Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T07:25:06.277Z Has data issue: false hasContentIssue false

Complement 2A: Classical model of the atom-field interaction: the Lorentz model

Published online by Cambridge University Press:  05 August 2012

Gilbert Grynberg
Affiliation:
Ecole Normale Supérieure, Paris
Alain Aspect
Affiliation:
Institut d'Optique, Palaiseau
Claude Fabre
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

This first complement is devoted to a completely classical approach of lightmatter interaction which was proposed by Lorentz at the end of the nineteenth century, before the advent of quantum mechanics, but after the discovery of the electron. Lorentz' phenomenological model is based on the experimental fact that atoms have well-defined and sharp absorption lines: he assumed that atoms behaved like harmonic oscillators, in which the electrons are bound to the atomic nucleus by a restoring force which varies linearly with its displacement (from its equilibrium point close to a nucleus), and makes them oscillate at a given frequency ω0 equal to the experimentally determined absorption frequency.

Within the frame of this model, we first calculate the electromagnetic field radiated by an oscillating electron. We show that in the absence of an externally applied force the free oscillations of the electron are damped, because electromagnetic energy is radiated at the expense of mechanical energy. We then study the characteristics of the radiation that is emitted when the oscillations are forced by the application of an external oscillatory electromagnetic field of angular frequency ω. We characterize the different regimes of this scattering of the incident electromagnetic wave and finally determine the polarization induced in the atomic medium by the incident electromagnetic wave.

The Lorentz model can be considered as a lowest order approximation to a description of the light–matter interaction, a better approximation being the semi-classical treatment presented in Chapter 2, and the rigorous treatment being the completely quantum mechanical model presented in Chapter 6.

Type
Chapter
Information
Introduction to Quantum Optics
From the Semi-classical Approach to Quantized Light
, pp. 105 - 119
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×