Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-29T01:49:26.687Z Has data issue: false hasContentIssue false

1 - The evolution of interacting quantum systems

Published online by Cambridge University Press:  05 August 2012

Gilbert Grynberg
Affiliation:
Ecole Normale Supérieure, Paris
Alain Aspect
Affiliation:
Institut d'Optique, Palaiseau
Claude Fabre
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

In this work we shall study the interaction of matter and light. In so doing we shall rely heavily on the description of such processes provided by quantum mechanics. This appears on a number of levels: firstly, a quantum description of matter is indispensable if one wants to understand on the microscopic scale the different kinds of interaction processes that can occur. Secondly, a quantum description of light often turns out to be useful, sometimes necessary, to better understand these processes. We shall study phenomena such as spontaneous emission, which can only be properly treated by a theory taking into account the quantum nature of both light and matter.

In the following chapters we shall address, amongst others, the following question: ‘given an atom prepared at a given time in a particular state and subjected from this time onwards to electromagnetic radiation, what is the state of the atom and radiation at any later moment in time?’ In order to be able to answer this question it will be necessary for us to know how to calculate the evolution of a quantum system in a small number of typical situations. These methods we shall demonstrate in the first chapter.

The evolution of the coupled atom–light system depends on the temporal dependence of the applied light field, which could, for example, be applied from a given moment and thereafter remain unchanged in intensity, or, perhaps, be appreciable only for a finite period of time (pulsed excitation).

Type
Chapter
Information
Introduction to Quantum Optics
From the Semi-classical Approach to Quantized Light
, pp. 3 - 33
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×