Skip to main content Accessibility help
×
Home
  • Print publication year: 2010
  • Online publication date: August 2012

Complement 2C: The density matrix and the optical Bloch equations

Summary

The arguments of Chapter 2, as well as of those of subsequent chapters, have as their foundation the formalism based on the state vector of a system of which the evolution is described by the Schrödinger equation. In fact, such an approach is badly suited to the case in which the coupling between an atom and its environment (for example through collisions with other atoms or spontaneous emission into formerly empty modes of the electromagnetic field) cannot be neglected. If the correlations induced by these interactions between the atom and its environment do not concern us and we are only interested in the evolution of the atom, the formalism of the density matrix must be employed. This provides a description at all times of the state of the atom, although a state vector for the atom alone cannot be defined. In this formalism the effect of the environment on the atom is accounted for by the introduction of suitable relaxation terms (Section 2C.1) in the equation of evolution of the density matrix. An important application of the density matrix is to the case of a two-level atomic system for which the relaxation terms lead to its deexcitation to a level of lower energy. We shall show that in this case the density matrix can be represented by a vector, known as the Bloch vector, which will allow us to give simple geometrical pictures of the evolution of the system.