Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T10:41:32.945Z Has data issue: false hasContentIssue false

6 - Single-neuron and ensemble contributions to decoding simultaneously recorded spike trains

Published online by Cambridge University Press:  14 August 2009

Christian Holscher
Affiliation:
University of Ulster
Matthias Munk
Affiliation:
Max-Planck-Institut für biologische Kybernetik, Tübingen
Get access

Summary

Decoding simultaneously recorded spike trains

Pioneering studies of motor cortex by Georgopoulos and colleagues (e.g. Georgopoulos et al., 1982) established that “population vectors,” constructed from weighted averages of the responses of single neurons, can accurately predict behavioral variables, such as movement direction. This approach has been used to study population coding in a number of cortical systems and has led to the view that cortical neurons act as independent processors of information (e.g. Gochin et al., 1994). However, some recent work has challenged this interpretation of neural population activity. For example, Schneidman et al. (2003) proposed interpreting neural ensemble activity by comparing ensemble information with information represented by the single neurons that comprise the ensemble. In a synergistic coding scheme, ensembles encode more than the sum of the component neurons. The advantage of synergy is that there can be a massive gain in information from the activity of multiple neurons. In a redundant coding scheme, the removal of individual neurons has little effect on encoding and thus the ensembles can be less noisy and less prone to errors. In Narayanan et al. (2005), we adapted the information-theoretical framework proposed by Schneidman et al. (2003) to measures of decoding of the performance of a delayed response task with activity from the rodent motor cortex. The predictive relationship between neural firing rates and a categorical measure of behavior, e.g. correct vs. error performance of a reaction time task, was quantified using statistical classifiers.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, D. N. and Taylor, S. R. (2002). Application of regularized discrimination analysis to regional seismic event identification. Bull Seism Soc Am 92:2391–2399.CrossRefGoogle Scholar
Averbeck, B. B. and Lee, D. (2006). Effects of noise correlations on information encoding and decoding. J Neurophysiol 95:3633–3644.CrossRefGoogle ScholarPubMed
Averbeck, B. B., Crowe, D. A., Chafee, M. V., and Georgopoulos, A. P. (2003). Neural activity in prefrontal cortex during copying geometrical shapes. II. Decoding shape segments from neural ensembles. Exp Brain Res 150:142–153.CrossRefGoogle ScholarPubMed
Bellman, R. E. (1961). Adaptive Control Processes. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Briggman, K. L., Abarbanel, H. D., and Kristan, W. B. (2005). Optical imaging of neuronal populations during decision-making. Science 307:896–901.CrossRefGoogle ScholarPubMed
Buckheit, J. and Donoho, D. L. (1995). Improved linear discrimination using time-frequency dictionaries. Proc SPIE:540–531.CrossRefGoogle Scholar
Carmena, J. M., Lebedev, M. A., Crist, R. E., et al. (2003). Learning to control a brain–machine interface for reaching and grasping by primates. PLoS Biol 1:E42.CrossRefGoogle ScholarPubMed
Carmena, J. M., Lebedev, M. A., Henriquez, C. S., and Nicolelis, M. A. (2005). Stable ensemble performance with single-neuron variability during reaching movements in primates. J Neurosci 25:10 712–10 716.CrossRefGoogle ScholarPubMed
Cover, T. M. and Thomas, J. A. (1991). Elements of Information Theory. Hoboken, NJ: Wiley-Interscience.CrossRefGoogle Scholar
Davis, D., Laubach, M., Cohen, L., and Pieribone, V. P. (2006). Voltage-sensitive dye imaging of whisker evoked responses in mouse barrel cortex. Soci Neurosci Abstr 134:12.Google Scholar
Deadwyler, S. A. and Hampson, R. E. (1997). The significance of neural ensemble codes during behavior and cognition. Annu Rev Neurosci 20:217–244.CrossRefGoogle ScholarPubMed
Deadwyler, S. A., Bunn, T., and Hampson, R. E. (1996). Hippocampal ensemble activity during spatial delayed-nonmatch-to-sample performance in rats. J Neurosci 16:354–372.CrossRefGoogle ScholarPubMed
Friedman, J. H. (1989). Regularized discriminant analysis. J Am Stat Assoc 84:165–175.CrossRefGoogle Scholar
Gawne, T. J. and Richmond, B. J. (1993). How independent are the messages carried by adjacent inferior temporal cortical neurons?J Neurosci 13:2758–2771.CrossRefGoogle ScholarPubMed
Geman, S., Bienenstock, E., and Doursat, R. (1992). Neural networks and the bias/variance dilemma. Neur Comput. 4:1–58.CrossRefGoogle Scholar
Georgopoulos, A. P., Kalaska, J. F., Caminiti, R., and Massey, J. T. (1982). On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2:1527–1537.CrossRefGoogle ScholarPubMed
Gochin, P. M., Colombo, M., Dorfman, G. A., Gerstein, G. L., and Gross, C. G. (1994). Neural ensemble coding in inferior temporal cortex. J Neurophysiol 71:2325–2337.CrossRefGoogle ScholarPubMed
Guo, Y., Hastie, T., and Tibshirani, R. (2007). Regularized linear discriminant analysis and its application in microarrays. Biostatistics 8:86–100.CrossRefGoogle ScholarPubMed
Gutierrez, R., Carmena, J. M., Nicolelis, M. A., and Simon, S. A. (2006). Orbitofrontal ensemble activity monitors licking and distinguishes among natural rewards. J Neurophysiol 95:119–133.CrossRefGoogle ScholarPubMed
Hastie, T., Buja, A., and Tibshirani, R. (1995). Penalized discriminant analysis. Ann Stats 23:73–102.CrossRefGoogle Scholar
Hastie, T., Tibshirani, R., and Friedman, J. (2003). The Elements of Statistical Learning. New York: Springer.Google Scholar
Hsu, C. W., Chang, C. C., and Lin, C. J. (2003). A Practical Guide to Support Vector Classification. Available online at www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.
Kass, R. E., Ventura, V., and Brown, E. N. (2005). Statistical issues in the analysis of neuronal data. J Neurophysiol 94:8–25.CrossRefGoogle ScholarPubMed
Kohonen, T. (2000). Self-Organizing Maps. New York: Springer.Google Scholar
Kraskov, A., Stögbauer, H., and Grassberger, P. (2004). Estimating mutual information. Phys Rev E 69:066138.CrossRefGoogle ScholarPubMed
Krippendorff, K. (1986). Information Theory: Structural Models for Qualitative Data. Thousand Oaks, CA: Sage Publications.CrossRefGoogle Scholar
Krupa, D. J., Wiest, , Shuler, M. G., Laubach, M., and Nicolelis, M. A. (2004). Layer-specific somatosensory cortical activation during active tactile discrimination. Science 304:1989–1992.CrossRefGoogle ScholarPubMed
Laubach, M. (2003). Verifying neuronal codes: the statistical pattern recognition approach. Annu Int Conf IEEE Engineering in Medicine and Biology 3:2147–2150.Google Scholar
Laubach, M. (2004). Wavelet-based processing of neuronal spike trains prior to discriminant analysis. J Neurosci Methods 134:159–168.CrossRefGoogle ScholarPubMed
Laubach, M., Wessberg, J., and Nicolelis, M. A. (2000). Cortical ensemble activity increasingly predicts behavior outcomes during learning of a motor task. Nature 405:567–571.CrossRefGoogle ScholarPubMed
Lo, C. C. and Wang, X. J. (2006). Cortico-basal ganglia circuit mechanism for a decision threshold in reaction time tasks. Nat Neurosci 9:956–963.CrossRefGoogle ScholarPubMed
Lu, J., Plataniotis, K. N., and Venetsanopoulos, A. N. (2003). Regularized discriminant analysis for the small sample size problem in face recognition. Pattern Recogn Lett 24:3079–3087.CrossRefGoogle Scholar
Maynard, E. M., Hatsopoulos, N. G., Ojakangas, C. L., et al. (1999). Neuronal interactions improve cortical population coding of movement direction. J Neurosci 19:8083–8093.CrossRefGoogle ScholarPubMed
McClelland, J., Rumelhart, D., and Hinton, G. (1986). The appeal of parallel distributed processing. In: Computational Models of Cognition and Perception, ed. McClelland, J., Rumelhart, D., and Hinton, G., vol. 1, pp. 3–44. Cambridge, MA: MIT Press.Google Scholar
Meijers, L. M. M. and Eijkman, E. G. J. (1974). The motor system in simple reaction time experiments. Acta Psychol 38:367–377.CrossRefGoogle ScholarPubMed
Miller, B. T. and D'Esposito, M. (2005). Searching for the top in top–down control. Neuron 48:535–538.CrossRefGoogle ScholarPubMed
Miller, E. K., Li, L., Desimore, D., et al. (1993). Activity of neurons in anterior inferior temporal cortex during a short-term memory task. J Neurosci 13:1460–1478.CrossRefGoogle ScholarPubMed
Mosteller, D. E. and Tukey, J. W. (1977). Data Analysis and Regression: A Second Course in Statistics. Reading, MA: Addison-Wesley.Google Scholar
Narayanan, N. S. and Laubach, M. (2006a). Top-down control of motor cortex ensembles by dorsomedial prefrontal cortex. Neuron 52:921–931.CrossRefGoogle ScholarPubMed
Narayanan, N. S. and Laubach, M. (2006b). Prefrontal control of low-frequency oscillations in motor cortex. Computational and Systems Neuroscience meeting abstr. I-32.
Narayanan, N. S., Kimchi, E. Y., and Laubach, M. (2005). Redundancy and synergy of neuronal ensembles in motor cortex. J Neurosci 25:4207–4216.CrossRefGoogle ScholarPubMed
Narayanan, N. S., Horst, N. K., and Laubach, M. (2006). Reversible inactivations of rat medial prefrontal cortex impair the ability to wait for a stimulus. Neuroscience 139:865–876.CrossRefGoogle ScholarPubMed
Nicolelis, M. A., Ghazanfar, A. A., Stambaugh, C. R., et al. (1998). Simultaneous encoding of tactile information by three primate cortical areas. Nat Neurosci 1:621–630.CrossRefGoogle ScholarPubMed
Puchalla, J. L., Schneidman, E., Harris, R. A., and Berry, M. J. (2005). Redundancy in the population code of the retina. Neuron 46:493–504.CrossRefGoogle ScholarPubMed
Purushothaman, G. and Bradley, D. C. (2005). Neural population code for fine perception in area MT. Nat Neurosci 8:99–106.CrossRefGoogle ScholarPubMed
,R Development Team T (2003). R: A language and environment for statistical computing. In: R Foundation for Statistical Computing.
Reich, D. S., Mechler, F., and Victor, J. D. (2001). Independent and redundant information in nearby cortical neurons. Science 294:2566–2568.CrossRefGoogle ScholarPubMed
Richmond, B. J. and Optican, L. M. (1987). Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. II. Quantification of response waveform. J Neurophysiol 57:147–161.Google ScholarPubMed
Rolls, E. T., Aggelopoulos, N. C., Franco, L., and Treves, A. (2004). Information encoding in the inferior temporal visual cortex: contributions of the firing rates and the correlations between the firing of neurons. Biol Cybernet 90:19–32.CrossRefGoogle ScholarPubMed
Sachdev, R., Laubach, M., Mazer, J. A., and McCormick, D. A. (2006). Decoding stimulus preferences of rodent somatosensory cortical neurons. Soci Neurosci Abstr 109:2.Google Scholar
Samonds, J. M., Allison, J. D., Brown, H. A., and Bonds, A. B. (2004). Cooperative synchronized assemblies enhance orientation discrimination. Proc Natl Acad Sci USA 101:6722–6727.CrossRefGoogle ScholarPubMed
Schoenbaum, G. and Eichenbaum, H (1995a). Information coding in the rodent prefrontal cortex. I. Single-neuron activity in orbitofrontal cortex compared with that in pyriform cortex. J Neurophysiol 74:733–750.Google ScholarPubMed
Schoenbaum, G. and Eichenbaum, H. (1995b). Information coding in the rodent prefrontal cortex. II. Ensemble activity in orbitofrontal cortex. J Neurophysiol 74:751–762.CrossRefGoogle ScholarPubMed
Schneidman, E., Bialek, W., and Berry, M. J. (2003). Synergy, redundancy, and independence in population codes. J Neurosci 23:11 539–11 553.CrossRefGoogle ScholarPubMed
Schneidman, E., Berry, M. J., Segev, R., and Bialek, W. (2006). Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440:1007–1012.CrossRefGoogle Scholar
Shepherd, G. M. (2003). The Synaptic Organization of the Brain, 5th edn. New York: Oxford University Press.Google Scholar
Sing, T., Sander, O., Beerenwinkel, N., and Lengauer, T. (2005). ROCR: visualizing classifier performance in R. Bioinformatics 21:3940–3941.CrossRefGoogle Scholar
Strong, S. P., Koberle, R., Ruyter van Stevenick, R., and Bialek, W. (1998). Entropy and information in neural spike trains. Phys Rev Lett 80:197–200.CrossRefGoogle Scholar
Taylor, D. M., Tillery, S. I., and Schwartz, A. B. (2002). Direct cortical control of 3D neuroprosthetic devices. Science 296:1829–1832.CrossRefGoogle ScholarPubMed
Wessberg, J., Stambaugh, C. R., Kralik, J. D., et al. (2000). Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408:361–365.CrossRefGoogle ScholarPubMed
Witten, I. and Frank, E. (2000). Data Mining. San Diego, CA: Academic Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×