cholesteric liquid crystal using the generation characteristics of the distributed feedback laser based on it. Mol. Cryst. Liq. Cryst., 265, 687–697.
[206] Imagawa, S., Edagawa, K., Morita, K., et al. 2010. Photonic band-gap formation, light diffusion, and localization in photonic amorphous diamond structures. Phys. Rev. B., 82, 155116.
[207] Imry, Y. 1986. Active transmission channels and universal conductance fluctuations. Europhys. Lett., 1, 249–256.
[208] Imry, Y. and Landauer, R. 1999. Conductance viewed as transmission. Rev. Mod. Phys., 71, S306–S312.
[209] Ioffe, A. F. and Regel, A. R. 1960. Noncrystalline, amorphous and liquid electronic semiconductors. Prog. Semicond., 4, 237.
[210] Ishimaru, A. 1978. Wave Propagation and Scattering in Random Media. Academic Press, New York.
[211] Ishizaki, K., Koumura, M., Suzuki, K., Gondaira, K., and Noda, S. 2013. Realization of three-dimensional guiding of photons in photonic crystals. Nature Photon., 7, 133–137.
[212] Ishizaki, K. and Noda, S. 2009. Manipulation of photons at the surface of three-dimensional photonic crystals. Nature, 460, 367–371.
[213] Jahnke, F. and Koch, S. 1995. Many-body theory for semiconductor microcavity lasers. Phys. Rev. A, 52(2), 1712–1727.
[214] James, R. W. 1954. The Optical Principles of the Diffraction of X-rays. Bell & Hyman, London.
[215] Janot, C. 1992. Quasicrystals: A Primer. Clarendon Press, Oxford.
[216] Janot, C. 1994. Hierarchical phase transitions and vibrational modes localisation in quasicrystals. Int. J. Mod. Phys. B, 08(17), 2245–2281.
[217] Jiang, X., Zhang, Y., Feng, S., et al. 2005. Photonic band gaps and localization in the Thue–Morse structures. Appl. Phys. Lett., 86(20), 201110.
[218] Jin, C., Cheng, B., Man, B., et al. 1999. Band gap and wave guiding effect in a quasiperiodic photonic crystal. Appl. Phys. Lett., 75(13), 1848.
[219] Joannopoulos, J. D., Johnson, S. G., Winn, J. N., and Meade, R. D. 2008. Photonic Crystals – Molding the Flow of Light, Second Edition. Princeton University Press.
[220] Joannopoulos, J. D., Johnson, S. G., Winn, J. N., and Meade, R. D. 2011. Photonic Crystals: Molding the Flow of Light. Princeton University Press.
[221] John, S. 1984. Electromagnetic absorption in a disordered medium near a photon mobility edge. Phys. Rev. Lett., 53, 2169–2172.
[222] John, S. 1987. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 58, 2486–2489.
[223] John, S. 1991. Localization of light. Phys. Today, 44, 32–40.
[224] John, S. and Quang, T. 1994. Spontaneous emission near the edge of a photonic bandgap. Phys. Rev. A, 50, 1764–1769.
[225] John, S., Sompolinsky, H., and Stephen, M. J. 1983. Localization in a disordered elastic medium near two dimensions. Phys. Rev. B, 27, 5592–5603.
[226] John, S. and Wang, J. 1990. Quantum electrodynamics near a photonic band gap: Photon bound states and dressed atoms. Phys. Rev. Lett., 64, 2418–2421.
[227] Johnson, P. M., Koenderink, A. F., and Vos, W. L. 2002. Ultrafast switching of photonic density of states in photonic crystals. Phys.Rev.B, 66, 081102.
[228] Jorgensen, M. R., Galusha, J. W., and Bartl, M. H. 2011. Strongly modified spontaneous emission rates in diamond-structured photonic crystals. Phys. Rev. Lett., 107, 143902.
[229] Kao, T. S., Jenkins, S. D., Ruostekoski, J., and Zheludev, N. I. 2011. Coherent control of nanoscale light localization in metamaterial: Creating and positioning isolated subwavelength energy hot spots. Phys. Rev. Lett., 106, 085501.
[230] Katz, O., Small, E., Bromberg, Y., and Silberberg, Y. 2011. Focusing and compression of ultrashort pulses through scattering media. Nature Photon., 5, 372–377.
[231] Kawashima, S., Ishizaki, K., and Noda, S. 2009. Light propagation in three-dimensional photonic crystals. Opt. Express, 18, 386–392.
[232] Kempe, M., Berger, G. A., and Genack, A. Z. 1997. Stimulated emission from amplifying random media. Pages 301–330 in: Hummel, R. E., and Wissmann, P. (eds) Handbook of Optical Properties. CRC Press, Boca Raton, FL.
[233] Khurgin, J. B. and Tucker, R. S. 2009. Slow Light: Science and Applications. CRC Press, Boca Raton, Florida.
[234] Kim, M., Choi, Y., Yoon, C., et al. 2012. Maximal energy transport through dis-ordered media with the implementation of transmission eigenchannels. Nature Photon., 6, 581–585.
[235] Kim, S.-K., Lee, J.-H., Kim, S.-H., et al. 2005. Photonic quasicrystal single-cell cavity mode. Appl. Phys. Lett., 86(3), 031101.
[236] Kleppner, D. 1981. Inhibited spontaneous emission. Phys. Rev. Lett., 47, 233–236.
[237] Koenderink, A. F. 2003. Emission and transport of light in photonic crystals. Ph.D. thesis, (University of Amsterdam) available at:
[238] Koenderink, A. F., Bechger, L., Lagendijk, A., and Vos, W. L. 2003. An experimental study of strongly modified emission in inverse opal photonic crystals. Phys. Stat. Sol. B, 197, 648–661.
[239] Koenderink, A. F., Bechger, L., Schriemer, H. P., Lagendijk, A., and Vos, W. L. 2002. Broadband fivefold reduction of vacuum fluctuations probed by dyes in photonic crystals. Phys. Rev. Lett., 88, 143903.
[240] Koenderink, A. F., Lagendijk, A., and Vos, W. L. 2005. Optical extinction due to intrinsic structural variations of photonic crystals. Phys. Rev. B, 72, 153102.
[241] Kogan, E. and Kaveh, M. 1995. Random-matrix-theory approach to the intensity distributions of waves propagating in a random medium. Phys. Rev. B, 52, R3813–R3815.
[242] Kohmoto, M., Sutherland, B., and Iguchi, K. 1987. Localization in optics: Quasiperiodic media. Phys. Rev. Lett., 58, 2436–2438.
[243] Kohmoto, M., Sutherland, B., and Tang, C. 1987. Critical wave functions and a Cantor-set spectrum of a one-dimensional quasicrystal model. Phys. Rev. B, 35, 1020–1033.
[244] Kok, M. H., Lu, W., Tam, W. Y., and Wong, G. K. L. 2009. Lasing from dye-doped icosahedral quasicrystals in dichromate gelatin emulsions. Opt. Express, 17(9), 7275.
[245] Kolář, M., Ali, M., and Nori, F. 1991. Generalized Thue–Morse chains and their physical properties. Phys. Rev. B, 43(1), 1034–1047.
[246] Kopp, V. I., Fan, B., Vithana, H. K. M., and Genack, A. Z. 1998. Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals. Opt. Lett., 23, 1707–1709.
[247] Kopp, V. I., Zhang, Z.-Q., and Genack, A. Z. 2003. Lasing in chiral photonic structures. Prog. Quant. Electron., 27, 369–416.
[248] Kottos, T. 2005. Statistics of resonances and delay times in random media: Beyond random matrix theory. J. Phys. A, 38, 10761.
[249] Krachmalnicoff, V., Castanié, E., De Wilde, Y., and Carminati, R. 2010. Fluctuations of the local density of states probe localized surface plasmons on disordered metal films. Phys. Rev. Lett., 105, 183901.
[250] Kramer, P. and Papadopolos, Z. (eds). 2002. Coverings of Discrete Quasiperiodic Sets: Theory and Applications to Quasicrystals. Springer Tracts in Modern Physics, vol. 180. Berlin: Springer-Verlag.
[251] Krauss, T. F. 2007. Slow light in photonic crystal waveguides. J. Phys. D, 40, 2666–2670.
[252] Kristensen, P. T., Koenderink, A. F., Lodahl, P., Tromborg, B., and Mork, J. 2008. Fractional decay of quantum dots in real photonic crystals. Opt. Lett., 33, 1557–1559.
[253] Krokhin, A. A. and Halevi, P. 1996. Influence of weak dissipation on the photonic band structure of periodic composites. Phys.Rev.B, 53, 1206–1214.
[254] Kroon, L., Lennholm, E., and Riklund, R. 2002. Localization-delocalization in aperiodic systems. Phys. Rev. B, 66(9).
[255] Kroon, L. and Riklund, R. 2004. Absence of localization in a model with correlation measure as a random lattice. Phys. Rev. B, 69(9).
[256] Kuga, Y. and Ishimaru, A. 1984. Retroreflectance from a dense distribution of spherical particles. J. Opt. Soc. Am. A, 1, 831–835.
[257] Kuhl, U. and Stockmann, H. J. 1998. Microwave realization of the Hofstadter butterfly. Phys. Rev. Lett., 80(15), 3232.
[258] Kurizki, G. and Genak, A. 1988. Suppression of molecular interactions in periodic dielectric structures. Phys. Rev. Lett., 61, 2269–2271.
[259] Labonté, L., Vanneste, C., and Sebbah, P. 2012. Localized mode hybridization by fine tuning of two-dimensional random media. Opt. Lett., 37, 1946–1948.
[260] Ladouceur, F. 1997. Roughness, inhomogeneity, and integrated optics. J. Lightwave Technol., 15(6), 1020–1025.
[261] Ladouceur, F. and Love, J. D. 1995. Effect of roughness and inhomogeneity on evanescent single-mode optical couplers. IEE P. Optoelectron., 142(6), 288–292.
[262] Lagendijk, A. 1993. Vibrational relaxation studied with light. Pages 197–238 in: Ultrashort Processes in Condensed Matter. Plenum, New York.
[263] Lagendijk, A., van Tiggelen, B., and Wiersma, D. S. 2009. Fifty years of Anderson localization. Phys. Today, 62, 24–29.
[264] Lagendijk, A., Vreeker, R., and de Vries, P. 1989. Influence of internal reflection on diffusive transport in strongly scattering media. Phys. Lett. A, 136, 81–88.
[265] Lahini, Y., Avidan, A., Pozzi, F., et al. 2008. Anderson localization and non-linearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett., 100, 013906.
[266] Lakowicz, J. R. 2008. Principles of Fluorescence Spectroscopy, Third Edition. Springer, Berlin.
[267] Lambropoulos, P., Nikolopoulos, G. M., Nielsen, T. R., and Bay, S. 2000. Fundamental quantum optics in structured reservoirs. Rep. Prog. Phys., 63, 455–503.
[268] Landauer, R. 1970. Electrical resistance of disordered one-dimensional lattices. Philos. Mag., 21, 863–867.
[269] Lawandy, N. M., Balachandran, R. M., Gomes, A. S. L., and Sauvain, E. 1994. Laser action in strongly scattering media. Nature, 368, 436–438.
[270] Lawrence, N., Trevino, J., and Dal Negro, L. 2012. Control of optical orbital angular momentum by Vogel spiral arrays of metallic nanoparticles. Opt. Lett., 37(24), 5076–5078.
[271] Lawrence, N., Trevino, J., and Dal Negro, L. 2012. Aperiodic arrays of active nanopillars for radiation engineering. J. Appl. Phys., 111(11), 113101.
[272] Ledermann, A. 2006 (August). Three-dimensional icosahedral photonic quasicrystals: fabrication via direct laser writing and optical characterization. M.Phil. thesis, Universität Karlsruhe (TH).
[273] Ledermann, A., Cademartiri, L., Hermatschweilder, M., et al. 2006. Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths. Nature Mater., 5, 942–945.
[274] Ledermann, A., von Freymann, G., and Wegener, M. 2007. Laue-Beugung auf dem Schreibtisch. Photonische Quasikristalle. Physik in unserer Zeit, 38(6), 300.
[275] Ledermann, A., von Freymann, G., and Wegener, M. 2009. Optical arrangement and its use. European patent, No. DE 102007032181A1 / WO 002009006976A1.
[276] Ledermann, A., Wegener, M., and von Freymann, G. 2010. Rhombicuboctahedral three-dimensional photonic quasicrystals. Adv. Mater., 22, 2363.
[277] Ledermann, A., Wiersma, D. S., Wegener, M., and von Freymann, G. 2009. Multiple scattering of light in three-dimensional photonic quasicrystals. Opt. Express, 17(3), 1844.
[278] Lee, P. A. and Stone, A. D. 1985. Universal conductance fluctuations in metals. Phys. Rev. Lett., 55, 1622–1625.
[279] Lee, P. T., Lu, T. W., and Tsai, F. M. 2007. Octagonal quasi-photonic crystal single-defect microcavity with whispering gallery mode and condensed device size. IEEE Photon. Technol. Lett., 19(9), 710–712.
[280] Lee, P. T., Lu, T. W., Tsai, F. M., Lu, T. C., and Kuo, H. C. 2006. Whispering gallery mode of modified octagonal quasiperiodic photonic crystal single-defect microcavity and its side-mode reduction. Appl. Phys. Lett., 88(20), 201104.
[281] Lee, S. D., Shin, S. J., Choi, S. J., et al. 2006. Si-based Coulomb blockade device for spin qubit logic gate. Appl. Phys. Lett., 89(2), 023111.
[282] Leistikow, M. D., Mosk, A. P., Yeganegi, E., et al. 2011. Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap. Phys. Rev. Lett., 107, 193903.
[283] Lemoult, F., Lerosey, G., de Rosny, J., and Fink, M. 2010. Resonant metalenses for breaking the diffraction barrier. Phys. Rev. Lett., 104, 203901.
[284] Leonetti, M., Conti, C., and Lopez, C. 2011. The mode-locking transition of random lasers. Nature Photon., 5(10), 615–617.
[285] Leonetti, M., Conti, C., and Lopez, C. 2012. Tunable degree of localization in random lasers with controlled interaction. Appl. Phys. Lett., 101(5), 051104.
[286] Leonetti, M., Conti, C., and Lopez, C. 2012. Random laser tailored by directional stimulated emission. Phys. Rev. A, 85(Apr), 043841.
[287] Leonetti, M., Conti, C., and Lopez, C. 2013. Nonlocality and collective emission in disordered lasing resonators. Light: Science and Applications, in press.
[288] Leonetti, M. and Lopez, C. 2012. Random lasing in structures with multi-scale transport properties. Appl. Phys. Lett., 101(25), 251120.
[289] Leonetti, M. and Lopez, C. 2013. Active subnanometer spectral control of a random laser. Appl. Phys. Lett., 102(7), 071105.
[290] Leonetti, M., Sapienza, R., Ibisate, M., Conti, C., and López, C. 2009. Optical gain in DNA-DCM for lasing in photonic materials. Opt. Lett., 34(24), 3764–3766.
[291] Lepri, S., Cavalieri, S., Oppo, G.-L., and Wiersma, D. S. 2007. Statistical regimes of random laser fluctuations. Phys.Rev. A, 75(Jun), 063820.
[292] Letokhov, V. V. 1968. Generation of light by a scattering medium with negative resonance. Sov. Phys. JETP, 26, 835–840.
[293] Leung, P. T., Liu, S. Y., and Young, K. 1994. Completeness and orthogonality of quasinormal modes in leaky cavities. Phys. Rev. A, 49, 3057–3067.
[294] Leuzzi, L., Conti, C., Folli, V., Angelani, L., and Ruocco, G. 2009. Phase diagram and complexity of mode-locked lasers: From order to disorder. Phys. Rev. Lett., 102(8), 83901.
[295] Levine, D. and Steinhardt, P. J. 1986. Quasicrystals. I. Definition and structure. Phys. Rev. B, 34(2), 596.
[296] Li, F. H. and Wang, L. C. 1988. Analytical formulation of icosahedral quasi-crystal structures. J. Phys. C, 21(3), 495.
[297] Li, J. H., Lisyansky, A. A., Cheung, T. D., Livdan, D., and Genack, A. Z. 1993. Transmission and surface intensity profiles in random media. Europhys. Lett., 22, 675.
[298] Li, Z. Y. and Xia, Y. N. 2001. Full vectorial model for quantum optics in three-dimensional photonic crystals. Phys. Rev. A, 63, 043817.
[299] Li, Z.-Y. and Zhang, Z.-Q. 2000. Fragility of photonic band gaps in inverse-opal photonic crystals. Phys. Rev. B, 62, 1516–1519.
[300] Liew, S. F., Noh, H., Trevino, J., Dal Negro, L., and Cao, H. 2011. Localized photonic band edge modes and orbital angular momenta of light in a golden-angle spiral. Opt. Express, 19(24), 23631–23642.
[301] Liew, S. F., Yang, J. K., Noh, H., et al. 2011. Photonic band gaps in three-dimensional network structures with short-range order. Phys. Rev. A, 84, 063818.
[302] Lifshitz, R. 2002. The square Fibonacci tiling. J. Alloy. Compd., 342(1-2), 186–190.
[303] Liu, N. H. 1997. Propagation of light waves in Thue–Morse dielectric multilayers. Phys. Rev. B, 55(Feb.), 3543–3547.
[304] Lodahl, P., van Driel, A. F., Nikolaev, I. S., et al. 2004. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature, 430, 654–657.
[305] Lončar, M., Nedeljković, D., Doll, T., et al. 2000. Waveguiding in planar photonic crystals. Appl. Phys. Lett., 77, 1937–1939.
[306] Lourtioz, J.-M., Benisty, H., Berger, V., et al. 2008. Photonic Crystals: Towards Nanoscale Photonic Devices. Springer, Heidelberg.
[307] Lubatsch, A., Kroha, J., and Busch, K. 2005. Theory of light diffusion in disordered media with linear absorption or gain. Phys.Rev.B, 71(18), 184201.
[308] Luck, J. 1989. Cantor spectra and scaling of gap widths in deterministic aperiodic systems. Phys. Rev. B, 39(9), 5834–5849.
[309] Luck, J. M., Godreche, C., Janner, A., and Janssen, T. 1993. The nature of the atomic surfaces of quasiperiodic self-similar structures. J. Phys. A - Math. Gen., 26, 1951–1999.
[310] Ma, X. and John, S. 2009. Ultrafast population switching of quantum dots in a structured vacuum. Phys. Rev. Lett., 103, 233601.
[311] Mabuchi, H. and Doherty, A. C. 2002. Cavity quantum electrodynamics: Coherence in context. Science, 298, 1372–1377.
[312] Maciá, E. 2006. The role of aperiodic order in science and technology. Rep. Prog. Phys., 69(2), 397.
[313] Maciá, E. and Domínguez-Adame, F. 1996. Physical nature of critical wave functions in Fibonacci systems. Phys. Rev. Lett., 76, 2957–2960.
[314] Mahler, L., Tredicucci, A., Beltram, F., et al. 2010. Quasi-periodic distributed feedback laser. Nature Photon., 4(3), 165–169.
[315] Maldovan, M. and Thomas, E. L. 2004. Diamond-structured photonic crystals. Nature Mater., 3, 593–600.
[316] Man, W., Megens, M., Steinhardt, P. J., and Chaikin, P. M. 2005. Experimental measurement of the photonic properties of icosahedral quasicrystals. Nature, 436(7053), 993–996.
[317] Markoš, P. 1999. Probability distribution of the conductance at the mobility edge. Phys. Rev. Lett., 83, 588–591.
[318] Markoá, P. and Soukoulis, C. M. 2005. Intensity distribution of scalar waves propagating in random media. Phys. Rev. B, 71(5), 054201.
[319] Markushev, V. M., Zolin, V. F., and Briskina, Ch. M. 1986. Powder laser. Zh. Prikl. Spektrosk, 45, 847–850.
[320] Maruo, S., Nakamura, O., and Kawata, S. 1997. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett., 22(2), 132.
[321] Maxwell Garnett, J. C. 1904. Colours in metal glasses and in metal films. Philos. Trans. Roy. Soc. A, 203, 385–420.
[322] Mazurenko, D. A., Kerst, R., Dijkhuis, J. I., et al. 2003. Ultrafast optical switching in three-dimensional photonic crystals. Phys. Rev. Lett., 91, 213903.
[323] McCabe, D. J., Tajalli, A., Austin, D. R., et al. 2011. Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium. Nature Commun., 2, 447.
[324] Mehta, M. L. 2004. Random Matrices, Third Edition. Academic Press, New York.
[325] Meisel, D. C., Diem, M., Deubel, M., et al. 2006. Shrinkage pre-compensation of holographic three-dimensional photonic crystal templates. Adv. Mater., 18(22), 2964.
[326] Mello, P. A., Akkermans, E., and Shapiro, B. 1988. Macroscopic approach to correlations in the electronic transmission and reflection from disordered conductors. Phys. Rev. Lett., 61, 459–462.
[327] Mello, P. A., Pereyra, P., and Kumar, N. 1988. Macroscopic approach to multichannel disordered conductors. Ann. Phys., New York, 181, 290–317.
[328] Melloni, A., Morichetti, F., and Martinelli, M. 2003. Optical slow wave structures. Opt. Photonics News, 14, 44–48.
[329] Melloni, A. and Morichetti, F. 2009. The long march of slow photonics. Nature Photon., 3(3), 119.
[330] Mermin, N. D. and Wagner, H. 1966. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett., 17, 1133–1136.
[331] Miller, D. A. B. 2000. Rationale and challenges for optical interconnects to electronic chips. Proc. IEEE, 88(6), 728–749.
[332] Miller, D. A. B. 2009. Device requirements for optical interconnects to silicon chips. Proc. IEEE, 97(7), 1166–1185.
[333] Milner, V. and Genack, A. Z. 2005. Photon localization laser: Low-threshold lasing in a random amplifying layered medium via wave localization. Phys. Rev. Lett., 94, 073901.
[334] Milonni, P. W. 1994. The Quantum Vacuum: An Introduction to Quantum Electro-dynamics. Academic Press, Boston.
[335] Mirlin, A. D. 2000. Statistics of energy levels and eigenfunctions in disordered systems. Phys. Rep., 326, 259–382.
[336] Mnaymneh, K. and Gauthier, R. C. 2007. Mode localization and band-gap formation in defect-free photonic quasicrystals. Opt. Express, 15(8), 5089.
[337] Mookherjea, S. and Oh, A. 2007. Effect of disorder on slow light velocity in optical slow-wave structures. Opt. Lett., 32, 289–291.
[338] Mookherjea, S., Park, J. S., Yang, S. H., and Bandaru, P. R. 2008. Localization in silicon nanophotonic slow-light waveguides. Nature Photon., 2(2), 90–93.
[339] Mookherjea, S. and Schneider, M. A. 2011. Avoiding bandwidth collapse in long chains of coupled optical microresonators. Opt. Lett., 36(23), 4557–4559.
[340] Mookherjea, S. and Yariv, A. 2002. Coupled resonator optical waveguides. IEEE J. Sel. Top. Quantum Electron., 8, 448–456.
[341] Moretti, L. and Mocella, V. 2007. Two-dimensional photonic aperiodic crystals based on Thue–Morse sequence. Opt. Express, 15(23), 15314–15323.
[342] Moretti, L., Rea, I.Rotiroti, L., et al. 2006. Photonic band gaps analysis of Thue–Morse multilayers made of porous silicon. Opt. Express, 14(13), 6264–6272.
[343] Morichetti, F., Ferrari, C., Canciamilla, A., and Melloni, A. 2012. The first decade of coupled resonator optical waveguides: Bringing slow light to applications. Laser Photon. Rev., 6(1), 74–96.
[344] Morichetti, F., Canciamilla, A., and Melloni, A. 2010. Statistics of backscattering in optical waveguides. Opt. Lett., 35(11), 1777–1779.
[345] Mosk, A. P., Lagendijk, A., Lerosey, G., and Fink, M. 2012. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photon., 6, 283–292.
[346] Moss, T. S. 1959. Optical Properties of Semiconductors. Butterworth, London.
[347] Mott, N. F. 1970. Conduction in non-crystalline systems IV. Anderson localization in a disordered lattice. Philos. Mag., 22, 7–29.
[348] Mujumdar, S., Ricci, M., Torre, R., and Wiersma, D. S. 2004. Amplified extended modes in random lasers. Phys. Rev. Lett., 93(5), 53903.
[349] Muttalib, K. A. and Wolfle, P. 1999. One-sided log-normal distribution of conductances for a disordered quantum wire. Phys. Rev. Lett., 83, 3013–3016.
[350] Muzykantskii, B. A. and Khmelnitskii, D. E. 1995. Nearly localized states in weakly disordered conductors. Phys. Rev. B, 51, 5480–5483.
[351] Nazarov, Y. V. 1994. Limits of universality in disordered conductors. Phys. Rev. Lett., 73, 134–137.
[352] Nielsen, M. A. and Chuang, I. L. 1959. Quantum Computation and Quantum Information. Cambridge University Press, Cambridge.
[353] Nieuwenhuizen, Th. M. and van Rossum, M. C. 1995. Intensity distribution of waves transmitted through a multiple scattering medium. Phys. Rev. Lett., 74, 2674–2677.
[354] Nikolaev, I. S., Vos, W. L., and Koenderink, A. F. 2009. Accurate calculation of the local density of optical states in inverse-opal photonic crystals. J. Opt. Soc. Am. B, 26, 987–997.
[355] Noda, S., Fujita, M., and Asano, T. 2007. Spontaneous-emission control by photonic crystals and nanocavities. Nature Photon., 1, 449–458.
[356] Noda, S., Tomoda, K., Yamamoto, N., and Chutinan, A. 2000. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science, 289, 604–606.
[357] Noginov, M. A., Egarievwe, S. U., Noginova, N., Caulfield, H. J., and Wang, J. C. 1999. Interferometric studies of coherence in a powder laser. Opt. Mater., 12(1), 127–134.
[358] Noh, H., Yang, J. K., Boriskina, S. V., et al. 2011. Lasing in Thue–Morse structures with optimized aperiodicity. Appl. Phys. Lett., 98(20), 201109.
[359] Nori, F. and Rodriguez, J. P. 1986. Acoustic and electronic properties of one-dimensional quasicrystals. Phys. Rev. B, 34, 2207–2211.
[360] Notomi, M., Suzuki, H., Tamamura, T., and Edagawa, K. 2004. Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice. Phys. Rev. Lett., 92(12), 123906.
[361] Notomi, M., Kuramochi, E., and Tanabe, T. 2008. Large-scale arrays of ultrahigh-q coupled nanocavities. Nature Photon., 2(12), 741–747.
[362] Novotny, L. and Hecht, B. 2006. Principles of Nano-Optics. Cambridge University Press, Cambridge.
[363] Nozaki, K. and Baba, T. 2004. Quasiperiodic photonic crystal microcavity lasers. Appl. Phys. Lett., 84(24), 4875–4877.
[364] Nozaki, K. and Baba, T. 2006. Lasing characteristics of 12-fold symmetric quasi-periodic photonic crystal slab nanolasers. Jpn. J. Appl. Phys., 45(8A), 6087–6090.
[365] O'Brien, J. L., Furusawa, A., and Vuckovic, J. 2009. Photonic quantum technologies. Nature Photon., 3, 687–695.
[366] O'Faolain, L., White, T. P., O'Brien, D., et al. 2007. Dependence of extrinsic loss on group velocity in photonic crystal waveguides. Opt. Express, 15(20), 13129–13138.
[367] Ogawa, S., Imada, M., Yoshimoto, S., Okano, M., and Noda, S. 2004. Control of light emission by 3D photonic crystals. Science, 305, 227–229.
[368] Ogawa, S., Ishizaki, K., Furukawa, T., and Noda, S. 2008. Spontaneous emission control by 17 layers of three-dimensional photonic crystals. Electronics Lett., 44, 377.
[369] Oton, C. J., Dal Negro, L., Gaburro, Z., et al. 2003. Light propagation in one-dimensional porous silicon complex systems. Phys. Stat. Sol. (a), 197, 298–302.
[370] Pappu, R. B., Taylor, J., and Gershenfeld, N. 2002. Physical one-way functions. Science, 297, 2026.
[371] Park, H.-G., Kim, S.-H., Kwon, S.-H., et al. 2004. Electrically driven single-cell photonic crystal laser. Science, 305(5689), 1444–1447.
[372] Patra, M. 2002. Theory for photon statistics of random lasers. Phys. Rev. A, 65(4), 043809.
[373] Patterson, M., Hughes, S., Combrie, S., et al. 2009. Disorder-induced coherent scattering in slow-light photonic crystal waveguides. Phys. Rev. Lett., 102(25), 253903.
[374] Pavesi, L., Panzarini, G., and Andreani, L. C. 1998. All-porous silicon-coupled microcavities: Experiment versus theory. Phys. Rev. B, 58, 15794–15800.
[375] Payne, B., Yamilov, A., and Skipetrov, S. E. 2010. Anderson localization as position-dependent diffusion in disordered waveguides. Phys. Rev. B, 82, 024205.
[376] Pedrotti, F. L., Pedrotti, L. M., and Pedrotti, L. S. 2006. Introduction to Optics. Benjamin-Cummings Pub Co.
[377] Pellandini, P., Stanley, R. P., Houdre, R., et al. 1997. Dual-wavelength laser emission from a coupled semiconductor microcavity. Appl. Phys. Lett., 71, 864–866.
[378] Pendry, J. B. 1987. Quasi-extended electron states in strongly disordered systems. J. Phys. C, 20, 733.
[379] Pendry, J. B. 1991. Catching moonbeams. Nature, 351, 438–439.
[380] Pendry, J. B., Mackinnon, A., and Pretre, A. B. 1990. Maximal fluctuations – a new phenomenon in disordered systems. Physica A, 168, 400–407.
[381] Pérez-Álvarez, R., García-Moliner, F., and Velasco, V. R. 2001. Some elementary questions in the theory of quasiperiodic heterostructures. J. Phys. Condens. Mat., 13(15), 3689.
[382] Peter, E., Senellart, P., Martrou, D., et al. 2005. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett., 95, 067401.
[383] Petrov, A., Krause, M., and Eich, M. 2009. Backscattering and disorder limits in slow light photonic crystal waveguides. Opt. Express, 17(10), 8676–8684.
[384] Piéchon, F. 1996. Anomalous diffusion properties of wave packets on quasiperiodic chains. Phys. Rev. Lett., 76, 4372–4375.
[385] Plerou, V. and Wang, Z. 1998. Conductances, conductance fluctuations, and level statistics on the surface of multilayer quantum Hall states. Phys. Rev. B, 58, 1967–1979.
[386] Poddubny, A. N. and Ivchenko, E. L. 2010. Photonic quasicrystalline and aperiodic structures. Physica E, 42(7), 1871–1895.
[387] Polson, R. C. and Vardeny, Z. V. 2004. Random lasing in human tissues. Appl. Phys. Lett., 85(7), 1289–1291.
[388] Polson, R. C. and Vardeny, Z. V. 2005. Organic random lasers in the weak-scattering regime. Phys. Rev. B, 71(4), 045205.
[389] Polson, R. C. and Vardeny, Z. V. 2010. Cancerous tissue mapping from random lasing emission spectra. J. Opt., 12(2), 024010.
[390] Pompe, G., Rappen, T., Wehner, M., Knop, F., and Wegener, M. 1995. Transient response of a short-cavity semiconductor laser. Phys. Stat. Solidi B, 188(1), 175–180.
[391] Poon, J. K. S., Scheuer, J., Mookherjea, S., et al. 2004. Matrix analysis of microring coupled-resonator optical waveguides. Opt. Express, 12(1), 90–103.
[392] Poon, J. K. S., Zhu, L., DeRose, G., and Yariv, A. 2006. Transmission and group delay of microring coupled-resonator optical waveguides. Opt. Lett., 31, 456–458.
[393] Popoff, S. M., Lerosey, G., Carminati, R., et al. 2010. Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media. Phys. Rev. Lett., 104, 100601.
[394] Povey, I. M., Whitehead, D., Thomas, K., et al. 2006. Photonic crystal thin films of GaAs prepared by atomic layer deposition. Appl. Phys. Lett., 89, 104103.
[395] Povinelli, M. L., Johnson, S. G., Lidorikis, E., Joannopoulos, J. D., and Soljacic, M. 2004. Effect of a photonic band gap on scattering from waveguide disorder. Appl. Phys. Lett., 84(18), 3639–3641.
[396] Purcell, E. M. 1946. Spontaneous emission probabilities at radio frequencies. Phys. Rev., 69, 681.
[397] Qi, M., Lidorikis, E., Rakich, P. T., et al. 2004. A three-dimensional optical photonic crystal with designed point defects. Nature, 429, 538–542.
[398] Qiu, F., Peng, R. W., Huang, X. Q., et al. 2003. Resonant transmission and frequency trifurcation of light waves in Thue–Morse dielectric multilayers. Europhys. Lett., 63(5), 853–859.
[399] Qiu, F., Peng, R. W., Huang, X. Q., et al. 2007. Omnidirectional reflection of electromagnetic waves on Thue–Morse dielectric multilayers. Europhys. Lett., 68(5), 658–663.
[400] Raedt, H. D., Lagendijk, A., and de Vries, P. 1989. Transverse localization of light. Phys. Rev. Lett., 62, 47–50.
[401] Ramanan, V., Nelson, E., Brzezinski, A., Braun, P. V., and Wiltzius, P. 2008. Three dimensional silicon-air photonic crystals with controlled defects using interference lithography. Appl. Phys. Lett., 92, 173304.
[402] Rechtsman, M. C., Jeong, H.-C., Chaikin, P. M., Torquato, S., and Steinhardt, P. J. 2008. Optimized structures for photonic quasicrystals. Phys. Rev. Lett., 101(7), 73902.
[403] Redding, B., Choma, M. A., and Cao, H. 2011. Spatial coherence of random laser emission. Opt. Lett., 36(17), 3404–3406.
[404] Redding, B., Choma, M. A., and Cao, H. 2012. Speckle-free laser imaging using random laser illumination. Nature Photon., 6(6), 355–359.
[405] Reithmaier, J. P., Sȩk, G., Löffler, A., et al. 2004. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature, 432, 197–200.
[406] Reyntjens, S. and Puers, R. 2001. A review of focused ion beam applications in microsystem technology. J. Micromech. Microeng., 11(4), 287.
[407] Rinne, S. A., García-Santamaría, F., and Braun, P. V. 2007. Embedded cavities and waveguides in three-dimensional silicon photonic crystals. Nature Photon., 2, 52–56.
[408] Robertson, W. M., Arjavalingam, G., Meade, R. D., et al. 1992. Measurement of photonic band structure in a two-dimensional periodic dielectric array. Phys. Rev. Lett., 68, 2023–2026.
[409] Rodriguez, A. W., McCauley, A. P., Avniel, Y., and Johnson, S. G. 2008. Computation and visualization of photonic quasicrystal spectra via Bloch's theorem. Phys. Rev. B, 77(10), 104201.
[410] Roichman, Y. and Grier, D. G. 2005. Holographic assembly of quasicrystalline photonic heterostructures. Opt. Express, 13(14), 5434.
[411] Ruijgrok, P. V., Wiiest, R., Rebane, A. A., Renn, A., and Sandoghdar, V. 2010. Spontaneous emission of a nanoscopic emitter in a strongly scattering disordered medium. Opt. Express, 18, 6360.
[412] Sakoda, K. 1995. Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices. Phys. Rev. B, 52, 7982–7986.
[413] Sanchez-Gil, J. A., Freilikher, V., Yurkevich, I., and Maradudin, A. A. 1998. Coexistence of ballistic transport, diffusion, and localization in surface disordered waveguides. Phys. Rev. Lett., 80(5), 948.
[414] Sapienza, L., Thyrrestrup, H., Stobbe, S., et al. 2010. Cavity quantum electrody-namics with Anderson-localized modes. Science, 327, 1352–1355.
[415] Sapienza, R., Bondareff, P., Pierrat, R., et al. 2011. Long-tail statistics of the Purcell factor in disordered media driven by near-field interactions. Phys. Rev. Lett., 106, 163902.
[416] Sapienza, R., Costantino, P., Wiersma, D. S., et al. 2003. Optical analogue of electronic Bloch oscillations. Phys. Rev. Lett., 91, 263902.
[417] Sapienza, R., García, P. D., Bertolotti, J., et al. 2007. Observation of resonant behavior in the energy velocity of diffused light. Phys. Rev. Lett., 99(23), 233902.
[418] Sarma, R., Yamilov, A., Neupane, P., Shapiro, B., and Cao, H. 2014. Probing long-range intensity correlations inside disordered photonic nanostructures.
[419] Scheffold, F. and Maret, G. 1998. Universal conductance fluctuations of light. Phys. Rev. Lett., 81, 5800–5803.
[420] Schilling, J., White, J., Scherer, A., et al. 2005. Three-dimensional macroporous silicon photonic crystal with large photonic band gap. Applied Physics Letters, 86, 011101.
[421] Schuurmans, F. J. P., de Lang, D. T. N., Wegdam, G. H., Sprik, R., and Lagendijk, A. 1998. Local-fields effects on spontaneous emission in a dense supercritical gas. Phys. Rev. Lett., 80, 5077–5080.
[422] Schwartz, T., Bartal, G., Fishman, S., and Segev, M. 2007. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature, 446, 52–55.
[423] Sebbah, P., Hu, B., Genack, A. Z., Pnini, R., and Shapiro, B. 2002. Spatial field correlation: The building block of mesoscopic fluctuations. Phys. Rev. Lett., 88, 123901.
[424] Sebbah, P., Hu, B., Klosner, J., and Genack, A. Z. 2006. Extended quasimodes within nominally localized random waveguides. Phys. Rev. Lett., 96, 183902.
[425] Sebbah, P. and Vanneste, C. 2002. Random laser in the localized regime. Phys. Rev. B, 66(14), 144202.
[426] Shapira, O. and Fischer, B. 2005. Localization of light in a random grating array in a single mode fiber. J. Opt. Soc. of Am. B, 22, 2542–2552.
[427] Shapiro, B. 1999. New type of intensity correlation in random media. Phys. Rev. Lett., 83, 4733–4735.
[428] Shechtman, D., Blech, I., Gratias, D., and Cahn, J. W. 1984. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett., 53, 1951–1953.
[429] Sheng, P. 2005. Introduction to Wave Scattering, Localization and Mesoscopic Phenomena. Springer, Berlin.
[430] Sheng, P. 1995. Introduction to Wave Scattering, Localization and Mesoscopic Phenomena. Academic Press, New York.
[431] Shi, Z., Davy, M., Wang, J., and Genack, A. Z. 2013. Focusing through random media in space and time: a transmission matrix approach. Opt. Lett. 38, 2714.
[432] Shi, Z. and Genack, A. Z. 2012. Transmission eigenvalues and the bare conductance in the crossover to Anderson localization. Phys. Rev. Lett., 108, 043901.
[433] Shi, Z. and Genack, A. Z. 2014. Modal makeup of transmission eigenchannels.
[434] Shi, Z., Wang, J., and Genack, A. Z. 2014. Microwave conductance in random waveguides in the cross-over to Anderson localization and single-parameterscaling. Proceedings ofthe National Academy ofSciences (PNAS) 111, 2926.
[435] Shipman, P. D. and Newell, A. C. 2004. Phyllotactic patterns on plants. Phys. Lev. Lett., 92, 168102.
[436] Shir, D., Liao, H., Jeon, S., et al. 2008. Three-dimensional nanostructures formed by single step, two-photon exposures through elastomeric penrose quasicrystal phase masks. Nano Letters, 8(8), 2236.
[437] Shir, D. J., Nelson, E. C., Chanda, D., et al. 2010. Dual exposure, two-photon, conformal phase mask lithography for three dimensional silicon inverse woodpile photonic crystals. J. Vac. Sci. Technol. B, 28, 783–788.
[438] Siegman, A. E. 1986. Lasers. University Science Books, Sausalito, USA.
[439] Sigalas, M. M., Soukoulis, C. M., Chan, C. T., Biswas, R., and Ho, K. M. 1999. Effect of disorder on photonic band gaps. Phys. Rev. B, 59, 12767–12770.
[440] Sigler, L. E. 2002. Fibonacci's Liber Abaci. Springer-Verlag, New York.
[441] Skipetrov, S. E. and van Tiggelen, B. A. 2003. Wave Scattering in Complex Media, from Theory to Applications. NATO series II, vol. 107. Kluwer, Dordrecht.
[442] Skipetrov, S. E. and van Tiggelen, B. A. 2004. Dynamics of weakly localized waves. Phys. Rev. Lett., 92, 113901.
[443] Skipetrov, S. E. and van Tiggelen, B. A. 2006. Dynamics of Anderson localization in open 3D media. Phys. Rev. Lett., 96, 043902.
[444] Slevin, K. and Ohtsuki, T. 1997. The Anderson transition: Time reversal symmetry and universality. Phys. Rev. Lett., 78, 4083–4086.
[445] Smith, P. W. 1970. Mode-locking of lasers. Proc. IEEE, 58(9), 1342–1357.
[446] Smolka, S., Thyrrestrup, H., Sapienza, L., et al. 2011. Probing the statistical properties of Anderson localization with quantum emitters. New J. Phys., 13, 063044.
[447] Sokoloff, J. B. 1987. Anomalous electrical conduction in quasicrystals and Fibonacci lattices. Phys. Rev. Lett., 58, 2267–2270.
[448] Soukoulis, C. M. (ed.). 1996. Photonic Band Gap Materials. Proceedings of the NATO Advanced Study Institute on Photonic Band Gap Materials. Kluwer, Dordrecht.
[449] Soukoulis, C. M. (ed.). 2001. Photonic Crystals and Light Localization in the 21st Century. Kluwer, Dordrecht.
[450] Soukoulis, C. M. and Economou, E. N. 1982. Localization in one-dimensional lattices in the presence of incommensurate potentials. Phys. Rev. Lett., 48, 1043–1046.
[451] Soukoulis, C. M., Wang, X., Li, Q., and Sigalas, M. M. 1999. What is the right form of the probability distribution of the conductance at the mobility edge?Phys. Rev. Lett., 82, 668.
[452] Sözöer, H. S., Haus, J. W., and Inguva, R. 1992. Photonic bands: Convergence problems with the plane-wave method. Phys. Rev. B, 45, 13962–13972.
[453] Sperling, T., Buehrer, W., Aegerter, C. M., and Maret, G. 2012. Direct determination of the transition to localization of light in three dimensions. Nature Photon., 7(1), 48–52.
[454] Sprik, R., van Tiggelen, B. A., and Lagendijk, A. 1996. Optical emission in periodic dielectrics. Europhys. Lett., 35, 265–270.
[455] Stanley, R. P., Houdré, R., Oesterle, U., Ilegems, M., and Weisbuch, C. 1994. Coupled semiconductor microcavities. Appl. Phys. Lett., 65, 2093–2095.
[456] Stano, P. and Jacquod, P. 2013. Suppression of interactions in multimode random lasers in the Anderson localized regime. Nature Photon., 7, 66–71.
[457] Starykh, O. A., Jacquod, P. R. J., Narimanov, E. E., and Stone, A. D. 2000. Signature of dynamical localization in the resonance width distribution of wave-chaotic dielectric cavities. Phys. Rev. E, 62, 2078–2084.
[458] Staude, I., McGuinness, C., Frölich, A., et al. 2012. Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures. Opt. Express, 20, 5607–5612.
[459] Staude, I., Thiel, M., Essig, S., et al. 2010. Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths. Opt. Lett., 35, 1094–1096.
[460] Staude, I., von Freymann, G., Essig, S., Busch, K., and Wegener, M. 2011. Waveguides in three-dimensional photonic-bandgap materials by direct laser writing and silicon double inversion. Opt. Lett., 36, 67.
[461] Steinbach, F., Ossipov, A., Kottos, T., and Geisel, T. 2000. Statistics of resonances and of delay times in quasiperiodic Schrödinger equations. Phys. Rev. Lett., 85, 4426–4429.
[462] Stephen, M. J. and Cwilich, G. 1987. Intensity correlation functions and fluctuations in light scattered from a random medium. Phys. Rev. Lett., 59, 285–287.
[463] Steurer, W. and Sutter-Widmer, D. 2007. Photonic and phononic quasicrystals. J. Phys. D: Appl. Phys., 40(13), R229.
[464] Stone, A. D., Mello, P. A., Muttalib, K., and Pichard, J. L. 1991. Random matrix theory and maximum entropy models for disordered conductors. Pages 369–448 in: Altshuler, B. L., Lee, P. A., and Webb, R. A. (eds), Mesoscopic Phenomena in Solids. Elsevier, Amsterdam.
[465] Storzer, M., Gross, P., Aegerter, C. M., and Maret, G. 2006. Observation of the critical regime near Anderson localization of light. Phys. Rev. Lett., 96, 063904.
[466] Stoytchev, M. and Genack, A. Z. 1997. Measurement of the probability distribution of total transmission in random waveguides. Phys. Rev. Lett., 79, 309–312.
[467] Stoytchev, M. and Genack, A. Z. 1999. Observations of non-Rayleigh statistics in the approach to photon localization. Opt. Lett., 24(4), 262–264.
[468] Takahashi, S., Okano, M., Imada, M., and Noda, S. 2006. Three-dimensional photonic crystals based on double-angled etching and wafer-fusion techniques. Appl. Phys. Lett., 89, 123106.
[469] Takahashi, S., Suzuki, K., Okano, M., et al. 2009. Direct creation of three-dimensional photonic crystals by a top-down approach. Nat. Mater., 8, 721–725.
[470] Tandaechanurat, A., Ishida, S., Aoki, K., et al. 2009. Demonstration of high-Q (>8600) three-dimensional photonic crystal nanocavity embedding quantum dots. Appl. Phys. Lett., 94, 171115.
[471] Tandaechanurat, A., Ishida, S., Guimard, D., et al. 2010. Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap. Nature Photon., 5, 91–94.
[472] Tang, L. and Yoshie, T. 2011. Light localization in woodpile photonic crystal built via two-directional etching. IEEE J. Quant. Elec., 47, 1028–1035.
[473] Tétreault, N., Míguez, H., and Ozin, G. A. 2004. Silicon inverse opal – a platform for photonic bandgap research. Adv. Mater., 16, 1471–1476.
[474] Tétreault, N., von Freymann, G., Deubel, M., et al. 2006. New route to three-dimensional photonic bandgap materials: Silicon double inversion of polymer templates. Adv. Mater., 18, 457–460.
[475] Texier, C. and Comtet, A. 1999. Universality of the Wigner time delay distribution for one-dimensional random potentials. Phys. Rev. Lett., 82(21), 4220–4223.
[476] Thouless, D. J. 1974. Electrons in disordered systems and the theory of localization. Phys. Rep., 13, 93–142.
[477] Thouless, D. J. 1977. Maximum metallic resistance in thin wires. Phys. Rev. Lett., 39, 1167–1169.
[478] Thue, A. 1909. Über Annäherungswerte algebraischer Zahlen. Journal für die reine und angewandte Mathematik, 135, 284–305.
[479] Thyrrestrup, H., Hartsuiker, A., Gérard, J.-M., and Vos, W. L. 2013. Non-exponential spontaneous emission dynamics for emitters in a time-dependent optical cavity., 1301.7612.
[480] Tian, C. S., Cheung, S. K., and Zhang, Z. Q. 2010. Local diffusion theory for localized waves in open media. Phys. Rev. Lett., 105, 263905.
[481] Tjerkstra, R. W., Woldering, L. A., van den Broek, J. M., et al. 2011. Method to pattern etch masks in two inclined planes for three-dimensional nano- and microfabrication. J. Vac. Sci. Technol. B, 29, 061604.
[482] Topolancik, J., Ilic, B., and Vollmer, F. 2007. Experimental observation of strong photon localization in disordered photonic crystal waveguides. Phys. Rev. Lett., 99, 253901.
[483] Trevino, J., Cao, H., and Dal Negro, L. 2011. Circularly symmetric light scattering from nanoplasmonic spirals. Nano Lett., 11(5), 2008–2016.
[484] Trevino, J., Liew, S. F., Noh, H., Cao, H., and Dal Negro, L. 2012. Geometrical structure, multifractal spectra and localized optical modes of aperiodic Vogel spirals. Opt. Express, 20(3), 3015–3033.
[485] Tseng, A. A., Chen, K., Chen, C. D., and Ma, K. J. 2003. Electron beam lithography in nanoscale fabrication: Recent development. IEEE. T. Electron. Pa. M., 26(2), 141–149.
[486] Türeci, H. E., Ge, L., Rotter, S., and Stone, A. D. 2008. Strong interactions in multimode random lasers. Science, 320, 643–646.
[487] van Albada, M. P., de Boer, J. F., and Lagendijk, A. 1990. Observation of long-range intensity correlation in the transport of coherent light through a random medium. Phys. Rev. Lett., 64, 2787–2790.
[488] van Albada, M. P. and Lagendijk, A. 1985. Observation of weak localization of light in a random medium. Phys. Rev. Lett., 55, 2692–2695.
[489] van Albada, M. P., van Tiggelen, B. A., Lagendijk, A., and Tip, A. 1991. Speed of propagation of classical waves in strongly scattering media. Phys. Rev. Lett., 66, 3132–3135.
[490] van Coevorden, D. V., Sprik, R., Tip, A., and Lagendijk, A. 1997. Photonic band structure of atomic lattices. Phys. Rev. Lett., 77, 2412–2415.
[491] van de Hulst, H. C. 1957. Light Scattering by Small Particles. Dover, New York.
[492] van den Broek, J. M., Woldering, L. A., Tjerkstra, R. W., et al. 2012. Inverse-woodpile photonic band gap crystals with a cubic diamond-like structure made from single-crystalline silicon. Adv. Func. Mater., 22, 25–31.
[493] van der Beek, T., Barthelemy, P., Johnson, P. M., Wiersma, D. S., and Lagendijk, A. 2012. Light transport through disordered layers of dense gallium arsenide submicron particles. Phys. Rev. B., 85, 115401.
[494] van der Molen, K. L., Mosk, A. P., and Lagendijk, A. 2006. Intrinsic intensity fluctuations in random lasers. Phys. Rev. A, 74(Nov), 053808.
[495] van der Molen, K. L., Mosk, A. P., and Lagendijk, A. 2007. Quantitative analysis of several random lasers. Opt. Commun., 278(1), 110–113.
[496] van der Molen, K. L., Tjerkstra, R. W., Mosk, A. P., and Lagendijk, A. 2007. Spatial extent of random laser modes. Phys. Rev. Lett., 98(14), 143901.
[497] van Driel, A. F., Nikolaev, I. S., Vergeer, P., et al. 2007. Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models. Phys.Rev.B, 75, 035329.
[498] van Langen, S. A., Brouwer, P. W., and Beenakker, C. W. J. 1996. Nonperturbative calculation of the probability distribution of plane-wave transmission through a disordered waveguide. Phys.Rev. E, 53(2), R1344–R1347.
[499] van Putten, G. E., Akbulut, D., Bertolotti, J., et al. 2011. Scattering lens resolves sub-100 nm structures with visible light. Phys. Rev. Lett., 106, 193905.
[500] van Putten, G. E. and Mosk, A. P. 2010. The information age in optics: Measuring the transmission matrix. Physics, 3, 22.
[501] van Rossum, M. C. W. and Nieuwenhuizen, T. M. 1999. Multiple scattering of classical waves: Microscopy, mesoscopy, and diffusion. Rev. Mod. Phys., 71, 313–371.
[502] van Tiggelen, B. A., Sebbah, P., Stoytchev, M., and Genack, A. Z. 1999. Delay-time statistics for diffuse waves. Phys.Rev.E, 59(6), 7166.
[503] Vanneste, C. and Sebbah, P. 2005. Localized modes in random arrays of cylinders. Phys. Rev. E, 71(2), 026612.
[504] Vanneste, C., Sebbah, P., and Cao, H. 2007. Lasing with resonant feedback in weakly scattering random systems. Phys. Rev. Lett., 98, 143902.
[505] Vasconcelos, M. S. and Albuquerque, E. L. 1999. Transmission fingerprints in quasiperiodic dielectric multilayers. Phys. Rev. B, 59(17), 11128–11131.
[506] Vats, N., John, S., and Busch, K. 2002. Theory of fluorescence in photonic crystals. Phys. Rev. A, 65, 043808.
[507] Vellekoop, I. M. and Aegerter, C. M. 2010. Scattered light fluorescence microscopy: Imaging through turbid layers. Opt. Lett., 35, 1245–1247.
[508] Vellekoop, I. M., Lagendijk, A., and Mosk, A. P. 2010. Exploiting disorder for perfect focusing. Nature Photon., 4, 320–322.
[509] Vellekoop, I. M. and Mosk, A. P. 2007. Focusing coherent light through opaque strongly scattering media. Opt. Lett., 32, 2309–2311.
[510] Vellekoop, I. M., van Putten, E. P., Lagendijk, A., and Mosk, A. P. 2008. Demixing light paths inside disordered metamaterials. Opt. Express, 16, 67–80.
[511] Vlasov, Y. A., Bo, X.-Z., Sturm, J. C., and Norris, D. J. 2001. On-chip natural assembly of silicon photonic bandgap crystals. Nature, 414, 289–293.
[512] Vogel, H. 1979. A better way to construct the sunflower head. Math. Biosci., 44, 179–189.
[513] von Freymann, G., Ledermann, A., Thiel, M., et al. 2010. Three-dimensional nanostructures for photonics. Adv. Funct. Mater., 20, 1038.
[514] Vos, W. L., Koenderink, A. F., and Nikolaev, I. S. 2009. Orientation-dependent spontaneous emission rates of a two-level quantum emitter in any nanophotonic environment. Phys. Rev. A, 80, 053802.
[515] Vos, W. L., Sprik, R., van Blaaderen, A., et al. 1996. Strong effects of photonic band structures on the diffraction of colloidal crystals. Phys.Rev.B, 53, 16231–16235.
[516] Vos, W. L. and van Driel, H. M. 2000. Higher order Bragg diffraction by strongly photonic fcc crystals: Onset of a photonic bandgap. Phys. Lett. A, 272, 101–106.
[517] Vos, W. L., van Driel, H. M., Megens, M., Koenderink, A. F., and Imhof, A. 2001. Experimental probes of the optical properties of photonic crystals. Pages 181–198 in: Proceedings of the NATO ASI “Photonic Crystals and Light Localization in the 21st century”Kluwer, Dordrecht.
[518] Wang, Ch. and Barrio, R. A. 1988. Theory of the Raman response in Fibonacci superlattices. Phys. Rev. Lett., 61, 191–194.
[519] Wang, J., Chabanov, A. A., Lu, D. Y., Zhang, Z. Q., and Genack, A. Z. 2010. Dynamics of fluctuations of localized waves. Phys. Rev. B, 81, 241101(R).
[520] Wang, J. and Genack, A. Z. 2011. Transport through modes in random media. Nature, 471, 345–348.
[521] Wang, K. 2006. Light wave states in two-dimensional quasiperiodic media. Phys. Rev. B, 73(23), 235122.
[522] Wang, X. H., Gu, B. Y., Wang, R. Z., and Xu, H. Q. 2003. Decay kinetic properties of atoms in photonic crystals with absolute gaps. Phys. Rev. Lett., 91, 113904.
[523] Watson, G. H., Fleury, P. A., and McCall, S. L. 1987. Searching for photon localization in the time domain. Phys. Rev. Lett., 58, 945–948.
[524] Weaver, R. 1993. Anomalous diffusivity and localization of classical waves in disordered media: The effect of dissipation. Phys.Rev.B, 47, 1077–1080.
[525] Webb, R. A., Washburn, S., Umbach, C. P., and Laibowitz, R. B. 1985. Observations of h/e Aharonov–Bohm oscillations in normal-metal rings. Phys. Rev. Lett., 54, 2696–2699.
[526] Wei, H., Underwood, D. F., Han, S. E., Blank, D. A., and Norris, D. J. 2009. The role of stress in the time-dependent optical response of silicon photonic band gap crystals. Appl. Phys. Lett., 95, 051910.
[527] Whittaker, D. M. and Culshaw, I. S. 1999. Scattering-matrix treatment of patterned multilayer photonic structures. Phys. Rev. B, 60(4), 2610.
[528] Wiersma, D. 2000. Laser physics: The smallest random laser. Nature, 406(6792), 132–135.
[529] Wiersma, D. S. 2008. The physics and applications of random lasers. Nature Phys., 4, 359–367.
[530] Wiersma, D. S. 2013. Disordered photonics. Nature Photon., 7, 188–196.
[531] Wiersma, D. S., Bartolini, P., Lagendijk, A., and Righini, R. 1997. Localization of light in a disordered medium. Nature, 390, 671–673.
[532] Wiersma, D. S. and Cavalieri, S. 2001. Light emission: A temperature-tunable random laser. Nature, 414(6865), 708–709.
[533] Wiersma, D. S. and Lagendijk, A. 1996. Light diffusion with gain and random lasers. Phys. Rev. E, 54, 4256–4265.
[534] Wiersma, D. S., van Albada, M. P., and Lagendijk, A. 1995. Random laser? Nature, 373, 203–204.
[535] Wiersma, D. S., van Albada, M. P., van Tiggelen, B. A., and Lagendijk, A. 1995. Experimental evidence for recurrent multiple scattering events of light in disordered media. Phys. Rev. Lett., 74, 4193–1196.
[536] Wigner, E. P. 1951. On the statistical distribution of the widths and spacing of nuclear resonance levels. Page 790 in: Proc. Cambridge Phil. Soc.
[537] Wijnhoven, J. E. G. J., Bechger, L., and Vos, W. L. 2001. Fabrication and characterization of large macroporous photonic crystals in titania. Chem. Mater., 13, 4486–4499.
[538] Wijnhoven, J. E. G. J. and Vos, W. L. 1998. Preparation of photonic crystals made of air spheres in titania. Science, 281, 802–804.
[539] Wilson, K. G. 1971. Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture. Phys. Rev. B, 4, 3174–3183.
[540] Woldering, L. A., Mosk, A. P., Tjerkstra, R. W., and Vos, W. L. 2009. The influence of fabrication deviations on the photonic band gap of three-dimensional inverse woodpile nanostructures. J. Appl. Phys., 105, 093108.
[541] Woldering, L. A., Tjerkstra, R. W., Jansen, H. V., Setija, I. D., and Vos, W. L. 2008. Periodic arrays of deep nanopores made in silicon with reactive ion etching and deep UV lithography. Nanotechnology, 19, 145304.
[542] Woldeyohannes, M. and John, S. 1999. Coherent control of spontaneous emission near a photonic band edge: A qubit for quantum computation. Phys. Rev. A, 60, 5046–5068.
[543] Wolf, P. E. and Maret, G. 1985. Weak localization and coherent backscattering of photons in disordered media. Phys. Rev. Lett., 55, 2696–2699.
[544] Wu, X., Fang, W., Yamilov, A., et al. 2006. Random lasing in weakly scattering systems. Phys. Rev. A, 74(5), 053812.
[545] Xia, F., Sekaric, L., and Vlasov, Y. A. 2007. Ultracompact optical buffers on a silicon chip. Nature Photon., 1(1), 65–71.
[546] Xia, F., Rooks, M., Sekaric, L., and Vlasov, Y. 2007b. Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects. Opt. Express, 15(19), 11934–11941.
[547] Xu, J., Ma, R., Wang, X., and Tam, W. Y. 2007. Icosahedral quasicrystals for visible wavelengths by optical interference holography. Opt. Express, 15(7), 4287.
[548] Xu, Y., Lee, R. K., and Yariv, A. 2000. Propagation and second-harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide. J. Opt. Soc. Am. B, 17(3), 387–400.
[549] Yablonovitch, E. 1987. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 58, 2059–2062.
[550] Yablonovitch, E., Gmitter, T. J., and Leung, K. M. 1991. Photonic band structure: The face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett., 67, 2295–2298.
[551] Yablonovitch, E., Gmitter, T. J., Meade, R. D., et al. 1991. Donor and acceptor modes in photonic band structure. Phys. Rev. Lett., 67, 3380–3383.
[552] Yamilov, A., Wu, X., Cao, H., and Burin, A. L. 2005. Absorption-induced confinement of lasing modes in diffusive random media. Opt. Lett., 30, 2430–2432.
[553] Yang, J. K., Boriskina, S. V., Noh, H., et al. 2010. Demonstration of laser action in a pseudorandom medium. Appl. Phys. Lett., 97(22), 223101.
[554] Yang, S. and Astratov, V. N. 2009. Spectroscopy of coherently coupled whispering-gallery modes in size-matched bispheres assembled on a substrate. Opt. Lett., 34(13), 2057–2059.
[555] Yariv, A., Xu, Y., Lee, R. K., and Scherer, A. 1999. Coupled-resonator optical waveguide: A proposal and analysis. Opt. Lett., 24(11), 711–713.
[556] Yariv, A. and Yeh, P. 1983. Optical Waves in Crystals: Propagation and Control of Laser Radiation. Wiley, New York.
[557] Ye, D.-X., Yang, Z.-P., Chang, A. S., et al. 2007. Experimental realization of a well-controlled 3D silicon spiral photonic crystal. J. Phys. D, 40, 2624–2628.
[558] Yin, J., Huang, X., Liu, S., and Hu, S. 2007. Photonic bandgap properties of 8-fold symmetric photonic quasicrystals. Opt. Commun., 269(2), 385.
[559] Yoshie, T., Scherer, A., Hendrickson, J., et al. 2004. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 432, 201–203.
[560] Zhang, S., Lockerman, Y., and Genack, A. Z. 2010. Mesoscopic speckle. Phys. Rev. E, 82, 051114.
[561] Zhang, S., Park, J., Milner, V., and Genack, A. Z. 2008. Delocalization transition in dimensional crossover in random layered media. Phys. Rev. Lett., 101, 183901.
[562] Zhang, X., Zhang, Z.-Q., and Chan, C. T. 2001. Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals. Phys. Rev. B, 63(8), 081105.
[563] Zhang, X. D., Zhang, Z. Q., and Chan, C. T. 2001. Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals. Phys. Rev. B, 63, 081105.
[564] Zhang, Z. Q., Chabanov, A. A., Cheung, S. K., Wong, C. H., and Genack, A. Z. 2009. Dynamics of localized waves. Phys.Rev. B, 79, 144203.
[565] Zhu, J. X., Pine, D. J., and Weitz, D. 1991. Internal reflection of diffusive light in random media. Phys.Rev.A, 44, 3948–3959.
[566] Zhukovsky, S. V., Chigrin, D. N., and Kroha, J. 2006. Low-loss resonant modes in deterministically aperiodic nanopillar waveguides. J. Opt. Soc. Am. B, 23(10), 2265–2272.
[567] Zito, G., Piccirillo, B., Santamato, E., et al. 2008. Two-dimensional photonic quasicrystals by single beam computer-generated holography. Opt. Express, 16(8), 5164.
[568] Zoorob, M. E., Charlton, M. D. B., Parker, G. J., Baumberg, J. J., and Netti, M. C. 2000. Complete photonic bandgaps in 12-fold symmetric quasicrystals. Nature, 404(6779), 740–743.
[569] Zurek, W. H. 1991. Decoherence and the transition from quantum to classical. Phys. Today, 44, 36–44.