Skip to main content Accessibility help
  • Print publication year: 2008
  • Online publication date: September 2010

Chapter 22 - Insect endocrinology and hormone-based pest control products in IPM


IPM methods were developed largely in response to the negative consequences of the intensive use of broad-spectrum pesticides in the early to mid twentieth century (Kogan, 1998). These insecticides, belonging to the carbamate, organophosphate and organochlorine families, have unintended side effects such as environmental persistence, bioaccumulation, development of resistance among target pests, toxicity to non-target species (especially natural enemies) and human health risks. While IPM focuses mainly on preventative tactics (e.g. crop rotation) rather than remedial ones, synthetic chemical insecticides are still very much needed to achieve effective control in many agricultural systems.

The study of insect physiology has been driven, in no small part, by the need for safe alternatives to broad-spectrum insecticides. Theoretically at least, digestion, excretion, neuronal communication, metabolism and other physiological processes all comprise “insect-specific” components that are vulnerable and could be targeted by synthetic molecules. To this day, however, IPM-compatible pest control products that target the insect endocrine system far outnumber those targeting other systems. In particular, hormone mimics that control development have enjoyed not only wide appeal but also many commercial successes, and additional control products targeting hormone production and function are currently under development. In this chapter we provide an overview of (1) insect endocrinology, (2) existing control products that mimic ecdysone and juvenile hormone (JH) action and (3) possible development of disruption control strategies based on novel endocrine functions that are likely to generate new IPM tools in the future.

Addison, J. A. (1996). Safety testing of tebufenozide, a new molt-inducing insecticide, for effects on nontarget forest soil invertebrates. Ecotoxicology and Environmental Safety, 33, 55–61.
Ahmad, M., Hollingworth, R. M. & Wise, J. C. (2002). Broad-spectrum insecticide resistance in obliquebanded leafroller Choristoneura rosaceana (Lepidoptera: Tortricidae) from Michigan. Pest Management Science, 58, 834–838.
Allenza, P. & Eldridge, R. (2007). High-throughput screening and insect genomics for new insecticide leads. In Insecticide Design Using Advanced Technologies, eds. Ishaaya, I., Nauen, R. & Horowitz, A. R., pp. 67–86. Berlin, Germany: Springer-Verlag.
Altstein, M. (2004). Novel insect control agents based on neuropeptide antagonists: the PK/PBAN family as a case study. Journal of Molecular Neuroscience, 22, 147–157.
,Anonymous (2002). Evaluation of the New Active Methoxyfenozide in the Product PRODIGY 240 SC Insecticide. Canberra, Australia: National Registration Authority for Agricultural and Veterinary Chemicals. Available at
,Bombyx mori Biology Analysis Group, Xia, Q., Zhou, Z., Lu, al. (2004). A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science, 306, 1937–1940.
Brown, M. R., Raikhel, A. S. & Lea, A. O. (1985). Ultrastructure of midgut endocrine cells in the adult mosquito, Aedes aegypti. Tissue and Cell, 17, 709–721.
Butenandt, A. & Karlson, P. (1954). Über die Isolierung eines Metamorphosen-Hormons der Insekten in kristallisierter Form. Zeitschrift fur Naturforschung, 9B, 389–391.
Cadogan, B. L., Thompson, D. G., Retnakaran, al. (1998). Deposition of aerially applied tebufenozide (RH-5992) on balsam fir (Abies balsamea) and its control of spruce budworm (Choristoneura fumiferana [Clem.]). Pesticide Science, 53, 80–90.
Cadogan, B. L., Scharbach, R. D., Knowles, K. R. & Krause, R. E. (2005). Efficacy evaluation of a reduced dosage of tebufenozide applied aerially to control spruce budworm (Choristoneura fumiferana). Crop Protection, 24, 557–563.
Castillo, M., Moya, P., Couillaud, F., Garcerá, M. D. & Martinez-Pardo, R. (1998). A heterocyclic oxime from a fungus with anti-juvenile hormone activity. Archives of Insect Biochemistry and Physiology, 37, 287– 294.
Charrois, G. J. R., Mao, H. & Kaufman, W. R. (1996). Impact on salivary gland degeneration by putative ecdysteroid antagonists and agonists in the ixodid tickAmblyomma hebraeum. Pesticide Biochemistry and Physiology, 55, 140–149.
Claeys, I., Simonet, G., Loy, T., Loof, A. & Vanden Broeck, J. (2003). cDNA cloning and transcript distribution of two novel members of the neuroparsin family in the desert locust, Schistocerca gregaria. Insect Molecular Biology, 12, 473–481.
Claeys, I., Breugelmans, B., Simonet, al. (2006). Regulation of Schistocerca gregaria neuroparsin transcript levels by juvenile hormone and 20-hydroxyecdysone. Archives of Insect Biochemistry and Physiology, 62, 107–115.
Cusson, M. (2004). Juvenile hormone. In Encyclopedia of Entomology, ed. Capinera, J. L., pp. 1228–1230. Dordrecht, Netherlands: Kluwer.
Cusson, M. & Palli, S. R. (2000). Can juvenile hormone research help rejuvenate integrated pest management?Canadian Entomologist, 132, 263–280.
Cusson, M., Béliveau, C., Sen, S. al. (2006). Characterization and tissue-specific expression of two lepidopteran farnesyl diphosphate synthase homologs: implications for the biosynthesis of ethyl-substituted juvenile hormones. Proteins, 65, 742–758.
Davey, M., Duve, H., Thorpe, A. & East, P. (2005). Helicostatins: brain-gut peptides of the moth, Helicoverpa armigera (Lepidoptera: Noctuidae). Archives of Insect Biochemistry and Physiology, 58, 1–16.
Davis, N. T., Blackburn, M. B., Golubeva, E. G. & Hildebrand, J. G. (2003). Localization of myoinhibitory peptide immunoreactivity in Manduca sexta and Bombyx mori, with indications that the peptide has a role in molting and ecdysis. Journal of Experimental Biology, 206, 1449–1460.
Dhadialla, T. S., Carlson, G. R. & Le, D. P. (1998). New insecticides with ecdysteroidal and juvenile hormone activity. Annual Review of Entomology, 43, 545–569.
Dhadialla, T. S., Retnakaran, A. & Smagghe, G. (2005). Insect growth- and development-disrupting insecticides. In Comprehensive Molecular Insect Science, vol. 6, eds. Gilbert, L. I., Iatrou, K. & Gill, S. S., pp. 55–117. St Louis, MO: Elsevier.
Dinan, L. (2001). Phytoecdysteroids: biological aspects. Phytochemistry, 57, 325–339.
Dinan, L., Whiting, P., Girault, J. al. (1997). Cucurbitacins are insect steroid hormone antagonists acting at the ecdysteroid receptor. Biochemical Journal, 327, 643–650.
Doucet, D., Cusson, M. & Retnakaran, A. (2007a). Insect endocrinology and hormone-based pest control products in IPM. Table 1. In Radcliffe's IPM World Textbook, eds. Radcliffe, E. B., Hutchison, W. D. and Cancelado, R. E.. Available at
Doucet, D., Cusson, M. & Retnakaran, A. (2007b). Insect endocrinology and hormone-based pest control products in IPM. Table 2. In Radcliffe's IPM World Textbook, eds. Radcliffe, E. B., Hutchison, W. D. and Cancelado, R. E.. Available at
Fussnecker, B. L., Smith, B. H. & Mustard, J. A. (2006). Octopamine and tyramine influence the behavioral profile of locomotor activity in the honeybee (Apis mellifera). Journal of Insect Physiology, 52, 1083– 1092.
Gilbert, L. I. & Warren, J. T. (2005). A molecular genetic approach to the biosynthesis of the insect steroid molting hormone. Vitamins and Hormones, 73, 32–59.
Gole, J. W. D. & Downer, R. G. H. (1979). Elevation of adenosine 3′, 5′-monophosphate by octopamine in fat body of the American cockroach Periplaneta americana L. Comparative Biochemistry and Physiology, 64C, 223–226.
Hasegawa, K. (1957). The diapause hormone of the silkworm, Bombyx mori. Nature, 179, 1300–1301.
Hauser, F., Cazzamali, G., Williamson, M., Blenau, W. & Grimmelikhuijzen, C. J. (2006). A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honeybee Apis mellifera. Progress in Neurobiology, 80, 1–19.
Helvig, C., Koener, J. F., Unnithan, G. C. & Feyereisen, R. (2004). CYP15A1, the cytochrome P450 that catalyzes epoxidation of methyl farnesoate to juvenile hormone III in cockroach corpora allata. Proceedings of the National Academy of Science of the USA, 101, 4024–4029.
Henderson, J. (2005). Ernest Starling and “hormones”: an historical commentary. Journal of Endocrinology, 184, 5–10.
Holt, R. A., Subramanian, G. M., Halpern, Aet al. (2002). The genome sequence of the malaria mosquito Anopheles gambiae. Science, 298, 129–149.
,Honeybee Genome Sequencing Consortium (2006). Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 443, 931–949.
Hsu, A. C.-T. (1991). 1,2-Diacyl-1-alkyl-hydrazines: a novel class of insect growth regulators. In Synthesis and Chemistry of Agrochemicals II, eds. Baker, D. R., Fenyes, J. G. & Moberg, W. K., pp. 478–490. Washington, DC: American Chemical Society.
Kethidi, D. R., Li, Y. & Palli, S. R. (2006). Protein kinase C phosphorylation blocks juvenile hormone action. Molecular and Cellular Endocrinology, 247, 127–134.
Kim, Y. J., Žitňan, D., Cho, K. al. (2006). Central peptidergic ensembles associated with organization of an innate behavior. Proceedings of the National Academy of Science of the USA, 103, 14211–14216.
King-Jones, K. & Thummel, C. S. (2005). Nuclear receptors: a perspective from Drosophila. Nature Reviews Genetics, 6, 311–323.
Kogan, M. (1998). Integrated pest management: historical perspectives and contemporary developments. Annual Review of Entomology, 43, 243–270.
Kopec, S. (1917). Experiments on metamorphosis of insects. Bulletin of International Academy Cracov B, pp. 57–60.
Kreutzweiser, D. P., Capell, S. S., Wainio-Keizer, K. L. & Eichenber, D.C. (1994). Toxicity of new molt-inducing insecticide (RH-5992) to aquatic macroinvertibrates. Ecotoxicology and Environmental Safety, 28, 14–24.
Lagueux, M., Hoffmann, J. A., Goltzené, al. (1984). Ecdysteroids in ovaries and embryos of Locusta migratoria. In Biosynthesis Metabolism and Mode of Action of Invertebrate Hormones, eds. Hoffmann, J. A. & Porchet, M., pp 168–180. Heidelberg, Germany: Springer-Verlag.
Medina, P., Smagghe, G., Budia, F., Tirry, L. & Vinuela, E. (2003). Toxicity and absorption of azadirachtin, diflubenzuron, pyriproxyfen, and tebufenozide after topical application in predatory larvae of Chrysoperla carnea (Neuroptera: Chrysopidae). Environmental Entomology, 32, 196–203.
Minakuchi, C. & Riddiford, L. M. (2006). Insect juvenile hormone action as a potential target of pest management. Journal of Pesticide Science, 31, 77–84.
Mommaerts, V., Sterk, G. & Smagghe, G. (2006). Bumblebees can be used in combination with juvenile hormone analogues and ecdysone agonists. Ecotoxicology, 15, 513–521.
Monger, D. J., Lim, W. A., Kezdy, F. J. & Law, J. H. (1982). Compactin inhibits insect HMG-CoA reductase and juvenile hormone biosynthesis. Biochemical and Biophysical Research Communications, 105, 1374–1380.
Nakagawa, Y. (2005). Nonsteroidal ecdysone agonists. Vitamins and Hormones, 73, 131–173.
Neves, C. A., Gitirana, L. B. & Serrao, J. E. (2003). Ultrastructure of the midgut endocrine cells in Melipona quadrifasciata anthidioides (Hymenoptera, Apidae). Brazilian Journal of Biology, 63, 683–690.
Nijhout, H. F. (ed.) (1994). Insect Hormones. Princeton, NJ: Princeton University Press.
Nordeen, S. K., Ogden, C. A., Taraseviciene, L. & Lieberman, B. A. (1998). Extreme position dependence of a canonical hormone response element. Molecular Endocrinology, 12, 891–898.
Palli, S. R. & Cusson, M. (2007). Future insecticides targeting genes involved in the regulation of molting and metamorphosis. In Insecticides Design Using Advanced Technologies, eds. Ishaaya, I., Nauen, R. & Horowitz, A. R., pp. 105–134. Berlin, Germany: Springer-Verlag.
Palli, S. R., Tice, C. M., Margam, V. M. & Clark, A. M. (2005). Biochemical mode of action and differential activity of new ecdysone agonists against mosquitoes and moths. Archives of Insect Biochemistry and Physiology, 58, 234–242.
Pratt, G. E., Kuwano, E., Farnsworth, D. E. & Feyereisen, R. (1990). Structure/activity studies on 1, 5-disubstituted imidazoles as inhibitors of juvenile hormone biosynthesis in aisolated corpora allata of the cockroach Diploptera punctata. Pesticide Biochemistry and Physiology, 38, 223–230.
Predel, R., Eckert, M. & Holman, G. M. (1999). The unique neuropeptide pattern in abdominal perisympathetic organs of insects. Annals of the New York Academy of Science, 897, 282–290.
Predel, R., Kellner, R., Baggerman, G., Steinmetzer, T. & Schoofs, L. (2000). Identification of novel periviscerokinins from single neurohaemal release sites in insects: MS/MS fragmentation complemented by Edman degradation. European Journal of Biochemistry, 267, 3869–3873.
Quistad, G. B., Cerf, D. C., Schooley, D. A. & Staal, G. B. (1981). Fluoromevalonate acts as an inhibitor of insect juvenile hormone biosynthesis. Nature, 289, 176– 177.
Quistad, G. B., Cerf, D. C., Kramer, S. J., Bergot, B. J. & Schooley, D. A. (1985). Design of novel insect anti juvenile hormones: allylic alcohol derivatives. Journal of Agricultural Food Chemistry, 33, 47–50.
Rachinsky, A., Mizoguchi, A., Srinivasan, A. & Ramaswamy, S. B. (2006). Allatotropin-like peptide in Heliothis virescens: tissue localization and quantification. Archives of Insect Biochemistry and Physiology, 62, 11–25.
Raikhel, A. S., Brown, M. B. & Belles, X. (2005). Hormonal control of reproductive processes. In Comprehensive Molecular Insect Science, vol. 3, eds. Gilbert, L. I., Iatrou, K. & Gill, S. S., pp. 433–491. Amsterdam, Netherlands: Elsevier.
Retnakaran, A., Smith, , Tomkins, W. L, W. al. (1997). Effect of RH-5992, a nonsteroidal ecdysone agonist, on the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae): laboratory, greenhouse and ground spray trials. Canadian Entomologist, 129, 871–885.
Retnakaran, A., Gelbic, I., Sundaram, al. (2001). Mode of action of the ecdysone agonist tebufenozide (RH-5992), and an exclusion mechanism to explain resistance to it. Pest Management Science, 57, 951–957.
Retnakaran, A., Krell, P., Feng, Q. & Arif, B. (2003). Ecdysone agonists: mechanism and importance in controlling insect pests of agriculture and forestry. Archives of Insect Biochemistry and Physiology, 54, 187–199.
Riddiford, L. M., Hiruma, K., Zhou, X. & Nelson, C.A. (2003). Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 33, 1327–1338.
Robbins, W. E., Kaplanis, J. N., Thompson, M. J., Shortino, T. J. & Joyner, S. O. (1970). Ecdysones and synthetic analogs: molting hormone activity and inhibitive effects on insect growth, metamorphosis and reproduction. Steroids, 16, 105–125.
Sáenz-de-Cabezón Irigaray, F.-J., Marco, V., Zalom, F. G. & Pérez-Moreno, I. (2005). Effects of methoxyfenozide on Lobesia botrana Den & Schiff (Lepidoptera: Tortricidae) egg, larval and adult stages. Pest Management Science, 61, 1133–1137.
Sakai, T., Satake, H., Minakata, H. & Takeda, M. (2004). Characterization of crustacean cardioactive peptide as a novel insect midgut factor: isolation, localization, and stimulation of alpha-amylase activity and gut contraction. Endocrinology, 145, 5671–5678.
Sato, Y., Oguchi, M., Menjo, al. (1993). Precursor polyprotein for multiple neuropeptides secreted from the suboesophageal ganglion of the silkworm Bombyx mori: characterization of the cDNA encoding the diapause hormone precursor and identification of additional peptides. Proceedings of the National Academy of Sciences of the USA, 90, 3251–3255.
Sauphanor, B. & Bouvier, J. C. (1995). Cross-resistance between benzoylureas and benzoylhydrazines in the coddling moth, Cydia pomonella L. Pesticide Science, 45, 369–375.
Sen, S. E., Trobaugh, C., Béliveau, C., Richard, T. & Cusson, M. (2007). Cloning, expression and characterization of a dipteran farnesyl diphosphate synthase. Insect Biochemistry and Molecular Biology, 37, 1198–1206.
Shinoda, T. & Itoyama, K. (2003). Juvenile hormone acid methyltransferase: a key regulatory enzyme for insect metamorphosis. Proceedings of the National Academy of Science of the USA, 100, 11986–11991.
Sláma, K, Romaňuk, M. & Šorm, F. (1974). Insect Hormones and Bioanalogues. New York: Springer-Verlag.
Smagghe, G., Carton, B., Decombel, L. & Tirry, L. (2001). Significance of absorption, oxidation, and binding to toxicity of four ecdysone agonists in multi-resistant cotton leafworm. Archives of Insect Biochemistry and Physiology, 46, 127–139.
Stanley, D. (2006). Prostaglandins and other eicosanoids in insects: biological significance. Annual Review of Entomology, 51, 25–44.
Stay, B. & Tobe, S. (2007). The role of allatostatins in juvenile hormone synthesis in insects and crustaceans. Annual Review of Entomology, 52, 277–299.
Sundaram, K. M. S., Nott, R. & Curry, J. (1996). Deposition, persistence and fate of tebufenozide (RH-5992) in some terrestrial and aquatic components of a boreal forest environment after aerial application of mimic. Journal of Environmental Science, Health B, 31, 699–750.
Sundaram, M., Palli, S. R., Ishaaya, I., Krell, P. J. & Retnakaran, A. (1998). Toxicity of ecdysone agonists correlates with the induction of CHR3. Pesticide Biochemistry and Physiology, 62, 201–208.
Truman, J. W. & Copenhaver, P. F. (1989). The larval eclosion hormone neurones in Manduca sexta: identification of the brain-proctodeal neurosecretory system. Journal of Experimental Biology, 147, 457–470.
Wearing, C. H. (1998). Cross-resistance between azino-phosmethyl and tebufenozide in the greenheaded leaf roller, Planotortrix octo. Pesticide Science, 54, 203–211.
Williams, C. M. (1956). The juvenile hormone of insects. Nature, 178, 212–213.
Williams, C. M. (1967). Third-generation pesticides. Scientific American, 217, 13–17.
Žitňan, D. & Adams, M. E. (2005). Neuroendocrine regulation of insect ecdysis. In Comprehensive Molecular Insect Science, vol. 3, eds. Gilbert, L. I., Iatrou, K. & Gill, S. S, pp. 1–60. Amsterdam, Netherlands: Elsevier.
Žitňan, D., Žitňanová, I., Spalovská, al. (2003). Conservation of ecdysis-triggering hormone signalling in insects. Journal of Experimental Biology, 206, 1275– 1289.