Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-07T20:06:48.555Z Has data issue: false hasContentIssue false

13 - Mechanobiological stimulation of tissue engineered blood vessels

from Part II - Recent progress in cell mechanobiology

Published online by Cambridge University Press:  05 November 2015

Yu Sun
Affiliation:
University of Toronto
Deok-Ho Kim
Affiliation:
University of Washington
Craig A. Simmons
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Integrative Mechanobiology
Micro- and Nano- Techniques in Cell Mechanobiology
, pp. 227 - 244
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abaci, H. E., Devendra, R., Soman, R., Drazer, G. and Gerecht, S. (2012). “Microbioreactors to manipulate oxygen tension and shear stress in the microenvironment of vascular stem and progenitor cells.” Biotechnol Appl Biochem 59: 97105.CrossRefGoogle ScholarPubMed
Ballotta, V., Driessen-Mol, A., Bouten, C. V. and Baaijens, F. P. (2014). “Strain-dependent modulation of macrophage polarization within scaffolds.” Biomaterials 35: 49194928.CrossRefGoogle ScholarPubMed
Battiston, K. G. (2015). Evaluating the Use of Monocytes with a Degradable Polyurethane for Vascular Tissue Regeneration. PhD dissertation, University of Toronto.Google Scholar
Brown, X. Q., Bartolak-Suki, E., Williams, C., Walker, M. L., Weaver, V. M. and Wong, J. Y. (2010). “Effect of substrate stiffness and PDGF on the behavior of vascular smooth muscle cells: implications for atherosclerosis.” J Cell Physiol 225: 115122.CrossRefGoogle ScholarPubMed
Brown, X. Q., Ookawa, K. and Wong, J. Y. (2005). “Evaluation of polydimethylsiloxane scaffolds with physiologically-relevant elastic moduli: interplay of substrate mechanics and surface chemistry effects on vascular smooth muscle cell response.” Biomaterials 26: 31233129.CrossRefGoogle ScholarPubMed
Crapo, P. M. and Wang, Y. (2011). “Hydrostatic pressure independently increases elastin and collagen co-expression in small-diameter engineered arterial constructs.” J Biomed Mater Res A 96: 673681.CrossRefGoogle ScholarPubMed
Engbers-Buijtenhuijs, P., Buttafoco, L., Poot, A. A., Dijkstra, P. J., de Vos, R. A., Sterk, L. M., Geelkerken, R. H., et al. (2006). “Biological characterisation of vascular grafts cultured in a bioreactor.” Biomaterials 27: 23902397.CrossRefGoogle Scholar
Fitzgerald, T. N., Shepherd, B. R., Asada, H., Teso, D., Muto, A., Fancher, T., Pimiento, J. M., et al. (2008). “Laminar shear stress stimulates vascular smooth muscle cell apoptosis via the Akt pathway.” J Cell Physiol 216: 389395.CrossRefGoogle ScholarPubMed
Hagerty, R. D., Salzmann, D. L., Kleinert, L. B. and Williams, S. K. (2010). “Cellular proliferation and macrophage populations associated with implanted expanded polytetrafluoroethylene and polyethyleneterephthalate.” J Biomed Mater Res 49: 489497.3.0.CO;2-2>CrossRefGoogle Scholar
Hahn, M. S., Mchale, M. K., Wang, E., Schmedlen, R. H. and West, J. L. (2007). “Physiologic pulsatile flow bioreactor conditioning of poly(ethylene glycol)-based tissue engineered vascular grafts.” Ann Biomed Eng 35: 190200.CrossRefGoogle ScholarPubMed
Hibino, N., Yi, T., Duncan, D. R., Rathore, A., Dean, E., Naito, Y., Dardik, A., et al. (2011). “A critical role for macrophages in neovessel formation and the development of stenosis in tissue-engineered vascular grafts.” FASEB J 25: 42534263.CrossRefGoogle ScholarPubMed
Huang, A. H. and Niklason, L. E. (2014). “Engineering of arteries in vitro.” Cell Mol Life Sci 71: 21032118.CrossRefGoogle ScholarPubMed
Isenberg, B. C. and Tranquillo, R. T. (2003). “Long-term cyclic distention enhances the mechanical properties of collagen-based media-equivalents.” Ann Biomed Eng 31: 937949.CrossRefGoogle ScholarPubMed
Isenberg, B. C. Williams, C. and Tranquillo, R. T. (2006). “Endothelialization and flow conditioning of fibrin-based media-equivalents.” Ann Biomed Eng 34: 971985.CrossRefGoogle ScholarPubMed
Jeong, S. I., Kwon, J. H., Lim, J. I., Cho, S. W., Jung, Y., Sung, W. J., Kim, S. H., et al. (2005). “Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds.” Biomaterials 26: 14051411.CrossRefGoogle ScholarPubMed
Laflamme, K., Roberge, C. J., Pouliot, S., D’orleans-Juste, P., Auger, F. A. and Germain, L. (2006). “Tissue-engineered human vascular media produced in vitro by the self-assembly approach present functional properties similar to those of their native blood vessels.” Tissue Eng 12: 22752281.CrossRefGoogle ScholarPubMed
Lehoux, S., Castier, Y. and Tedgui, A. (2006). “Molecular mechanisms of the vascular responses to haemodynamic forces.” J Intern Med 259: 381392.CrossRefGoogle ScholarPubMed
Lewis, J. S., Dolgova, N. V., Chancellor, T. J., Acharya, A. P., Karpiak, J. V., Lele, T. P. and Keselowsky, B. G. (2013). “The effect of cyclic mechanical strain on activation of dendritic cells cultured on adhesive substrates.” Biomaterials 34: 90639070.CrossRefGoogle ScholarPubMed
Li, J., Zhang, K., Yang, P., Liao, Y., Wu, L., Chen, J., Zhao, A., et al. (2013). “Research of smooth muscle cells response to fluid flow shear stress by hyaluronic acid micro-pattern on a titanium surface.” Exp Cell Res 319: 26632672.CrossRefGoogle ScholarPubMed
Lin, Y. C., Kramer, C. M., Chen, C. S. and Reich, D. H. (2012). “Probing cellular traction forces with magnetic nanowires and microfabricated force sensor arrays.” Nanotechnology 23: 075101.CrossRefGoogle ScholarPubMed
Liu, H., Usprech, J., Sun, Y. and Simmons, C. A. (in press). “A microfabricated platform with hydrogel arrays for 3D mechanical stimulation of cells.” Acta Biomaterialia.Google Scholar
Mann, J. M., Lam, R. H., Weng, S., Sun, Y. and Fu, J. (2012). “A silicone-based stretchable micropost array membrane for monitoring live-cell subcellular cytoskeletal response.” Lab Chip 12: 731740.CrossRefGoogle ScholarPubMed
Matheson, L. A., Maksym, G. N., Santerre, J. P. and Labow, R. S. (2006). “The functional response of U937 macrophage-like cells is modulated by extracellular matrix proteins and mechanical strain.” Biochem Cell Biol 84: 763773.CrossRefGoogle ScholarPubMed
Matheson, L. A., Maksym, G. N., Santerre, J. P. and Labow, R. S. (2007). “Differential effects of uniaxial and biaxial strain on U937 macrophage-like cell morphology: influence of extracellular matrix type proteins.” J Biomed Mater Res A 81: 971981.CrossRefGoogle ScholarPubMed
Mcallister, T. N., Maruszewski, M., Garrido, S. A., Wystrychowski, W., Dusserre, N., Marini, A., Zagalski, K., et al. (2009). “Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study.” Lancet 373: 14401446.CrossRefGoogle ScholarPubMed
Miyazaki, H. and Hayashi, K. (2001). “Effects of cyclic strain on the morphology and phagocytosis of macrophages.” Biomed Mater Eng 11: 301309.Google ScholarPubMed
Moraes, C., Likhitpanichkul, M., Lam, C. J., Beca, B. M., Sun, Y. and Simmons, C. A. (2013). “Microdevice array-based identification of distinct mechanobiological response profiles in layer-specific valve interstitial cells.” Integr Biol (Camb) 5(4): 673680.CrossRefGoogle ScholarPubMed
Niklason, L. E., Gao, J., Abbott, W. M., Hirschi, K. K., Houser, S., Marini, R. and Langer, R. (1999). “Functional arteries grown in vitro.” Science 284: 489493.CrossRefGoogle ScholarPubMed
Opitz, F., Schenke-Layland, K., Richter, W., Martin, D. P., Degenkolbe, I., Wahlers, T. and Stock, U. A. (2004). “Tissue engineering of ovine aortic blood vessel substitutes using applied shear stress and enzymatically derived vascular smooth muscle cells.” Ann Biomed Eng 32: 212222.CrossRefGoogle ScholarPubMed
Peyton, S. R. and Putnam, A. J. (2005). “Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion.” J Cell Physiol 204: 198209.CrossRefGoogle Scholar
Peyton, S. R., Raub, C. B., Keschrumrus, V. P. and Putnam, A. J. (2006). “The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells.” Biomaterials 27: 48814893.CrossRefGoogle ScholarPubMed
Redmond, E. M., Cullen, J. P., Cahill, P. A., Sitzmann, J. V., Stefansson, S., Lawrence, D. A. and Okada, S. S. (2001). “Endothelial cells inhibit flow-induced smooth muscle cell migration: role of plasminogen activator inhibitor-1.” Circulation 103: 597603.CrossRefGoogle ScholarPubMed
Riehl, B. D., Park, J. H., Kwon, I. K. and Lim, J. Y. (2012). “Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs.” Tissue Eng Part B Rev 18: 288300.CrossRefGoogle ScholarPubMed
Robinson, K. G., Nie, T., Baldwin, A. D., Yang, E. C., Kiick, K. L. and Akins, R. E. Jr. (2012). “Differential effects of substrate modulus on human vascular endothelial, smooth muscle, and fibroblastic cells.” J Biomed Mater Res A 100: 13561367.CrossRefGoogle ScholarPubMed
Rosati, C. and Garay, R. (1991). “Flow-dependent stimulation of sodium and cholesterol uptake and cell growth in cultured vascular smooth muscle.” J Hypertens 9: 10291033.CrossRefGoogle ScholarPubMed
Sakamoto, H., Aikawa, M., Hill, C. C., Weiss, D., Taylor, W. R., Libby, P. and Lee, R. T. (2011). “Biomechanical strain induces class a scavenger receptor expression in human monocyte/macrophages and THP-1 cells: a potential mechanism of increased atherosclerosis in hypertension.” Circulation 104: 109114.CrossRefGoogle Scholar
Sazonova, O. V., Lee, K. L., Isenberg, B. C., Rich, C. B., Nugent, M. A. and Wong, J. Y. (2011). “Cell-cell interactions mediate the response of vascular smooth muscle cells to substrate stiffness.” Biophys J 101: 622630.CrossRefGoogle ScholarPubMed
Seifu, D. G., Purnama, A., Mequanint, K. and Mantovani, D. (2013). “Small-diameter vascular tissue engineering.” Nat Rev Cardiol 10: 410421.CrossRefGoogle ScholarPubMed
Seliktar, D., Black, R. A., Vito, R. P. and Nerem, R. M. (2000). “Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro.” Ann Biomed Eng 28: 351362.CrossRefGoogle ScholarPubMed
Shi, Z. D. and Tarbell, J. M. (2011). “Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts.” Ann Biomed Eng 39: 16081619.CrossRefGoogle Scholar
Shigematsu, K., Yasuhara, H., Shigematsu, H. and Muto, T. (2000). “Direct and indirect effects of pulsatile shear stress on the smooth muscle cell.” Int Angiol 19: 3946.Google ScholarPubMed
Song, Y., Wennink, J. W., Kamphuis, M. M., Sterk, L. M., Vermes, I., Poot, A. A., Feijen, J. et al. (2011). “Dynamic culturing of smooth muscle cells in tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering.” Tissue Eng Part A 17: 381387.CrossRefGoogle ScholarPubMed
Stegemann, J. P. and Nerem, R. M. (2003). “Phenotype modulation in vascular tissue engineering using biochemical and mechanical stimulation.” Ann Biomed Eng 31: 391402.CrossRefGoogle ScholarPubMed
Syedain, Z. H. and Tranquillo, R. T. (2011). “TGF-beta1 diminishes collagen production during long-term cyclic stretching of engineered connective tissue: implication of decreased ERK signaling.” J Biomech 44: 848855.CrossRefGoogle ScholarPubMed
Syedain, Z. H., Weinberg, J. S. and Tranquillo, R. T. (2008). “Cyclic distension of fibrin-based tissue constructs: evidence of adaptation during growth of engineered connective tissue.” Proc Natl Acad Sci USA 105: 65376542.CrossRefGoogle ScholarPubMed
Tan, W., Scott, D., Belchenko, D., Qi, H. J. and Xiao, L. (2008). “Development and evaluation of microdevices for studying anisotropic biaxial cyclic stretch on cells.” Biomedical Microdevices 10: 869882.CrossRefGoogle ScholarPubMed
Vara, D. S., Punshon, G., Sales, K. M., Hamilton, G. and Seifalian, A. M. (2011). “Haemodynamic regulation of gene expression in vascular tissue engineering.” Curr Vasc Pharmacol 9: 167187.CrossRefGoogle ScholarPubMed
Wagenseil, J. E. and Mecham, R. P. (2009). “Vascular extracellular matrix and arterial mechanics.” Physiol Rev 89: 957989.CrossRefGoogle ScholarPubMed
Wang, C., Cen, L., Yin, S., Liu, Q., Liu, W., Cao, Y. and Cui, L. (2010). “A small diameter elastic blood vessel wall prepared under pulsatile conditions from polyglycolic acid mesh and smooth muscle cells differentiated from adipose-derived stem cells.” Biomaterials 31: 621630.CrossRefGoogle ScholarPubMed
Wayman, B. H., Taylor, W. R., Rachev, A. and Vito, R. P. (2008). “Arteries respond to independent control of circumferential and shear stress in organ culture.” Ann Biomed Eng 36: 673684.CrossRefGoogle ScholarPubMed
Wilson, E., Sudhir, K. and Ives, H. E. (1995). “Mechanical strain of rat vascular smooth muscle cells is sensed by specific extracellular matrix/integrin interactions.” Journal of Clinical Investigation 96: 23642372.CrossRefGoogle ScholarPubMed
Xu, J., Ge, H., Zhou, X., Yang, D., Guo, T., He, J., Li, Q., et al. (2005). “Tissue-engineered vessel strengthens quickly under physiological deformation: application of a new perfusion bioreactor with machine vision.” J Vasc Res 42: 503508.CrossRefGoogle ScholarPubMed
Yeh, C. H., Tsai, S. H., Wu, L. W. and Lin, Y. C. (2011). “Using a co-culture microsystem for cell migration under fluid shear stress.” Lab Chip 11: 25832590.CrossRefGoogle ScholarPubMed
Zhang, X., Wang, X., Keshav, V., Johanas, J. T., Leisk, G. G. and Kaplan, D. L. (2009). “Dynamic culture conditions to generate silk-based tissue-engineered vascular grafts.” Biomaterials 30: 32133223.CrossRefGoogle ScholarPubMed
Zilla, P., Bezuidenhout, D. and Human, P. (2007). “Prosthetic vascular grafts: wrong models, wrong questions and no healing.” Biomaterials 28: 50095027.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×