Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-17T16:11:34.882Z Has data issue: false hasContentIssue false

15 - Cortical gamma-band activity during auditory processing: evidence from human magnetoencephalography studies

Published online by Cambridge University Press:  14 August 2009

Christian Holscher
Affiliation:
University of Ulster
Matthias Munk
Affiliation:
Max-Planck-Institut für biologische Kybernetik, Tübingen
Get access

Summary

Introduction

Oscillatory synchronization in the gamma-band range (~30–100 Hz) has been proposed as a possible solution to the “binding problem,” i.e. the question of how the brain integrates perceptual features that are processed in distant cortical regions to generate a coherent object representation. Intracortical recordings in animals have demonstrated stimulus-specific synchronous oscillations of spatially distributed, feature-selective neurons (Eckhorn et al., 1988; Gray et al., 1989) that may provide a general mechanism for the temporal coordination of activity patterns in spatially separate regions of the cortex (Gray and Singer, 1989; Singer et al., 1997). In addition to visual feature binding, fast oscillations have been found to reflect modulations of arousal (Munk et al., 1996), perceptual integration (Fries et al., 1997), and attentional selection processes (Fries et al., 2001), and have even been proposed as a potential neural correlate of consciousness (Engel and Singer, 2001; Singer, 2001). In the middle of the last decade, the first studies of gamma-band activity (GBA) in human electroencephalogram (EEG) have relied on paradigms analogous to the early animal work (Lutzenberger et al., 1995; Müller et al., 1996). Since then, investigations using scalp EEG, magnetoencephalography (MEG), and intracranial recordings have supported the functional significance of fast oscillatory activity for a wide range of human cognitive functions. The present chapter will first provide a brief overview of the current state of human GBA research related to visual perception, selective attention, and memory.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alain, C., Arnott, S. R., Hevenor, S., Graham, S., and Grady, C. L. (2001). “What” and “where” in the human auditory system. Proc Natl Acad Sci USA 98:12 301–12306.CrossRefGoogle Scholar
Arnott, S. R., Binns, M. A., Grady, C. L., and Alain, C. (2004). Assessing the auditory dual-pathway model in humans. Neuroimage 22:401–408.CrossRefGoogle ScholarPubMed
Axmacher, N., Mormann, F., Fernandez, G., Elger, C. E., and Fell, J. (2006). Memory formation by neuronal synchronization. Brain Res Rev 52:170–182.CrossRefGoogle ScholarPubMed
Basar-Eroglu, C., Strüber, D., Schürmann, M., Stadler, M., and Basar, E. (1996). Gamma-band responses in the brain: a short review of psychophysiological correlates and functional significance. Int J Psychophysiol 24:101–112.CrossRefGoogle Scholar
Bastiaansen, M. C., Posthuma, D., Groot, P. F., and Geus, E. J. (2002). Event-related alpha and theta responses in a visuo-spatial working memory task. Clin Neurophysiol 113:1882–1893.CrossRefGoogle Scholar
Bauer, M., Oostenveld, R., Peeters, M., and Fries, P. (2006). Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas. J Neurosci 26:490–501.CrossRefGoogle ScholarPubMed
Bhattacharya, J., Shams, L., and Shimojo, S. (2002). Sound-induced illusory flash perception: role of gamma band responses. Neuroreport 13:1727–1730.CrossRefGoogle ScholarPubMed
Blair, R. C. and Karniski, W. (1993). An alternative method for significance testing of waveform difference potentials. Psychophysiology 30:518–524.CrossRefGoogle ScholarPubMed
Busch, N. A., Debener, S., Kranczioch, C., Engel, A. K., and Herrmann, C. S. (2004). Size matters: effects of stimulus size, duration and eccentricity on the visual gamma-band response. Clin Neurophysiol 115:1810–1820.CrossRefGoogle ScholarPubMed
Cantero, J. L., Atienza, M., Madsen, J. R., and Stickgold, R. (2004). Gamma EEG dynamics in neocortex and hippocampus during human wakefulness and sleep. Neuroimage 22:1271–1280.CrossRefGoogle ScholarPubMed
Clochon, P., Fontbonne, J., Lebrun, N., and Etevenon, P. (1996). A new method for quantifying EEG event-related desynchronization:amplitude envelope analysis. Electroencephalogr Clin Neurophysiol 98:126–129.CrossRefGoogle ScholarPubMed
Crone, N. E., Miglioretti, D. L., Gordon, B., and Lesser, R. P. (1998). Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain 121:2301–2315.CrossRefGoogle ScholarPubMed
Crone, N. E., Boatman, D., Gordon, B. and Hao, L. (2001). Induced electrocorticographic gamma activity during auditory perception. Clin Neurophysiol, 112, 565–82.CrossRefGoogle ScholarPubMed
Debener, S., Herrmann, C. S., Kranczioch, C., Gembris, D., and Engel, A. K. (2003). Top–down attentional processing enhances auditory evoked gamma band activity. Neuroreport 14:683–686.CrossRefGoogle ScholarPubMed
Demiralp, T., Bayraktaroglu, Z., Lenz, D., et al. (2006). Gamma amplitudes are coupled to theta phase in human EEG during visual perception. Int J Psychophysiol 64:24–30.CrossRefGoogle ScholarPubMed
Doesburg, S. M., Kitajo, K., and Ward, L. M. (2005). Increased gamma-band synchrony precedes switching of conscious perceptual objects in binocular rivalry. Neuroreport 16:1139–1142.CrossRefGoogle ScholarPubMed
Eckhorn, R., Bauer, R., Jordan, W., et al. (1988). Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biol Cybernet 60:121–130.CrossRefGoogle ScholarPubMed
Edwards, E., Soltani, M., Deouell, L. Y., Berger, M. S., and Knight, R. T. (2005). High gamma activity in response to deviant auditory stimuli recorded directly from human cortex. J Neurophysiol 94:4269–4280.CrossRefGoogle ScholarPubMed
Engel, A. K. and Singer, W. (2001). Temporal binding and the neural correlates of sensory awareness. Trends Cogn Sci 5:16–25.CrossRefGoogle ScholarPubMed
Fell, J., Klaver, P., Lehnertz, K., et al. (2001). Human memory formation is accompanied by rhinal-hippocampal coupling and decoupling. Nat Neurosci 4:1259–1264.CrossRefGoogle ScholarPubMed
Fell, J., Fernandez, G., Klaver, P., Elger, C. E., and Fries, P. (2003). Is synchronized neuronal gamma activity relevant for selective attention?Brain Res Rev 42:265–272.CrossRefGoogle ScholarPubMed
Fiebach, C. J., Gruber, T., and Supp, G. G. (2005). Neuronal mechanisms of repetition priming in occipitotemporal cortex: spatiotemporal evidence from functional magnetic resonance imaging and electroencephalography. J Neurosci 25:3414–3422.CrossRefGoogle ScholarPubMed
Fries, P., Roelfsema, P. R., Engel, A. K., König, P., and Singer, W. (1997). Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry. Proc Natl Acad Sci USA 94:12 699–12 704.CrossRefGoogle ScholarPubMed
Fries, P., Reynolds, J. H., Rorie, A. E., and Desimone, R. (2001). Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1560–1563.CrossRefGoogle ScholarPubMed
Gardner, W. G. and Martin, K. D. (1995). HRTF measurements of a KEMAR. J Acoust Soc Am 97:3907–3908.CrossRefGoogle Scholar
Gray, C. M. and Singer, W. (1989). Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA 86:1698–1702.CrossRefGoogle ScholarPubMed
Gray, C. M., König, P., Engel, A. K., and Singer, W. (1989). Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–337.CrossRefGoogle ScholarPubMed
Gruber, T. and Müller, M. M. (2002). Effects of picture repetition on induced gamma band responses, evoked potentials, and phase synchrony in the human EEG. Cogn Brain Res 13:377–392.CrossRefGoogle ScholarPubMed
Gruber, T. and Müller, M. M. (2005). Oscillatory brain activity dissociates between associative stimulus content in a repetition priming task in the human EEG. Cereb Cortex 15:109–116.CrossRefGoogle Scholar
Gruber, T., Müller, M. M., Keil, A., and Elbert, T. (1999). Selective visual-spatial attention alters induced gamma band responses in the human EEG. Clin Neurophysiol 110:2074–2085.CrossRefGoogle ScholarPubMed
Gruber, T., Müller, M. M., and Keil, A. (2002). Modulation of induced gamma band responses in a perceptual learning task in the human EEG. J Cogn Neurosci 14:732–744.CrossRefGoogle Scholar
Gruber, T., Malinowski, P., and Müller, M. M. (2004a). Modulation of oscillatory brain activity and evoked potentials in a repetition priming task in the human EEG. Eur J Neurosci 19:1073–1082.CrossRefGoogle Scholar
Gruber, T., Tsivilis, D., Montaldi, D., and Müller, M. M. (2004b). Induced gamma band responses: an early marker of memory encoding and retrieval. Neuroreport 15:1837–1841.CrossRefGoogle ScholarPubMed
Herculano-Houzel, S., Munk, M. H., Neuenschwander, S., and Singer, W. (1999). Precisely synchronized oscillatory firing patterns require electroencephalographic activation. J Neurosci 19:3992–4010.CrossRefGoogle ScholarPubMed
Herrmann, C. S., Mecklinger, A., and Pfeifer, E. (1999). Gamma responses and ERPs in a visual classification task. Clin Neurophysiol 110:636–642.CrossRefGoogle Scholar
Herrmann, C. S., Munk, M. H., and Engel, A. K. (2004a). Cognitive functions of gamma-band activity: memory match and utilization. Trends Cogn Sci 8:347–355.CrossRefGoogle ScholarPubMed
Herrmann, C. S., Senkowski, D., and Rottger, S. (2004b). Phase-locking and amplitude modulations of EEG alpha: two measures reflect different cognitive processes in a working memory task. Exp Psychol 51:311–318.CrossRefGoogle Scholar
Hillebrand, A. and Barnes, G. R. (2005). Beamformer analysis of MEG data. Int Rev Neurobiol 68:149–171.CrossRefGoogle ScholarPubMed
Hillebrand, A., Singh, K. D., Holliday, I. E., Furlong, P. L., and Barnes, G. R. (2005). A new approach to neuroimaging with magnetoencephalography. Hum Brain Map 25:199–211.CrossRefGoogle ScholarPubMed
Hoogenboom, N., Schoffelen, J. M., Oostenveld, R., Parkes, L. M., and Fries, P. (2006). Localizing human visual gamma-band activity in frequency, time and space. Neuroimage 29:764–773.CrossRefGoogle Scholar
Jensen, O. and Lisman, J. E. (1998). An oscillatory short-term memory buffer model can account for data on the Sternberg task. J Neurosci 18:10 688–10699.CrossRefGoogle ScholarPubMed
Jensen, O. and Tesche, C. D. (2002). Frontal theta activity in humans increases with memory load in a working memory task. Eur J Neurosci 15:1395–1399.CrossRefGoogle Scholar
Jensen, O., Gelfand, J., Kounios, J., and Lisman, J. E. (2002). Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cereb Cortex 12:877–882.CrossRefGoogle Scholar
Kaiser, J. and Lutzenberger, W. (2003). Induced gamma-band activity and human brain function. Neuroscientist 9:475–484.CrossRefGoogle ScholarPubMed
Kaiser, J. and Lutzenberger, W. (2004). Frontal gamma-band activity in magnetoencephalogram during auditory oddball processing. Neuroreport 15:2185–2188.CrossRefGoogle ScholarPubMed
Kaiser, J. and Lutzenberger, W. (2005). Human gamma-band activity: a window to cognitive processing. Neuroreport 16:207–211.CrossRefGoogle ScholarPubMed
Kaiser, J., Lutzenberger, W., Preissl, H., Ackermann, H., and Birbaumer, N. (2000). Right-hemisphere dominance for the processing of sound-source lateralization. J Neurosci 20:6631–6639.CrossRefGoogle ScholarPubMed
Kaiser, J., Birbaumer, N., and Lutzenberger, W. (2002a). Magnetic oscillatory responses to lateralization changes of natural and artificial sounds in humans. Eur J Neurosci 15:345–354.CrossRefGoogle ScholarPubMed
Kaiser, J., Lutzenberger, W., Ackermann, H., and Birbaumer, N. (2002b). Dynamics of gamma-band activity induced by auditory pattern changes in humans. Cereb Cortex 12:212–221.CrossRefGoogle ScholarPubMed
Kaiser, J., Ripper, B., Birbaumer, N., and Lutzenberger, W. (2003). Dynamics of gamma-band activity in human magnetoencephalogram during auditory pattern working memory. Neuroimage 20:816–827.CrossRefGoogle ScholarPubMed
Kaiser, J., Bühler, M., and Lutzenberger, W. (2004). Magnetoencephalographic gamma-band responses to illusory triangles in humans. Neuroimage 23:551–560.CrossRefGoogle ScholarPubMed
Kaiser, J., Hertrich, I., Ackermann, H., Mathiak, K., and Lutzenberger, W. (2005a). Hearing lips: gamma-band activity during audiovisual speech perception. Cereb Cortex 15:646–653.CrossRefGoogle ScholarPubMed
Kaiser, J., Leiberg, S., and Lutzenberger, W. (2005b). Let's talk together: memory traces revealed by cooperative activation in the cerebral cortex. Int Rev Neurobiol 68:51–78.CrossRefGoogle ScholarPubMed
Kaiser, J., Walker, F., Leiberg, S., and Lutzenberger, W. (2005c). Cortical oscillatory activity during spatial echoic memory. Eur J Neurosci 21:587–590.CrossRefGoogle ScholarPubMed
Kaiser, J., Hertrich, I., Ackermann, H., and Lutzenberger, W. (2006). Gamma-band activity over early sensory areas predicts detection of changes in audiovisual speech stimuli. Neuroimage 30:1376–1382.CrossRefGoogle ScholarPubMed
Karakas, S. and Basar, E. (1998). Early gamma response is sensory in origin: a conclusion based on cross-comparison of results from multiple experimental paradigms. Int J Psychophysiol 31:13–31.CrossRefGoogle ScholarPubMed
Keil, A., Müller, M. M., Ray, W. J., Gruber, T., and Elbert, T. (1999). Human gamma band activity and perception of a gestalt. J Neurosci 19:7152–7161.CrossRefGoogle ScholarPubMed
Klimesch, W., Doppelmayr, M., Schwaiger, J., Auinger, P., and Winkler, T. (1999). “Paradoxical” alpha synchronization in a memory task. Cogn Brain Res 7:493–501.CrossRefGoogle Scholar
Krause, C. M., Korpilahti, P., Porn, B., Jantti, J., and Lang, H. A. (1998). Automatic auditory word perception as measured by 40 Hz EEG responses. Electroencephalogr Clin Neurophysiol 107:84–87.CrossRefGoogle ScholarPubMed
Lachaux, J. P., Rodriguez, E., Martinerie, J., and Varela, F. J. (1999). Measuring phase synchrony in brain signals. Hum Brain Map 8:194–208.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Lachaux, J. P., George, N., Tallon-Baudry, C., et al. (2005). The many faces of the gamma band response to complex visual stimuli. Neuroimage 25:491–501.CrossRefGoogle ScholarPubMed
Leiberg, S., Kaiser, J., and Lutzenberger, W. (2006). Gamma-band activity dissociates between matching and nonmatching stimulus pairs in an auditory delayed matching-to-sample task. Neuroimage 30:1357–1364.CrossRefGoogle Scholar
Lutzenberger, W., Pulvermüller, F., and Birbaumer, N. (1994). Words and pseudowords elicit distinct patterns of 30-Hz EEG responses in humans. Neurosci Lett 176:115–118.CrossRefGoogle ScholarPubMed
Lutzenberger, W., Pulvermüller, F., Elbert, T., and Birbaumer, N. (1995). Visual stimulation alters local 40-Hz responses in humans: an EEG study. Neurosci Lett 183:39–42.CrossRefGoogle Scholar
Lutzenberger, W., Ripper, B., Busse, L., Birbaumer, N., and Kaiser, J. (2002). Dynamics of gamma-band activity during an audiospatial working memory task in humans. J Neurosci 22:5630–5638.CrossRefGoogle ScholarPubMed
Meador, K. J., Ray, P. G., Echauz, J. R., Loring, D. W., and Vachtsevanos, G. J. (2002). Gamma coherence and conscious perception. Neurology 59:847–854.CrossRefGoogle ScholarPubMed
Molholm, S., Martinez, A., Ritter, W., Javitt, D. C., and Foxe, J. J. (2005). The neural circuitry of pre-attentive auditory change-detection: an fMRI study of pitch and duration mismatch negativity generators. Cereb Cortex 15:545–551.CrossRefGoogle ScholarPubMed
Müller, M. M. and Keil, A. (2004). Neuronal synchronization and selective color processing in the human brain. J Cogn Neurosci 16:503–522.CrossRefGoogle ScholarPubMed
Müller, M. M., Bosch, J., Elbert, T., et al. (1996). Visually induced gamma-band responses in human electroencephalographic activity: a link to animal studies. Exp Brain Res 112:96–102.CrossRefGoogle ScholarPubMed
Müller, M. M., Junghöfer, M., Elbert, T., and Rockstroh, B. (1997). Visually induced gamma-band responses to coherent and incoherent motion: a replication study. Neuroreport 8:2575–2579.CrossRefGoogle ScholarPubMed
Müller, M. M., Gruber, T., and Keil, A. (2000). Modulation of induced gamma band activity in the human EEG by attention and visual information processing. Int J Psychophysiol 38:283–299.CrossRefGoogle ScholarPubMed
Munk, M. H., Roelfsema, P. R., Konig, P., Engel, A. K., and Singer, W. (1996). Role of reticular activation in the modulation of intracortical synchronization. Science 272:271–274.CrossRefGoogle ScholarPubMed
Näätänen, R., Paavilainen, P., Tiitinen, H., Jiang, D., and Alho, K. (1993). Attention and mismatch negativity. Psychophysiology 30:436–450.CrossRefGoogle ScholarPubMed
Osipova, D., Takashima, A., Oostenveld, R., et al. (2006). Theta and gamma oscillations predict encoding and retrieval of declarative memory. J Neurosci 26:7523–7531.CrossRefGoogle ScholarPubMed
Pavlova, M., Lutzenberger, W., Sokolov, A., and Birbaumer, N. (2004). Dissociable cortical processing of recognizable and non-recognizable biological movement: analysing gamma MEG activity. Cereb Cortex 14:181–188.CrossRefGoogle ScholarPubMed
Pulvermüller, F., Preissl, H., Lutzenberger, W., and Birbaumer, N. (1996). Brain rhythms of language: nouns versus verbs. Eur J Neurosci 8:937–941.CrossRefGoogle ScholarPubMed
Pulvermüller, F., Birbaumer, N., Lutzenberger, W., and Mohr, B. (1997). High-frequency brain activity: its possible role in attention, perception and language processing. Prog Neurobiol 52:427–445.CrossRefGoogle ScholarPubMed
Raghavachari, S., Kahana, M. J., Rizzuto, D. S., et al. (2001). Gating of human theta oscillations by a working memory task. J Neurosci 21:3175–3183.CrossRefGoogle ScholarPubMed
Rauschecker, J. P. (1998). Cortical processing of complex sounds. Curr Opin Neurobiol 8:516–521.CrossRefGoogle ScholarPubMed
Rodriguez, E., George, N., Lachaux, J. P., et al. (1999). Perception's shadow: long-distance synchronization of human brain activity. Nature 397:430–433.CrossRefGoogle ScholarPubMed
Romanski, L. M., Tian, B., Fritz, J., et al. (1999). Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nat Neurosci 2:1131–1136.CrossRefGoogle ScholarPubMed
Rose, M. and Büchel, C. (2005). Neural coupling binds visual tokens to moving stimuli. J Neurosci 25:10 101–10104.CrossRefGoogle ScholarPubMed
Rose, M., Sommer, T., and Buchel, C. (2006). Integration of local features to a global percept by neural coupling. Cereb Cortex 16:1522–1528.CrossRefGoogle ScholarPubMed
Sauseng, P., Klimesch, W., Doppelmayr, M., et al. (2004). Theta coupling in the human electroencephalogram during a working memory task. Neurosci Lett 354:123–126.CrossRefGoogle ScholarPubMed
Schack, B., Vath, N., Petsche, H., Geissler, H. G., and Moller, E. (2002). Phase-coupling of theta-gamma EEG rhythms during short-term memory processing. Int J Psychophysiol 44:143–163.CrossRefGoogle ScholarPubMed
Schurger, A., Cowey, A., and Tallon-Baudry, C. (2006). Induced gamma-band oscillations correlate with awareness in hemianopic patient GY. Neuropsychologia 44:1796–1803.CrossRefGoogle ScholarPubMed
Sederberg, P. B., Kahana, M. J., Howard, M. W., Donner, E. J., and Madsen, J. R. (2003). Theta and gamma oscillations during encoding predict subsequent recall. J Neurosci 23:10 809–10814.CrossRefGoogle ScholarPubMed
Singer, W. (2001). Consciousness and the binding problem. Ann N Y Acad Sci 929:123–146.CrossRefGoogle ScholarPubMed
Singer, W., Engel, A. K., Kreiter, A., et al. (1997). Neuronal assemblies: necessity, signature and detectability. Trends Cogn Sci 1:252–261.CrossRefGoogle ScholarPubMed
Sokolov, A., Pavlova, M., Lutzenberger, W., and Birbaumer, N. (2004). Reciprocal modulation of neuromagnetic induced gamma activity by attention in the human visual and auditory cortex. Neuroimage 22:521–529.CrossRefGoogle ScholarPubMed
Strüber, D., Basar-Eroglu, C., Hoff, E., and Stadler, M. (2000). Reversal-rate dependent differences in the EEG gamma-band during multistable visual perception. Int J Psychophysiol 38:243–252.CrossRefGoogle ScholarPubMed
Summerfield, C., Jack, A. I., and Burgess, A. P. (2002). Induced gamma activity is associated with conscious awareness of pattern masked nouns. Int J Psychophysiol 44:93–100.CrossRefGoogle ScholarPubMed
Tallon-Baudry, C. and Bertrand, O. (1999). Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 3:151–162.CrossRefGoogle ScholarPubMed
Tallon-Baudry, C., Bertrand, O., Delpuech, C., and Pernier, J. (1996). Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. J Neurosci 16:4240–4249.CrossRefGoogle ScholarPubMed
Tallon-Baudry, C., Bertrand, O., Delpuech, C., and Pernier, J. (1997). Oscillatory gamma-band (30–70 Hz) activity induced by a visual search task in humans. J Neurosci 17:722–734.CrossRefGoogle ScholarPubMed
Tallon-Baudry, C., Bertrand, O., Peronnet, F., and Pernier, J. (1998). Induced gamma-band activity during the delay of a visual short-term memory task in humans. J Neurosci 18:4244–4254.CrossRefGoogle ScholarPubMed
Tallon-Baudry, C., Kreiter, A., and Bertrand, O. (1999). Sustained and transient oscillatory responses in the gamma and beta bands in a visual short-term memory task in humans. Visual Neurosci 16:449–459.CrossRefGoogle Scholar
Tallon-Baudry, C., Bertrand, O., Henaff, M. A., Isnard, J., and Fischer, C. (2005). Attention modulates gamma-band oscillations differently in the human lateral occipital cortex and fusiform gyrus. Cereb Cortex 15:654–662.CrossRefGoogle ScholarPubMed
Tian, B., Reser, D., Durham, A., Kustov, A., and Rauschecker, J. P. (2001). Functional specialization in rhesus monkey auditory cortex. Science 292:290–293.CrossRefGoogle ScholarPubMed
Tiitinen, H., Sinkkonen, J., Reinikainen, K., et al. (1993). Selective attention enhances the auditory 40-Hz transient response in humans. Nature 364:59–60.CrossRefGoogle ScholarPubMed
Stein, A., Rappelsberger, P., Sarnthein, J., and Petsche, H. (1999). Synchronization between temporal and parietal cortex during multimodal object processing in man. Cereb Cortex 9:137–150.CrossRefGoogle Scholar
Stein, A., Chiang, C., and König, P. (2000). Top–down processing mediated by interareal synchronization. Proc Natl Acad Sci USA 97:14 748–14 753.CrossRefGoogle Scholar
Warren, J. D. and Griffiths, T. D. (2003). Distinct mechanisms for processing spatial sequences and pitch sequences in the human auditory brain. J Neurosci 23:5799–5804.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×