Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-07T00:23:57.032Z Has data issue: false hasContentIssue false

5 - Measuring distributed properties of neural representations beyond the decoding of local variables: implications for cognition

Published online by Cambridge University Press:  14 August 2009

Christian Holscher
Affiliation:
University of Ulster
Matthias Munk
Affiliation:
Max-Planck-Institut für biologische Kybernetik, Tübingen
Get access

Summary

Introduction

Neural representations are distributed. This means that more information can be gleaned from neural ensembles than from single cells. Modern recording technology allows the simultaneous recording of large neural ensembles (of more than 100 cells simultaneously) from awake behaving animals. Historically, the principal means of analyzing representations encoded within large ensembles has been to measure the immediate accuracy of the encoding of behavioral variables (“reconstruction”). In this chapter, we will argue that measuring immediate reconstruction only touches the surface of what can be gleaned from these ensembles. We will discuss the implications of distributed representation, in particular, the usefulness of measuring self-consistency of the representation within neural ensembles. Because representations are distributed, neurons in a population can agree or disagree on the value being represented. Measuring the extent to which a firing pattern matches expectations can provide an accurate assessment of the self-consistency of a representation. Dynamic changes in the self-consistency of a representation are potentially indicative of cognitive processes. We will also discuss the implications of representation of non-local (non-immediate) values for cognitive processes. Because cognition occurs at fast timescales, changes must be detectable at fast (millisecond, tens of milliseconds) timescales.

Representation

As an animal interacts with the world, it encounters various problems for which it must find a solution. The description of the world and the problems encountered within it play a fundamental role in how an animal behaves and finds a solution.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amari, S. I. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields. Biol Cybernet 27:77–87.CrossRefGoogle ScholarPubMed
Arai, K., Keller, E. L., and Edelman, J. A. (1994). Two-dimensional neural network model of the primate saccadic system. Neur Networks 7:1115–1135.CrossRefGoogle Scholar
Averbeck, B. B. (2001). Neural mechanisms of copying geometrical shapes. Ph.D. thesis, University of Minnesota.
Averbeck, B. B., Chafee, M. V., Crowe, D. A., and Georgopoulos, A. P. (2002). Parallel processing of serial movements in prefrontal cortex. Proc Natl Acad Sci USA 99:13 172–13 177.CrossRefGoogle ScholarPubMed
Averbeck, B. B., Chafee, M. V., Crowe, D. A., and Georgopoulos, A. P. (2003a). Neural activity in prefrontal cortex during copying geometrical shapes. I. Single cells encode shape, sequence, and metric parameters. Exp Brain Res 150:127–141.CrossRefGoogle Scholar
Averbeck, B. B., Crowe, D. A., Chafee, M. V., and Georgopoulos, A. P. (2003b). Neural activity in prefrontal cortex during copying geometrical shapes. II. Decoding shape segments from neural ensembles. Exp Brain Res 150:142–153.CrossRefGoogle ScholarPubMed
Averbeck, B. B., Latham, P. E., and Pouget, A. (2006). Neural correlations, population coding and computation. Nat Rev Neurosci 7:358–366.CrossRefGoogle ScholarPubMed
Batschelet, E. (1981). Circular Statistics in Biology. New York: Academic Press.Google Scholar
Bialek, W., Rieke, F., Ruyter van Steveninck, R. R., and Warland, D. (1991). Reading a neural code. Science 252:1854–1857.CrossRefGoogle Scholar
Brockwell, A. E., Rojas, A. L., and Kass, R. E. (2004). Recursive bayesian decoding of motor cortical signals by particle filtering. J Neurophysiol 91:1899–1907.CrossRefGoogle ScholarPubMed
Brown, E. N., Frank, L. M., Tang, D., Quirk, M. C., and Wilson, M. A. (1998). A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. J Neurosci 18:7411–7425.CrossRefGoogle ScholarPubMed
Buzsáki, G. (1989). Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31:551–570.CrossRefGoogle ScholarPubMed
Buzsáki, G. (2006). Rhythms of the Brain. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Chrobak, J. J. and Buzsáki, G. (1994). Selective activation of deep layer (V–VI) retrohippocampal neurons during hippocampal sharp waves in the behaving rat. J Neurosci 14:6160–6170.CrossRefGoogle ScholarPubMed
Chrobak, J. J. and Buzsáki, G. (1996). High-frequency oscillations in the output networks of the hippocampal–entorhinal axis of the freely behaving rat. J Neurosci 16:3056–3066.CrossRefGoogle ScholarPubMed
Chrobak, J. J., Lörincz, A., and Buzsáki, G. (2000). Physiological patterns in the hippocampo-entorhinal cortex system. Hippocampus 10:457–465.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Csicsvari, J., Hirase, H., Czurkó, A., and Buzsáki, G. (1999). Fast network oscillations in the hippocampal CA1 region of the behaving rat. J Neurosci 19:1–4.CrossRefGoogle ScholarPubMed
Dayan, P. and Abbott, L. F. (2001). Theoretical Neuroscience. Cambridge, MA: MIT Press.Google Scholar
Doboli, S., Minai, A. A., and Best, P. J. (2000). Latent attractors: a model for context-dependent place representations in the hippocampus. Neur Comput 12:1009–1043.CrossRefGoogle ScholarPubMed
Droulez, J. and Berthoz, A. (1991). A neural network model of sensoritopic maps with predictive short-term memory properties. Proc Natl Acad Sci USA 88:9653–9657.CrossRefGoogle ScholarPubMed
Eliasmith, C. and Anderson, C. H. (2003). Neural Engineering. Cambridge, MA: MIT Press.Google Scholar
Ermentrout, B. and Cowan, J. (1979). A mathematical theory of visual hallucination patterns. Biol Cybernet 34:137–150.CrossRefGoogle ScholarPubMed
Ferbinteanu, J., Kennedy, P. J., and Shapiro, M. L. (2006). Episodic memory: from brain to mind. Hippocampus 16:704–715.CrossRefGoogle Scholar
Foster, D. J. and Wilson, M. A. (2006). Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440:680–683.CrossRefGoogle ScholarPubMed
Frank, L. M., Eden, U. T., Solo, V., Wilson, M. A., and Brown, E. N. (2002). Contrasting patterns of receptive field plasticity in the hippocampus and the entorhinal cortex: an adaptive filtering approach. J Neurosci 22:3817–3830.CrossRefGoogle Scholar
Georgopoulos, A. P., Caminiti, R., Kalaska, J. F., and Massey, J. T. (1983). Spatial coding of movement: a hypothesis concerning the coding of movement direction by motor cortical populations. Exp Brain Res 7 (Suppl):327–336.Google Scholar
Georgopoulos, A. P., Kettner, R. E., and Schwartz, A. B. (1988). Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population. J Neurosci 8:2928–2937.CrossRefGoogle ScholarPubMed
Goodridge, J. P. and Touretzky, D. S. (2000). Modeling attractor deformation in the rodent head direction system. J Neurophysiol 83:3402–3410.CrossRefGoogle ScholarPubMed
Gray, J. (2004). Consciousness: Creeping Up on the Hard Problem. Oxford, UK: Oxford University Press.Google Scholar
Harris-Warrick, R. M. and Marder, E. (1991). Modulation of neural networks for behavior. Annu Rev Neurosci 14:39–57.CrossRefGoogle ScholarPubMed
Hasselmo, M. E. and Bower, J. M. (1993). Acetylcholine and memory. Trends Neurosci 16:218–222.CrossRefGoogle ScholarPubMed
Hoffmann, K. L. and McNaughton, B. L. (2002). Coordinated reactivation of distributed memory traces in primate neocortex. Science 297:2070–2073.CrossRefGoogle Scholar
Jackson, J. (2006). Network consistency and hippocampal dynamics: using the properties of cell assemblies to probe the hippocampal representation of space. Ph.D. thesis, University of Minnesota.
Jackson, J. C. and Redish, A. D. (2003). Detecting dynamical changes within a simulated neural ensemble using a measure of representational quality. Network: Comput Neur Syst 14:629–645.CrossRefGoogle ScholarPubMed
Jackson, J. C., Johnson, A., and Redish, A. D. (2006). Hippocampal sharp waves and reactivation during awake states depend on repeated sequential experience. J Neurosci 26:12 415–12 426.CrossRefGoogle ScholarPubMed
Jaynes, E. T. (2003). Probability Theory. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Jensen, O. and Lisman, J. E. (2000). Position reconstruction from an ensemble of hippocampal place cells: contribution of theta phase encoding. J Neurophysiol 83:2602–2609.CrossRefGoogle Scholar
Johnson, A. and Redish, A. D. (2005). Observation of transient neural dynamics in the rodent hippocampus during behavior of a sequential decision task using predictive filter methods. Acta Neurobiol Exp 65(Suppl 2005):103. Poster 245.Google Scholar
Johnson, A. and Redish, A. D. (2007). Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J Neurosci 27:12 176–12 189.CrossRefGoogle Scholar
Johnson, A., Seeland, K. D., and Redish, A. D. (2005). Reconstruction of the postsubiculum head direction signal from neural ensembles. Hippocampus 15:86–96.CrossRefGoogle ScholarPubMed
Kepecs, A. and Lisman, J. (2003). Information encoding and computation with spikes and bursts. Network: Comput Neur Syst 14:103–118.CrossRefGoogle ScholarPubMed
Kohonen, T. (1977). Associative Memory: A System-Theoretical Approach. New York: Springer.CrossRefGoogle Scholar
Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biol Cybernet 43:59–69.CrossRefGoogle Scholar
Kohonen, T. (1984). Self-Organization and Associative Memory. New York: Springer.Google Scholar
Kudrimoti, H. S., Barnes, C. A., and McNaughton, B. L. (1999). Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics. J Neurosci 19:4090–4101.CrossRefGoogle ScholarPubMed
Laing, C. R. and Chow, C. C. (2001). Stationary bumps in networks of spiking neurons. Neur Comput 13:1473–1494.CrossRefGoogle ScholarPubMed
Lee, A. K. and Wilson, M. A. (2002). Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36:1183–1194.CrossRefGoogle ScholarPubMed
Lee, I., Yoganarasimha, D., Rao, G., and Knierim, J. J. (2004). Comparison of population coherence of place cells in hippocampal subfields of CA1 and CA3. Nature 430:456–459.CrossRefGoogle ScholarPubMed
Lee, T. S. and Mumford, D. (2003). Hierarchical Bayesian inference in the visual cortex. J Optic Soc Am A 20:1434–1448.CrossRefGoogle ScholarPubMed
Leutgeb, S., Leutgeb, J. K., Treves, A., Moser, M. B., and Moser, E. I. (2004). Distinct ensemble codes in hippocampal areas CA3 and CA1. Science 305:1295–1298.CrossRefGoogle ScholarPubMed
Mardia, K. V. (1972). Statistics of Directional Data. New York: Academic Press.Google Scholar
Munoz, D. P., Pélisson, D., and Guitton, D. (1991). Movement of neural activity on the superior colliculus motor map during gaze shifts. Science 251:1358–1360.CrossRefGoogle ScholarPubMed
Nadasdy, Z., Hirase, H., Czurkó, A., Csicsvari, J., and Buzsáki, G. (1999). Replay and time compression of recurring spike sequences in the hippocampus. J Neurosci 19:9497–9507.CrossRefGoogle ScholarPubMed
Nirenberg, S. and Latham, P. E. (2003). Decoding neuronal spike trains: how important are correlations?Proc Natl Acad Sci USA 100:7348–7353.CrossRefGoogle ScholarPubMed
O'Keefe, J. and Nadel, L. (1978). The Hippocampus as a Cognitive Map. Oxford, UK: Clarendon Press.Google Scholar
O'Keefe, J. and Recce, M. (1993). Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3:317–330.CrossRefGoogle ScholarPubMed
O'Neill, J., Senior, T., and Csicsvari, J. (2006). Place-selective firing of CA1 pyramidal cells during sharp wave/ripple network patterns in exploratory behavior. Neuron 49:143–155.CrossRefGoogle ScholarPubMed
Rao, R. P. N. and Ballard, D. H. (1999). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci 2:79–87.CrossRefGoogle ScholarPubMed
Redish, A. D. (1997). Beyond the cognitive map: contributions to a computational neuroscience theory of rodent navigation. Ph.D. thesis, Carnegie Mellon University.
Redish, A. D. (1999). Beyond the Cognitive Map: From Place Cells to Episodic Memory. Cambridge, MA: MIT Press.Google Scholar
Redish, A. D. and Touretzky, D. S. (1998). The role of the hippocampus in solving the Morris water maze. Neur Comput 10:73–111.CrossRefGoogle ScholarPubMed
Redish, A. D., Elga, A. N., and Touretzky, D. S. (1996). A coupled attractor model of the rodent head direction system. Network: Comput Neur Syst 7:671–685.CrossRefGoogle Scholar
Redish, A. D., Rosenzweig, E. S., Bohanick, J. D., McNaughton, B. L., and Barnes, C. A. (2000). Dynamics of hippocampal ensemble realignment: time vs. space. J Neurosci 20:9289–9309.CrossRefGoogle Scholar
Rieke, F., Warland, D., Ruyter van Steveninck, R., and Bialek, W. (1997). Spikes. Cambridge, MA: MIT Press.Google Scholar
Salinas, E. and Abbott, L. (1994). Vector reconstruction from firing rates. J Comput Neurosci 1:89–107.CrossRefGoogle ScholarPubMed
Samsonovich, A. V. and McNaughton, B. L. (1997). Path integration and cognitive mapping in a continuous attractor neural network model. J Neurosci 17:5900–5920.CrossRefGoogle Scholar
Schmitzer-Torbert, N. C. and Redish, A. D. (2002). Development of path stereotypy in a single day in rats on a multiple-T maze. Arch Ital Biol 140:295–301.Google Scholar
Schmitzer-Torbert, N. C. and Redish, A. D. (2004). Neuronal activity in the rodent dorsal striatum in sequential navigation: separation of spatial and reward responses on the multiple-T task. J Neurophysiol 91:2259–2272.CrossRefGoogle ScholarPubMed
Schneiderman, E., Bialek, W., and Berry, M. J. (2003). Synergy, redundancy, and independence in population codes. J Neurosci 23:11 539–11 553.Google Scholar
Serruya, M., Hatsopoulos, N., Fellows, M., Paninski, L., and Donoghue, J. (2004). Robustness of neuroprosthetic decoding algorithms. Biol Cybernet 88:219–228.CrossRefGoogle Scholar
Skaggs, W. E., Knierim, J. J., Kudrimoti, H. S., and McNaughton, B. L. (1995). A model of the neural basis of the rat's sense of direction. In: Advances in Neural Information Processing Systems, vol. 7, eds. Tesauro, G., Touretzky, D. S., and Leen, T. K., pp. 173–180. Cambridge, MA: MIT Press.Google Scholar
Skaggs, W. E., McNaughton, B. L., Wilson, M. A., and Barnes, C. A. (1996). Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6:149–173.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Smyrnis, M., Taira, M., Ashe, J., and Georgopoulos, A. P. (1992). Motor cortical activity in a memorized delay task. Exp Brain Res 92:139–151.CrossRefGoogle Scholar
Somogyi, P. and Klausberger, T. (2005). Defined types of cortical interneurone structure space and spike timing in the hippocampus. J Physiol (Lond) 562:9–26.CrossRefGoogle ScholarPubMed
Suddendorf, T. and Busby, J. (2003). Mental time travel in animals?Trend Cogni Sci 7:391–396.CrossRefGoogle ScholarPubMed
Sutherland, G. R. and McNaughton, B. L. (2000). Memory trace reactivation in hippocampal and neocortical neuronal ensembles. Curr Opin Neurobiol 10:180–186.CrossRefGoogle ScholarPubMed
Tsodyks, M. (1999). Attractor network models of spatial maps in hippocampus. Hippocampus 9:481–489.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Tsodyks, M. (2005). Attractor neural networks and spatial maps in hippocampus. Neuron 48:168–169.CrossRefGoogle ScholarPubMed
Tulving, E. (1983). Elements of Episodic Memory. New York: Oxford University Press.Google Scholar
Tulving, E. (2001). Episodic memory and common sense: how far apart?Phil Trans R Soc Lond B 356:1505–1515.CrossRefGoogle ScholarPubMed
Tulving, E. (2002). Episodic memory: from mind to brain. Annu Rev Psychol 53:1–25.CrossRefGoogle Scholar
Vanderwolf, C. H. (1971). Limbic–diencephalic mechanisms of voluntary movement. Psychol Rev 78:83–113.CrossRefGoogle ScholarPubMed
Wills, T. J., Lever, C., Cacucci, F., Burgess, N., and O'Keefe, J. (2005). Attractor dynamics in the hippocampal representation of the local environment. Science 308:873–876.CrossRefGoogle ScholarPubMed
Wilson, H. R. and Cowan, J. D. (1973). A mathematical theory of the functional dynamics of cortical and thalamic tissue. Kybernetik 13:55–80.CrossRefGoogle ScholarPubMed
Wilson, M. A. and McNaughton, B. L. (1993). Dynamics of the hippocampal ensemble code for space. Science 261:1055–1058.CrossRefGoogle ScholarPubMed
Wilson, M. A. and McNaughton, B. L. (1994). Reactivation of hippocampal ensemble memories during sleep. Science 265:676–679.CrossRefGoogle ScholarPubMed
Wu, W., Gao, Y., Bienenstock, E., Donoghue, J. P., and Black, M. J. (2006). Bayesian population decoding of motor cortical activity using a Kalman filter. Neur Comput 18:80–118.CrossRefGoogle ScholarPubMed
Ylinen, A., Bragin, A., Nadasdy, Z., et al. (1995). Sharp wave associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J Neurosci 15:30–46.CrossRefGoogle ScholarPubMed
Zemel, R. S., Dayan, P., and Pouget, A. (1998). Probabilistic interpretation of population codes. Neur Comput 10:403–430.CrossRefGoogle ScholarPubMed
Zhang, K. (1996). Representation of spatial orientation by the intrinsic dynamics of the head direction cell ensemble: a theory. J Neurosci 16:2112–2126.CrossRefGoogle ScholarPubMed
Zhang, K., Ginzburg, I., McNaughton, B. L., and Sejnowski, T. J. (1998). Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. J Neurophysiol 79:1017–1044.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×