Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-16T03:05:32.025Z Has data issue: false hasContentIssue false

12 - Anatomical, physiological, and pharmacological properties underlying hippocampal sensorimotor integration

Published online by Cambridge University Press:  14 August 2009

Christian Holscher
Affiliation:
University of Ulster
Matthias Munk
Affiliation:
Max-Planck-Institut für biologische Kybernetik, Tübingen
Get access

Summary

The cellular basis of theta-band oscillation and synchrony

The limbic cortex represents multiple synchronizing systems (Bland and Colom, 1993). Populations of cells in these structures display membrane potential oscillations as a result of intrinsic properties of membrane currents. These cells also receive inputs from other cells in the same structure and inputs from cells extrinsic to the structure, many of the latter from nuclei contributing to the ascending brainstem hippocampal synchronizing pathways. Theta-band oscillation and synchrony in the hippocampal formation (HPC) and related limbic structures is recorded as an extracellular field potential consisting of a sinusoidal-like waveform with an amplitude up to 2 mV and a narrow band frequency range of 3–12 Hz in mammals. The asynchronous activity termed large-amplitude irregular activity (LIA) is an irregular waveform with a broadband frequency range of 0.5–25 Hz (Leung et al., 1982). Kramis et al. (1975) were the first formally to propose the existence of two types of hippocampal theta activity, in both the rabbit and the rat (see review by Bland, 1986). One type was termed atropine-sensitive theta, since it were abolished by the administration of atropine sulfate. Atropine-sensitive theta occurred during immobility in rabbits in the normal state and occurred in both rabbits and rats during immobility produced by ethyl ether or urethane treatment. The other type of theta was termed atropine-resistant, since it was not sensitive to treatment with atropine sulfate but was abolished by anesthetics.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acsady, L., Halasy, K. and Freund, T. F. (1993). Calretinin is present in non-pyramidal cells of the rat hippocampus: Their inputs from the median raphe and medial septal nuclei. Neuroscience 52:829–841.CrossRefGoogle ScholarPubMed
Alonso, A., Gaztelu, J. M. and Buno, W., and Garcia-Austt, E. (1987). Cross-correlation analysis of septohippocampal neurons during 8-rhythm. Brain Res 413:135–146.CrossRefGoogle Scholar
Assaf, S. Y. and Miller, J. J. (1978). Role of a raphe serotonin system in control of septal unit activity and hippocampal desynchronization. Neuroscience 3:539–550.CrossRefGoogle Scholar
Aznar, S., Qian, Z. X., and Knudsen, G. M. (2004). Non-serotonergic dorsal and median raphe projection onto parvalbumin- and calbindin-containing neurons in the hippocampus and septum. Neuroscience 124:573–581.CrossRefGoogle ScholarPubMed
Balleine, B. W. and Curthoys, I. S. (1991). Differential effects of escapable and inescapable foot shock on hippocampal theta activity. Behav Neurosci 105:202–209.CrossRefGoogle Scholar
Bland, B. H. (1986). The physiology and pharmacology of hippocampal formation theta rhythms. Progr Neurobiol 26:1–54.CrossRefGoogle ScholarPubMed
Bland, B. H. (2000). The medial septum: node of the ascending brainstem hippocampal synchronizing pathways. In: The Behavioral Neuroscience of the Septal Region, ed. Numan, R., vol. 6, pp. 115–145. New York: Springer.CrossRefGoogle Scholar
Bland, S. K. and Bland, B. H. (1986). Medial septal modulation of the hippocampal theta cell discharges. Brain Res 375:1102–1111.CrossRefGoogle ScholarPubMed
Bland, B. H. and Colom, L. V. (1988). Responses of phasic and tonic hippocampal theta-on cells to cholinergics: differential effects of muscarinic and nicotinic activation. Brain Res 440:167–171.CrossRefGoogle ScholarPubMed
Bland, B. H. and Colom, L. V. (1989). Preliminary observations on the physiology and pharmacology of hippocampal theta-off cells. Brain Res 505:333–336.CrossRefGoogle ScholarPubMed
Bland, B. H. and Colom, L. V. (1993). Extrinsic and intrinsic properties underlying oscillation and synchrony in limbic cortex. Prog Neurobiol 41:157–208.CrossRefGoogle ScholarPubMed
Bland, B. H. and Oddie, S. D. (1998). Anatomical, electrophysiological and pharmacological studies of ascending brainstem hippocampal synchronizing pathways. Neurosci Biobehav Rev 22:259–273.CrossRefGoogle ScholarPubMed
Bland, B. H. and Oddie, S. D. (2001). Theta band oscillation and synchrony in the hippocampal formation and related structures: the case for its role in sensorimotor integration. Behav Brain Res 127:119–136.CrossRefGoogle Scholar
Bland, B. H. and Vanderwolf, C. H. (1972a). Diencephalic and hippocampal mechanisms of motor activity in the rat: effects of posterior hypothalamic stimulation on behavior and hippocampal slow wave activity. Brain Res 43:67–88.CrossRefGoogle ScholarPubMed
Bland, B. H. and Vanderwolf, C. H. (1972b). Electrical stimulation of the hippocampal formation: behavioral and bioelectrical effects. Brain Res 43:89–106.CrossRefGoogle ScholarPubMed
Bland, B. H., Seto, M., Sinclair, B. R., and Fraser, S. M. (1983). The pharmacology of hippocampal theta cells: evidence the sensory processing correlate is cholinergic. Brain Res 299:121–131.CrossRefGoogle Scholar
Bland, B. H., Seto, M., and Rowntree, C. J. (1984). The relation of multiple hippocampal theta cell discharge rates to slow wave theta frequency. Physiol Behav 31:111–117.CrossRefGoogle Scholar
Bland, B. H., Colom, L. V., Konopacki, J., and Roth, S. B. (1988). Intracellular records of carbachol-induced theta rhythm in hippocampal slices. Brain Res 447:364–368.CrossRefGoogle ScholarPubMed
Bland, B. H., Colom, L. V., and Ford, R. D. (1990). Responses of septal theta-on and theta-off cells to activation of the dorsomedial-posterior hypothalamic region. Brain Res Bull 24:71–79.CrossRefGoogle ScholarPubMed
Bland, B. H., Oddie, S. D., Colom, L. V., and Vertes, R. P. (1994). Extrinsic modulation of medial septal cell discharges by the ascending brain stem hippocampal synchronizing pathway. Hippocampus 4:649–660.CrossRefGoogle ScholarPubMed
Bland, B. H., Konopacki, J., Kirk, I. J., Oddie, S. D., and Dickson, C. T. (1995). Discharge patterns of hippocampal theta-related cells in the caudal diencephalon of the urethane-anesthetized rat. J Neurophysiol 74:322–333.CrossRefGoogle Scholar
Bland, B. H., Trepel, C., Oddie, S. D., and Kirk, I. J. (1996). Intraseptal microinfusion of muscimol: effects on hippocampal formation field activity and phasic theta discharges. Exp Neurol 138:286–297.CrossRefGoogle Scholar
Bland, B. H., Colom, L. V., Oddie, D., Kirk, I. J., and Scarlett, D. (1997). Mechanisms of hippocampal theta generation: evidence from simultaneous recordings of medial septal and hippocampal cells. Soc Neurosci Abst 23:486.Google Scholar
Bland, B. H., Oddie, S. D., and Colom, L. V. (1999). Mechanisms of neural synchrony in the septohippocampal pathways underlying hippocampal theta generation. J Neurosci 19:3223–3237.CrossRefGoogle ScholarPubMed
Bland, B. H., Konopacki, J., and Dyck, R. H. (2002). Relationship between membrane potential oscillation and rhythmic discharges in identified hippocampal theta-related cells. J Neurophysiol 88:3046–3066.CrossRefGoogle Scholar
Bland, B. H., Konopacki, J., and Dyck, R. H. (2005). Heterogeneity among hippocampal pyramidal neurons revealed by their relation to theta-band oscillation and synchrony. Exp Neurol 195:458–474.CrossRefGoogle ScholarPubMed
Bland, B. H., Bird, J., Jackson, J., and Natsume, K. (2006a). Medial septal modulation of the ascending brainstem hippocampal synchronizing pathways in the freely moving rat. Hippocampus 16:11–19.CrossRefGoogle ScholarPubMed
Bland, B. H., Jackson, J., Derie-Gillespie, D., et al. (2006b). Amplitude, frequency, and phase analysis of hippocampal theta during sensorimotor processing in a jump avoidance task. Hippocampus 16:673–681.CrossRefGoogle Scholar
Bland, B. H., DeClerck, S., Jackson, J., Glasgow, S., and Oddie, S. D. (2007a). Septohippocampal properties of N-methyl-d-aspartate-induced theta band oscillation and synchrony. Synapse 61:185–197.CrossRefGoogle ScholarPubMed
Bland, B. H., Mestek, P., Jackson, J., Crooks, R., and Cormican, A. (2007b). To move or not: previous experience in a runway avoidance task determines the appearance of hippocampal type 2 sensory processing. Behav Brain Res 179:299–304.CrossRefGoogle ScholarPubMed
Bonansco, C. and Buno, W. (2003). Cellular mechanisms underlying the rhythmic bursts induced by NMDA microiontophoresis at the apical dendrites of CA1 pyramidal neurons. Hippocampus 13:150–163.CrossRefGoogle ScholarPubMed
Brucke, F., Petsche, H., Pillat, B., and Deisenhammer, E. (1959). Die beeinflussung der “Hippocampusarousal-reaktion” beim Kaninchen durch elektrische Reizung im Septum. Pflugers Arch Ges Physiol 269:319–338.CrossRefGoogle Scholar
Buzsáki, G. (2002). Theta oscillations in the hippocampus. Neuron 33:325–340.CrossRefGoogle ScholarPubMed
Caplan, J. B., Madsen, J. R., Schulze-Bonhage, A., et al. (2003). Human oscillations related to sensorimotor integration and spatial learning. J Neurosci 23:4726–4736.CrossRefGoogle ScholarPubMed
Carre, G. P. and Harley, C. W. (2000). Glutamatergic activation of the medial septum complex: an enhancement of the dentate gyrus population spike and accompanying EEG and unit changes. Brain Res 861:16–25.CrossRefGoogle ScholarPubMed
Chapman, A. C. and LaCaille, J. C. (1999). Intrinsic theta-frequency membrane potential oscillations in CA1 interneurons of stratum moleculare. J Neurophysiol 81:1296–1307.CrossRefGoogle Scholar
Chuang, S. C., Bianchi, R., Kim, D., Shin, H. S. and Wong, R. K. (2001). Group 1 metabotropic glutamate receptors elicit epileptiform discharges in the hippocampus through PLC! Signaling. J Neurosci 21:6387–6394.CrossRefGoogle Scholar
Colom, L. V. and Bland, B. H. (1987). State-dependent spike train dynamics of hippocampal formation neurons: evidence for theta-on and theta-off cells. Brain Res 422:277–286.CrossRefGoogle ScholarPubMed
Colom, L. V. and Bland, B. H. (1991). Medial septal cell interactions in relation to hippocampal field activity and the effects of atropine. Hippocampus 1:5–30.CrossRefGoogle ScholarPubMed
Colom, L. V., Ford, R. D., and Bland, B. H. (1987). Hippocampal formation neurons code the level of activation of the cholinergic septohippocampal pathways. Brain Res 410:12–20.CrossRefGoogle Scholar
Colom, L. V., Christie, B. R., and Bland, B. H. (1988). Cingulate cell discharges related to hippocampal EEG and their modulation by muscarinic and nicotinic agents. Brain Res 460:329–338.CrossRefGoogle ScholarPubMed
Colom, L. V., Nassif-Caudarella, S., Dickson, C. T., Smythe, J. W. and Bland, B. H. (1991). In vivo intrahippocampal microinfusion of carbachol and bicuculline induces theta-like oscillations in the septally deafferented hippocampus. Hippocampus 1:381–390.CrossRefGoogle ScholarPubMed
Colom, L. V., Castaneda, M. T., Reyna, T., Hernandez, S., and Garrido-Sanabria, E. (2005). Characterization of medial septal glutamatergic neurons and their projection to the hippocampus. Synapse 58:151–164.CrossRefGoogle ScholarPubMed
Danik, M., Puma, C., Quirion, R., and Williams, S. (2003). Widely expressed transcripts for chemokine receptor CXCR1 in identified glutamatergic, gamma-aminobutyric acidergic, and cholinergic neurons and astrocytes of the rat brain: a single-cell reverse transcription–multiplex polymerase chain reaction study. J Neurosci Res 74:286–295.CrossRefGoogle ScholarPubMed
Danik, M., Cassoly, E., Manseau, F., et al. (2005). Frequent coexpression of the vesicular glutamate transporter 1 and 2 genes, as well as coexpression with genes for choline acetyltransferase or glutamic acid decarboxylase in neurons of rat brain. J Neurosci Res 81:506–521.CrossRefGoogle ScholarPubMed
Dickson, C. T., Trepel, C., and Bland, B. H. (1994). Extrinsic modulation of theta field activity in the entorhinal cortex of the anesthetized rat. Hippocampus 4:37–52.CrossRefGoogle ScholarPubMed
Dickson, C. T., Kirk, I. J., Oddie, S. D., and Bland, B. H. (1995). Classification of theta-related cells in the entorhinal cortex: cell discharges are controlled by the ascending brainstem synchronizing pathway in parallel with hippocampal theta cells. Hippocampus 5:306–319.CrossRefGoogle Scholar
Dypvik, A. and Bland, B. H. (2004). Functional connectivity between the red nucleus and the hippocampus supports the role of hippocampal formation in sensorimotor integration. J Neurophysiol 92:2040–2050.CrossRefGoogle ScholarPubMed
Ekstrom, A. D., Caplan, J. B., Ho, H., et al. (2005). Human hippocampal theta activity during virtual navigation. Hippocampus 15:881–889.CrossRefGoogle ScholarPubMed
Ford, R. D., Colom, L. V., and Bland, B. H. (1989). The classification of medial septum–diagonal band cells as theta-on or theta-off in relation to hippocampal EEG states. Brain Res 493:269–282.CrossRefGoogle ScholarPubMed
Fox, S. E. (1989). Membrane potential and impedance changes in hippocampal pyramidal cells during theta rhythm. Exp Brain Res 77:283–294.CrossRefGoogle ScholarPubMed
Fox, S. E. and Ranck, J. B. (1975). Localization and anatomical identification of theta and complex spike cells in dorsal hippocampal formation of rats. Exp Neurol 49:229–313.CrossRefGoogle ScholarPubMed
Fox, S. E. and Ranck, J. B. (1981). Electrophysiological characteristics of hippocampal complex-spike cells and theta cells. Exp Brain Res 41:399–410.Google ScholarPubMed
Fox, S. E., Wolfson, S., and Ranck, J. B. (1983). Investigating the mechanisms of hippocampal theta rhythm: approaches and progress. In: Neurobiology of the Hippocampus, ed. Seifert, W., pp. 303–319. New York: Academic Press.Google Scholar
Fremeau, R. T., Troyer, M. D., Pahner, I., et al. (2001). The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31:247–260.CrossRefGoogle ScholarPubMed
Freund, T. F. (1989). GABA-ergic septohippocampal neurons contain parvalbumin. Brain Res 478:375–381.CrossRefGoogle Scholar
Freund, T. F. and Antal, M. (1988). GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature 336:170–173.CrossRefGoogle ScholarPubMed
Frotscher, M. and Leranth, C. (1985). Cholinergic innervation of the rat hippocampus as revealed by choline-acetyltransferase immunocytochemistry: a combined light and electron-microscope study. J Comp Neurol 239:237–246.CrossRefGoogle Scholar
Fujita, Y. and Sato, T. (1964). Intracellular records from hippocampal pyramidal cells in rabbits during theta rhythm activity. J Neurophysiol 27:1011–1025.CrossRefGoogle ScholarPubMed
Gerstein, G. L. (1970). Functional associations of neurons: detection and interpretation. In: The Neurosciences: Second Study Program, ed. Schmitt, F. O., pp. 648–661. New York: Rockefeller University Press.Google Scholar
Gonzalo-Ruiz, A. and Morte, L. (2000). Localization of amino acids, neuropeptides, cholinergic markers in neurons of the septum-diagonal band complex projecting to the retrosplenial granular cortex of the rat. Brain Res Bull 52:499–510.CrossRefGoogle ScholarPubMed
Graeff, F. G. and Silveira Filho, N. G. (1978). Behavioral inhibition produced by electrical stimulation of the median raphe nucleus of the rat. Physiol Behav 21:477–484.CrossRefGoogle Scholar
Graeff, F. G., Quintero, S., and Gray, J. S. (1980). Median raphe stimulation, hippocampal theta and threat-induced behavioural inhibition. Physiol Behav 25:253–261.CrossRefGoogle Scholar
Gray, J. A. and Ball, C. G. (1970). Frequency-specific relation between hippocampal theta rhythm. Science 168:1246–1248.CrossRefGoogle ScholarPubMed
Gritti, I., Mainville, L., Mancia, M., and Jones, B. E. (1997). GABAergic and other noncholinergic basal forebrain neurons, together with cholinergic neurons, project to the mesocortex and isocortex in the rat. J Comp Neurol 383:163–177.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Gulyas, A. I., Gorcs, T. J., and Freund, T. F. (1990). Innervation of different peptide-containing neurons in the hippocampus by GABAergic septal afferents. Neuroscience 37:31–44.CrossRefGoogle ScholarPubMed
Hallworth, N. E. and Bland, B. H. (2004). Basal ganglia–hippocampal interactions support the role of the hippocampal formation in sensorimotor integration. Exp Neurol 188:430–443.CrossRefGoogle ScholarPubMed
Hanada, Y., Hallworth, N. E., Szgatti, T. L., and Bland, B. H. (1999). The distribution and analysis of hippocampal theta-related cells in the pontine region of the urethane-anestheized rat. Hippocampus 9:288–302.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Jackson, J. C. and Bland, B.H. (2006). Medial septal modulation of the ascending brainstem hippocampal synchronizing pathways in the acute rat. Hippocampus 16:1–10.CrossRefGoogle Scholar
Jackson, J. C., Cormican, A. M., and Bland, B. H. (2006). Median raphe stimulation inhibits hippocampal theta-ON cells and posterior hypothalamic induced running behavior. Soc Neurosci Abstr 210:2.Google Scholar
Kinney, G. G., Kocsis, B., and Vertes, R. P. (1994). Injections of excitatory amino acid antagonists into the median raphe nucleus produce hippocampal theta rhythm in the urethane anesthetized rat. Brain Res 654:96–104.CrossRefGoogle ScholarPubMed
Kinney, G. G., Kocsis, B., and Vertes, R. P. (1995). Injections of muscimol into the median raphe nucleus produce hippocampal theta rhythm in the urethane anesthetized rat. Psychopharmacology 120:244–248.CrossRefGoogle ScholarPubMed
Kinney, G. G., Kocsis, B., and Vertes, R. P. (1996). Medial septal unit firing characteristics following injections of 8-OH-DPAT into the median raphe nucleus. Brain Res 708:116–122.CrossRefGoogle ScholarPubMed
Kirk, I. J. and McNaughton, N. (1991). Supramammillary cell firing and hippocampal rhythmical slow activity. Neuroreport 2:723–725.CrossRefGoogle ScholarPubMed
Kirk, I. J. and McNaughton, N. (1993). Mapping the differential effects of procaine on the frequency and amplitude of reticularly elicited rhythmical slow activity. Hippocampus 3:517–526.CrossRefGoogle ScholarPubMed
Kirk, I. J., Oddie, S. D., Konopacki, J., and Bland, B. H. (1996). Evidence for differential control of posterior hypothalamic, supramammillary, and medial mammillary theta-related cellular discharge by ascending and descending pathways. J Neurosci 16:5547–5554.CrossRefGoogle ScholarPubMed
Kiss, J., Magloczky, Z., Somogyi, J., and Freund, T. F. (1997). Distribution of calretinin-containing neurons relative to other neurochemically identified cell types in the medial septum of the rat. Neuroscience 78:399–410.CrossRefGoogle ScholarPubMed
Kiss, J., Csaki, A., Bokor, H., Kocsis, K., and Kocsis, B. (2002). Possible glutamatergic/aspartatergic projections to the supramammillary nucleus and their origins in the rat studied by selective [(3)H] d-aspartate labeling and immunocytochemistry. Neuroscience 111:671–691.CrossRefGoogle Scholar
Kitchigina, V. F., Kudina, T. A., Kutyreva, E. V., and Vinogradova, O. S. (1999). Neuronal activity of the septal pacemaker of theta rhythm under the influence of stimulation and blockade of the median raphe nucleus in the awake rabbit. Neuroscience 94:453–463.CrossRefGoogle ScholarPubMed
Kocsis, B., and Vertes, R. P. (1994). Characterization of neurons in the supramammillary nucleus and mammillary body that discharge rhythmically with the hippocampal theta rhythm in the rat. J Neurosci 14:7040–7052.CrossRefGoogle ScholarPubMed
Konopacki, J., MacIver, M. B., Bland, B. H., and Roth, S. H. (1987a). Theta in hippocampal slices: relation to synaptic responses of dentate neurons. Brain Res Bull 18:25–27.CrossRefGoogle ScholarPubMed
Konopacki, J., MacIver, M. B., Roth, S. H., and Bland, B. H. (1987b). Carbachol-induced EEG “theta” activity in hippocampal brain slices. Brain Res 405:196–198.CrossRefGoogle ScholarPubMed
Konopacki, J., Bland, B. H., and Roth, S. H. (1987c). Phase shifting of CA1 and dentate EEG “theta” in hippocampal formation slices. Brain Res 417:399–402.CrossRefGoogle Scholar
Konopacki, J., Bland, B. H., MacIver, M. B., and Roth, S. H. (1987d). Cholinergic theta rhythm in transected hippocampal slices: independent CA1 and dentate generators. Brain Res 436:217–222.CrossRefGoogle ScholarPubMed
Konopacki, J., Bland, B. H., and Roth, S. H. (1988a). Carbachol-induced EEG theta in hippocampal formation slices: evidence for a third generator of theta in CA3C area. Brain Res 451:33–42.CrossRefGoogle ScholarPubMed
Konopacki, J., Bland, B. H., and Roth, S. H. (1988b). Evidence that activation of in vitro hippocampal theta rhythm involves only muscarinic receptors. Brain Res 455:110–114.CrossRefGoogle ScholarPubMed
Konopacki, J., Bland, B. H., and Roth, S. H. (1988c). The development of carbachol-induced EEG theta examined in hippocampal formation slices. Dev Brain Res 38:229–232.CrossRefGoogle Scholar
Konopacki, J., Bland, B. H., Colom, L. V., and Oddie, S. D. (1992). In vivo intracellular correlates of hippocampal formation theta-on and theta-off cells. Brain Res 586:247–255.CrossRefGoogle ScholarPubMed
Konopacki, J., Eckersdorf, B., Kowalczyk, T., and Golebiewski, H. (2006). Firing cell repertoire during carbachol-induced theta rhythm in rat hippocampal formation slices. Eur J Neurosci 23:1811–1818.CrossRefGoogle ScholarPubMed
Kramis, R. C. and Routenberg, A. (1977). Dissociation of hippocampal EEG from its behavioral correlates by septal and hippocampal electrical stimulation. Brain Res 125:37–49.CrossRefGoogle ScholarPubMed
Kramis, R. C., Vanderwolf, C. H., and Bland, B. H. (1975). Two types of hippocampal rhythmical slow activity in both the rabbit and the rat: relations to behavior and effects of atropine, diethyl, ether, urethane, and pentobarbital. Exp Neurol 49:58–85.CrossRefGoogle ScholarPubMed
Lawson, V. H. and Bland, B. H. (1993). The role of the septohippocampal pathways in the regulation of hippocampal field activity and behavior: analysis by the intraseptal microinfusion of carbachol, atropine, and procaine. Exp Neurol 129:132–144.CrossRefGoogle Scholar
Lee, A. K., Manns, I. D., Sakmann, B., and Brecht, M. (2006). Whole cell recordings in freely moving rats. Neuron 51:399–407.CrossRefGoogle ScholarPubMed
Leung, L. S. (1984a). Pharmacology of theta phase shift in the hippocampal CA1 region of freely moving rats. Electroencephalogr Clin Neurophysiol 60:457–466.Google Scholar
Leung, L. S. (1984b). Theta rhythm during REM and waking: correlation between power, phase and frequency. Electroencephalogr Clin Neurophysiol 58:553–564.CrossRefGoogle Scholar
Leung, L. S. and Shen, B. (2004). Glutamatergic synaptic transmission participates in generating the hippocampal EEG. Hippocampus 14:510–525.CrossRefGoogle ScholarPubMed
Leung, L. S. and Yim, C. Y. (1986). Intracellular records of theta rhythm in hippocampal CA1 cells of the rat. Brain Res 367:323–327.CrossRefGoogle ScholarPubMed
Leung, L. S. and Yim, C. Y. (1988). Membrane potential oscillations in hippocampal neurons in vitro induced by carbachol or depolarizing currents. Neurosci Res Commun 2:159–167.Google Scholar
Leung, L. S. and Yim, C. Y. (1991). Intrinsic membrane potential oscillations in hippocampal neurons in vitro. Brain Res 553:261–274.CrossRefGoogle ScholarPubMed
Leung, L. S. and Yu, H. W. (1998). Theta frequency resonance in hippocampal CA1 neurons in vivo demonstrated by sinusoidal current injection. J Neurophysiol 79:1592–1596.CrossRefGoogle ScholarPubMed
Leung, L. S., Lopes Da Silva, F. H., and Wadman, W. J. (1982). Spectral characteristics of the hippocampal EEG in freely moving rat. Electroencephalogr Clin Neurophysiol 54:203–219.CrossRefGoogle ScholarPubMed
Leung, L. W. and Desborough, K. A. (1988). APV, an N-methyl-d-aspartate receptor antagonist, blocks the hippocampal theta rhythm in behaving rats. Brain Res 463:148–152.CrossRefGoogle ScholarPubMed
Lukatch, H. S. and MacIver, M. B. (1997). Physiology, pharmacology and topography of cholinergic neocortical oscillations in vitro. J Neurophysiol 77:2427–2445.CrossRefGoogle ScholarPubMed
Macadar, S. W., Roig, A., Monti, M., and Budelli, R. (1970). The functional relationship between septal and hippocampal unit activity and hippocampal theta rhythm. Physiol Behav 5:1443–1449.CrossRefGoogle ScholarPubMed
Macadar, S. W., Chalupa, L. M., and Lindsley, D. B. (1974). Differentiation of brain stem loci which affect hippocampal and neocortical activity. Exp Neurol 43:499–514.CrossRefGoogle Scholar
MacVicar, B. A. and Tse, F. W. Y. (1989). Local neuronal circuitry underlying cholinergic rhythmical slow activity in CA3 area of rat hippocampal slices. J Physiol 417:197–212.CrossRefGoogle ScholarPubMed
Manns, I. D., Mainville, L., and Jones, B. E. (2001). Evidence for glutamate, in addition to acetylcholine and GABA, neurotransmitter synthesis in basal forebrain neurons projecting to the entorhinal cortex. Neuroscience 107:249–263.CrossRefGoogle ScholarPubMed
Maru, E., Takahashi, K., and Iwahara, S. (1979). Effects of median raphe nucleus lesions on hippocampal EEG in the freely moving rat. Brain Res 163:223–234.CrossRefGoogle ScholarPubMed
McNaughton, B. L., Barnes, C. A., and O'Keefe, J. (1983). The contributions of position, direction and velocity to single unit activity in the hippocampus of freely-moving rats. Exp Brain Res 52:41–49.CrossRefGoogle ScholarPubMed
Meittinen, R. and Freund, T. F. (1992). Neuropeptide Y-containing interneurons in the hippocampus receive synaptic input from median raphe and GABAergic septal afferents. Neuropeptides 22:185–193.CrossRefGoogle Scholar
Misgeld, U. and Frotscher, M. (1986). Postsynaptic-GABA-ergic inhibition of non-pyramidal neurons in the guinea pig hippocampus. Neuroscience 19:185–193.CrossRefGoogle ScholarPubMed
Mizumori, S. J. Y., Barnes, C. A., and McNaughton, B. L. (1990). Behavioral correlates of theta-on and theta-off cells recorded from hippocampal formation of mature young and aged rats. Exp Brain Res 80:365–373.CrossRefGoogle Scholar
Monmaur, P. and Breton, P. (1991). Elicitation of hippocampal theta by intraseptal carbachol injection in freely moving rats. Brain Res 544:150–155.CrossRefGoogle ScholarPubMed
Munoz, M. D., Nunez, A., and Garcia-Austt, E. (1990). In vivo intracellular analysis of rat dentate granule cells. Brain Res 509:91–98.CrossRefGoogle ScholarPubMed
Natsume, K., Hallworth, N. E., Szagatti, T. L., and Bland, B. H. (1999). Hippocampal theta related cellular activity in the superior colliculus of the urethane-anesthetized rat. Hippocampus 9:500–509.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Nunez, A., Garcia-Austt, E., and Buno, W. (1987). Intracellular theta rhythm generation in identified hippocampal pyramids. Brain Res 416:289–300.CrossRefGoogle ScholarPubMed
Nunez, A., Garcia-Ausst, E., and Buno, W. (1990a). Synaptic contributions to theta rhythm genesis in rat CA1–CA3 hippocampal pyramidal neurons in vivo. Brain Res 533:176–179.CrossRefGoogle ScholarPubMed
Nunez, A., Garcia-Austt, E., and Buno, W. (1990b). In vivo electrophysiological analysis of Lucifer yellow-coupled hippocampal pyramids. Exp Neurol 108:76–82.CrossRefGoogle ScholarPubMed
Nunez, A., Garcia-Austt, E., and Buno, W., (1990c). Slow intrinsic spikes recorded in vivo in rat CA1–CA3 hippocampal pyramidal neurons. Exp Neurol 109:294–299.CrossRefGoogle ScholarPubMed
Nunez, A., Andres, I., and Garcia-Austt, E. (1991). Relationship of nucleus reticularis pontis caudalis neuronal discharge with sensory and carbachol evoked hippocampal theta rhythm. Exp Brain Res 87:303–308.CrossRefGoogle Scholar
Oddie, S. D. and Bland, B. H. (1998). Hippocampal formation theta activity and movement selection. Neurosci Biobehav Rev 22:21–231.CrossRefGoogle ScholarPubMed
Oddie, S. D., Bland, B. H., Colom, L. V., and Vertes, R. P. (1994). The midline posterior hypothalamic region comprises a critical part of the ascending brainstem hippocampal synchronizing pathway. Hippocampus 4:454–473.CrossRefGoogle ScholarPubMed
Oddie, S. D., Stefanek, W., Kirk, I. J., and Bland, B. H. (1996). Intraseptal procaine abolishes hypothalamic stimulation-induced wheel-running and hippocampal theta field activity in rats. J Neurosci 16:1948–1956.CrossRefGoogle ScholarPubMed
Oddie, S. D., Kirk, I. J., Whishaw, I. Q., and Bland, B. H. (1997). Hippocampal formation is involved in movement selection: evidence from medial septal cholinergic modulation and concurrent slow-wave (theta rhythm) recording. Behav Brain Res 88:169–180.CrossRefGoogle ScholarPubMed
Pan, W. X. and MacNaughton, N. (2004). The supramammillary area: its organization, functions and relationship to the hippocampus. Prog Neurobiol 74:127–166.CrossRefGoogle ScholarPubMed
Peck, B. K. and Vanderwolf, C. H. (1991). Effects of raphe stimulation on hippocampal and neocortical activity and behavior. Brain Res 568:244–252.CrossRefGoogle Scholar
Robinson, T. E. and Vanderwolf, C. H. (1978). Electrical stimulation of the brainstem in freely moving rats. II. Effects on hippocampal and neocortical electrical activity, and relations to behavior. Exp Neurol 61:485–515.CrossRefGoogle Scholar
Robinson, T. E. and Whishaw, I. Q. (1974). Effects of posterior hypothalamic lesions on voluntary behavior and hippocampal electroencephalograms in the rat. J Comp Physiol Psychol 86:768–786.CrossRefGoogle ScholarPubMed
Rowntree, C. I. and Bland, B. H. (1986). An analysis of cholinoceptive neurons in the hippocampal formation by direct microinfusion. Brain Res 362:98–113.CrossRefGoogle ScholarPubMed
Scarlett, D., Dypvik, A. T., and Bland, B. H. (2004). Comparison of spontaneous and septally driven hippocampal theta field and theta-related cellular activity. Hippocampus 14:99–106.CrossRefGoogle ScholarPubMed
Segal, M. (1975). Physiological and pharmacological evidence for a serotonergic projection to the hippocampus. Brain Res 94:115–131.CrossRefGoogle ScholarPubMed
Shin, J., Kim, D., Bianchi, R., Wong, R. K. S. and Shin, H. (2005). Genetic dissection of theta rhythm heterogeneity in mice. Proc Natl Acad Sci USA 102:18 165–18 170.CrossRefGoogle ScholarPubMed
Siegal, J. M., McGinty, D. J., and Breedlove, S. M. (1977). Sleep and waking activity of pontine gigantocellular field neurons. Exp Neurol 56:553–573.CrossRefGoogle Scholar
Sinclair, B. R., Seto, G. S., and Bland, B. H. (1982). Cells in CA1 and dentate layers of hippocampal formation: relations to slow-wave activity and motor behavior in the freely moving rabbit. J Neurophysiol 48:1214–1222.CrossRefGoogle ScholarPubMed
Sinnamon, H. M. (1993). Preoptic and hypothalamic neurons and the initiation of locomotion the anesthetized rat. Prog Neurobiol 41:323–344.CrossRefGoogle ScholarPubMed
Sinnamon, H. M. (2000). Priming pattern determines the correlation between hippocampal theta activity and locomotor stepping elicited by stimulation in anesthetized rats. Neuroscience 98:459–470.CrossRefGoogle ScholarPubMed
Sinnamon, H. M. (2005a). Hippocampal theta activity related to elicitation and inhibition of approach locomotion. Behav Brain Res 160:236–249.CrossRefGoogle ScholarPubMed
Sinnamon, H. M. (2005b). Hippocampal theta activity and behavioral sequences in a reward-directed approach task. Hippocampus 15:518–534.CrossRefGoogle Scholar
Sinnamon, H. M., Jassen, A. K., and Ilch, C. P. (2000). Hippocampal theta activity and facilitated locomotor stepping produced by GABA injections in the midbrain raphe region. Behav Brain Res 107:93–1103.CrossRefGoogle ScholarPubMed
Smythe, J. W., Christie, B. R., Colom, L. V., Lawson, V. H., and Bland, B. H. (1991). Hippocampal theta field activity and theta-on/theta-off cell discharges are controlled by an ascending hypothalamo-septal pathway. J Neurosci 11:2241–2248.CrossRefGoogle ScholarPubMed
Smythe, J. W., Colom, L. V., and Bland, B. H. (1992). The extrinsic modulation of hippocampal theta depends on the coactivation of cholinergic and GABA-ergic medial septal inputs. Neurosci Biobehav Rev 16:289–308.CrossRefGoogle ScholarPubMed
Sotty, F., Danik, M., Manseau, F., et al. (2003). Distinct electrophysiological properties of glutamatergic, cholinergic and GABAergic rat septohippocampal neurons: novel implications for hippocampal rhythmicity. J Physiol 551:927–943.CrossRefGoogle ScholarPubMed
Stumpf, C. (1965). The fast component in the electrical activity of rabbit's hippocampus. Electroencephalogr Clin Neurophysiol 18:477–486.CrossRefGoogle ScholarPubMed
Vanderwolf, C. H. (1969). Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol 26:407–418.CrossRefGoogle ScholarPubMed
Vanderwolf, C. H. (1975). Neocortical and hippocampal activation in relation to behavior: effects of atropine, eserine, phenothiazines, and amphetamine. J Comp Physiol Psychol 88:306–323.CrossRefGoogle ScholarPubMed
Vanderwolf, C. H. and Baker, G. B. (1986). Evidence that serotonin mediates non-cholinergic neocortical low voltage fast activity, non-cholinergic hippocampal rhythmical slow activity and cognitive abilities. Brain Res 374:342–356.CrossRefGoogle Scholar
Lier, H., Coenen, A. M. L., and Drinkenberg, W. H. (2003). Behavioral transitions modulate hippocampal electroencephalogram correlates of open field behavior in the rat: support for the sensorimotor function of hippocampal rhythmical synchronous activity. J Neurosci 23:2459–2465.CrossRefGoogle ScholarPubMed
Varga, V., Sik, A., Freund, T. F., and Kocsis, B. (2002). GABA (B) receptors in the median raphe nucleus: distribution and role in the serotonergic control of hippocampal activity. Neuroscience 109:119–132.CrossRefGoogle ScholarPubMed
Vertes, R. P. (1977). Selective firing of rat pontine gigantocellular neurons during movement and REM sleep. Brain Res 128:146–152.CrossRefGoogle ScholarPubMed
Vertes, R. P. (1979). Brain stem gigantocellular neurons: patterns of activity during behavior and sleep in the freely moving rat. J Neurophysiol 42:214–228.CrossRefGoogle ScholarPubMed
Vertes, R. P. (1981). An analysis of ascending brain stem systems involved in hippocampal synchronization and desynchronization. J Neurophysiol 46:1140–1159.CrossRefGoogle ScholarPubMed
Vertes, R. P. (1992). PHA-L analysis of projections from the supramammillary nucleus in the rat. J Comp Neurol 326:595–622.CrossRefGoogle ScholarPubMed
Vertes, R. P. and Kocsis, B. (1997). Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience 81:893–926.Google ScholarPubMed
Vertes, R. P., Colom, L. V., Fortin, W. J., and Bland, B. H. (1993). Brainstem sites for the carbachol elicitation of the hippocampal theta rhythm in the rat. Exp Brain Res 96:419–429.CrossRefGoogle ScholarPubMed
Vertes, R. P., Kinney, G. G., Kocsis, B., and Fortin, W. J. (1994). Pharmacological suppression of the median raphe nucleus with serotonin agonists, 8-OH-DPAT and busiperone, produces hippocampal theta rhythm in the rat. Neuroscience 60:441–451.CrossRefGoogle ScholarPubMed
Vertes, R. P., Crane, A. M., Colom, L. V., and Bland, B. H. (1995). Ascending projections of the posterior nucleus of the hypothalamus: a PHA-L analysis in the rat. J Comp Neurol 359:90–116.CrossRefGoogle ScholarPubMed
Vertes, R. P., Fortin, W., and Crane, A. M. (1999). Projections of the median raphe nucleus in the rat. J Comp Neurol 407:555–582.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Vertes, R. P., Hoover, W., and Di Prisco, G. V. (2004). Theta rhythm of the hippocampus: subcortical control and functional significance. Behav Cogn Neurosci Rev 3:173–200.CrossRefGoogle ScholarPubMed
Viana Di Prisco, G., Albo, Z., Vertes, R. P., and Kocsis, B. (2002). Discharge properties of neurons of the median raphe nucleus during hippocampal theta rhythm in the rat. Exp Brain Res 145:383–394.CrossRefGoogle ScholarPubMed
Vinogradova, O. S., Kitchigina, V. F., Kudina, T. A., and Zenchenko, K. I. (1999). Spontaneous activity and sensory responses of hippocampal neurons during persistant theta-rhythm evoked by median raphe nucleus blockade in rabbit. Neuroscience 94:745–753.CrossRefGoogle Scholar
Woodnorth, M. A. and MacNaughton, N. (2005). Different systems in the posterior hypothalamic nucleus of rats control theta frequency and trigger movement. Behav Brain Res 163:107–114.CrossRefGoogle ScholarPubMed
Wyble, B. P., Hyman, J. M., Rossa, C. A., and Hasselmo, M. E. (2004). Analysis of theta power in hippocampal EEG during bar pressing and running in rats during distinct behavioral contexts. Hippocampus 14:662–674.CrossRefGoogle ScholarPubMed
Yamamoto, T., Watanabe, S., Oshi, R., and Ueki, S. (1979). Effects of midbrain raphe stimulation and lesion on EEG activity in rats. Brain Res Bull 4:491–495.CrossRefGoogle ScholarPubMed
Ylinen, A., Solstez, I., Bragin, A., et al. (1995). Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells. Hippocampus 5:78–90.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×